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ABSTRACT 

Real-time prediction of state-of-charge (SOC), state-of-
health (SOH) and state-of-life (SOL) plays an essential 
role in many battery energy storage applications, such 
as electric vehicle (EV), hybrid electric vehicle (HEV) 
and smart power grid. However, among these three 
quantities, only the SOC has been thoroughly studies 
while there is still lack of rigorous research efforts on 
the other two quantities, SOH and SOL. Specially, real-
time estimation of the SOH-relevant cell capacity by 
tracking readily available measurements (e.g., voltage, 
current and temperature) is still an open problem. 
Commonly used joint/dual extended Kalman filter 
(EKF) suffers from the lack of accuracy in the capacity 
estimation since (i) the cell voltage is the only 
measurable data for the SOC and capacity estimation 
and updates and (ii) the capacity is very weakly linked 
to the cell voltage. Furthermore, although the capacity 
is a slowly time-varying quantity that indicates cell 
state-of-health (SOH), the capacity estimation is 
generally performed on the same time-scale as the 
quickly time-varying SOC, resulting in high 
computational complexity. To resolve these difficulties, 
this paper proposes a multiscale framework with EKF 
for SOC and capacity estimation. The proposed 
framework comprises two ideas: (i) a multiscale 
framework to estimate SOC and capacity that exhibit 
time-scale separation and (ii) a state projection scheme 
for accurate and stable capacity estimation. Simulation 
and experimental results verify the effectiveness of our 
framework. † 

                                                           
* Corresponding author. 
† This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

1. INTRODUCTION 

As a battery cell ages, the cell capacity and resistance 
directly limit the pack performance through capacity 
and power fade, respectively (Plett, 2004a). These two 
degradation parameters are often used to quantify the 
cell state of health (SOH). Thus, it is important to 
accurately estimate these parameters to monitoring the 
present battery SOH and to predict the remaining useful 
life (RUL). Recent literature reports various approaches 
to estimate the SOH with a focus on the capacity 
estimation. Joint/dual extended Kalman filter (EKF) 
(Plett, 2004a) and unscented Kalman filter (Plett, 
2006a) with an enhanced self-correcting model were 
proposed to simultaneously estimate the SOC, capacity 
and resistance. To improve the performance of 
joint/dual estimation, adaptive measurement noise 
models of the Kalman filter were recently developed to 
separate the sequence of SOC and capacity estimation 
(Lee et al., 2008). A physics-based single particle 
model was used to simulate the life cycling data of Li-
ion cells and to study the physics of capacity fade 
(Zhang and White, 2008a; Zhang and White, 2008b). A 
Bayesian framework combining the relevance vector 
machine (RVM) and particle filter was proposed for 
prognostics (i.e., RUL prediction) of Li-ion battery 
cells (Saha et al., 2009). More recently, the particle 
filter with an empirical circuit model was used to 
predict the remaining useful lives for individual 
discharge cycles as well as for cycle life (Saha and 
Goebel, 2009).  
 Among these techniques, the joint/dual estimation 
technique is capable of real-time SOC and capacity 
estimation. Although it provides highly accurate SOC 
estimation, it suffers from the lack of accuracy in the 
capacity estimation since (i) the cell voltage is the only 
directly measurable data for the measurement updates 
in the SOC and capacity estimation (indirectly 
measurable data such as electrochemical impedance 
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require additional devices) and (ii) the capacity is very 
weakly linked to the cell voltage. Due to the strong 
correlation between the SOC and capacity, inaccurate 
capacity estimation may further lead to inaccurate SOC 
estimation and vice versa. Furthermore, although the 
capacity is a slowly time-varying quantity that indicates 
cell state-of-health (SOH), the capacity estimation is 
generally performed on the same time-scale as the 
quickly time-varying SOC, resulting in high 
computational complexity. To resolve these difficulties, 
this paper proposes a multiscale framework with EKF 
for SOC and capacity estimation. The proposed 
framework comprises two ideas: (i) a multiscale 
framework to estimate SOC and capacity that exhibit 
time-scale separation and (ii) a state projection scheme 
for accurate and stable capacity estimation. It is noted 
that the multiscale framework is generic since it can be 
used to achieve highly-confident health prognostics for 
any engineered system with multiple time-scales. 
 This paper is organized as follows. Section 2 
describes the discrete-time state-space model of an 
engineered system with multiple time-scales. Section 3 
reviews the numerical formulation and implementation 
of the dual EKF method. Section 4 resents the proposed 
multiscale framework with EKF and introduces the 
state projection scheme. The proposed ideas are applied 
to a Li-ion battery system to estimate SOC and capacity 
in Section 5. Section 6 contains simulation and 
experimental results of this application. The paper is 
concluded in Section 7. 

2. SYSTEM DESCRIPTION   

To make the discussion more concrete, we will use 
discrete-time state-space models with multiple time-
scales.  Without loss of generality, we assume the 
system has two time-scales: the macro and micro time-
scales. System quantities on the macro time-scale tend 
to vary slowly over time while system quantities on the 
micro time-scale exhibit fast variation over time. The 
former are referred to as the model parameters of the 
system while the latter are called the states of the 
system. We then begin by defining the nonlinear state-
space model considered in this work as  
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where xk,l is the vector of system states at the time tk,l = 

tk,0 + l·T, for 1 ≤ l ≤ L, with T being a fixed time step 

between two adjacent measurement points, and k and l 

being the indices of macro and micro time-scales, 
respectively; θk is the vector of system model 

parameters at the time tk,0; uk,l is the vector of observed 

exogenous inputs; yk,l is the vector of system 

observations (or measurements); wk,l and rk are the 

vectors of process noise for states and model 

parameters, respectively; vk,l is the vectors of 

measurement noise; F(•,•,•) and G(•,•,•) are the state 
transition and measurement functions, respectively. 

Note that L represents the level of time-scale separation 

and that xk,0 = xk–1,L. With the system defined, we aim at 

estimating both the system states x and model 

parameters θ from the noisy observations y. 

 Let’s take the battery system as an example. In the 
battery system, the system state x refers to the SOC, 

which changes very rapidly and may transverse the 

entire range 100%-0% within minutes. The system 

model parameter θ represents the cell capacity which 

tends to vary very slowly and typically decreases 1.0% 

or less in a month with regular use. The state transition 
equation F(•,•,•) models the variation of SOC over time 

while the cell dynamic model G(•,•,•) relates the 

measured cell terminal voltage y with the unmeasured 

state (SOC) and model parameter (capacity) and the 

measured exogenous input u being the cell current. 

Given the system’s state-space model in Eq. (1) and 
knowledge of the measured input/output signals (cell 

current/cell terminal voltage), we are interested in 

estimating the unmeasured state (SOC) and model 

parameter (capacity) in real-time and in a dynamic 

driving environment.  

3. REVIEW OF DUAL EXTENDED KALMAN 

FILTER METHOD 

The dual extended Kalman filter (EKF) method is a 

commonly used technique to simultaneously estimate 

the states and model parameters (Haykin, 2001). The 

essence of the dual EKF method is to combine the state 
and weight EKFs with the state EKF estimating the 

system states and the weight EKF estimating the 

system model parameters. In the algorithm, two EKFs 

are run concurrently and, at every time step when 

observations are available, the state EKF estimates the 

states using the current model parameter estimates from 
the weight EKF while the weight EKF estimates the 

model parameters using the current state estimates from 

the state EKF. This section gives a brief review of the 

dual EKF method. Section 3.1 presents the numerical 

formulation of the dual EKF method and the numerical 
implementation of the recursive derivative computation 

is described in Section 3.2. 

3.1 Numerical Formulation: Dual Estimation  

The algorithm of the dual EKF for the system described 

in Eq. (1) is summarized in Table 1. Since the dual 

EKF does not take into account the time-scale 
separation, θk is estimated on the micro time-scale. To 

reflect this, we use the notations θk,l and rk,l to replace 

θk and rk, respectively. Also note that, to be consistent 

with the system description in Eq. (1), we use two time 
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indices k and l to present the dual EKF algorithm and 

this presentation is equivalent to a simpler version in 

(Wan and Nelson, 2001) with only one time index l.  
 The algorithm is initialized by setting the model 

parameters θ and states x to the best guesses based on 

the prior information. The covariance matrices Σθ and 

Σx of estimation errors are also initialized based on the 

prior information. At each measurement time step, the 

time- and measurement-updates of the state and weight 
EKFs are performed. In the time-update, the state and 

parameter estimates from the previous measurement 

time step are propagated forward in time according to 

the transition equations in Eq. (1). The current state and 

parameter estimates are set equal to these propagated 

estimates and the error uncertainties are increased due 
to the addition of process noise w and r. In the 

measurement update, the measurement at the current 

time step is compared with the predicted model outputs 

based on the current state and parameter estimates and 

the differences are used to adapt the current estimates.  

3.2 Numerical Implementation: Recursive 

Derivative Computation 

The dual EKF method, which adapts the states and 

parameters using two concurrently running EKFs, has a 

recursive architecture associated with the computation 

of Ck,l
θ in the weight filter. The computation of Ck,l

θ 
involves a total derivative of the measurement function 

with respect to the parameters θ as  
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This computation requires a recursive routine similar to 

a real-time recursive learning (Williams and Zipser, 
1989). Decomposing the total derivative into partial 

derivatives and propagating the states back in time 

results in the recursive equations 
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The last term in Eq. (5) can be set to zero with the 
assumption that Kk,l

x is not dependent on θ. Indeed, 
since Kk,l

x is often very weakly dependent on θ, the 
extra computational effort to consider this dependence 
is not worth the improvement in performance. 
Therefore, we drop the last term in Eq. (5) in this study. 
Then the three total derivatives can be computed in a 
recursive manner with initial values set as zeros. It 
noted that the partial derivatives of the transition and 
measurement functions with respect to the states x and 
parameters θ can be easily computed with the explicitly 
given function forms.  
 

4. A MULTISCALE FRAMEWORK WITH 

EXTENDED KALMAN FILTER  

As discussed in Section 3, the dual EKF method 
estimates both the states and parameters on the same 
time-scale. However, for systems that exhibit the time-
scale separation, it is natural and desirable to adapt the 
slowly time-varying parameters on the macro time-
scale while keeping the estimation of the fast time-
varying states on the micro time-scale. This section is 
dedicated to the discussion of this multiscale 
framework. Section 4.1 presents the numerical 
formulation of the multiscale framework and the 
numerical implementation of the recursive derivative 
computation is described in Section 4.2.  

4.1 Numerical Formulation: Multiscale Estimation 

As opposed to the dual estimation, we intend to derive 
a multiscale estimation which allows for a time-scale 
separation in the state and parameter estimations. More 
specifically, we aim at estimating the slowly time-
varying model parameters on the macro time-scale and, 
at the same time, intend to keep the estimation of fast 
time-varying states on the micro time-scale to utilize all 
the measurements. For these purposes, we derive the 
so-called micro and macro EKFs running on the micro 
and macro time-scales, respectively. Note that, the 
micro time-scale here refers to the time-scale on which 
system states exhibit fast variation while the macro 
time-scale refers to the one on which system model 
parameters tend to vary slowly. For example, in the 
battery system, the SOC, as a system state, changes 
every second, which suggests the micro time-scale is 
approximately one second. In contrast, the cell 
capacity, as a system model parameter, typically 
decreases 1.0% or less in a month with regular use, 
resulting in the macro time-scale being approximately 
one day or so. In the micro EKF, similar to the state 
EKF in the dual estimation, the states are estimated 
based on measurements y. In the macro EKF, the 
measurements used to adapt the model parameters are 
the estimated states from the micro EKF.  
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Table 1 Algorithm of dual extended Kalman filter (Wan and Nelson, 2001) 

Initialization 

 

( ) ( )

( ) ( )

,

,

T

0,0 0,0 0,0 0,0 0,0 0,0

T

0,0 0,0 0,0 0,0 0,0 0,0

ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ, .

k l

k l

E E

E E

  = = − −    

 = = − −    

θ

x

θ θ Σ θ θ θ θ

x x Σ x x x x

 (6) 

For k∈{1,…, ∞}, l∈{1,…, L}, compute 

 Time-update equations for the weight filter 
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 Measurement-update equations for the state filter 
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 Measurement-update equations for the weight filter 
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A state projection scheme is introduced to project the 
state through the macro time step, expressed as 

 
( )1, 0 1,0 1,0: 1 1, ,k L L k k L k− → − − − −=x F x u θ  (14) 

where the state projection function F0→L(•,•,•) can be 
expressed as a nested form of the state transition 
function F(•,•,•). It is noted that the computational 
effort involved in computing F0→L(•,•,•) is negligible 
compared to the time- and measurement-updates 
conducted in L micro time steps.  
 The algorithm of the multiscale framework for the 
system described in Eq. (1) is summarized in Table 2. 
Note that, in contrast to the dual EKF algorithms in 
Table 1, we only use the macro time-scale index k to 
present the macro EKF since it estimates the 
parameters on the macro time-scale. The algorithm is 
initialized by setting the model parameters θ and states 

x to the best guesses based on the prior information. 
The covariance matrices Σθ and Σx of estimation errors 
are also initialized based on the prior information. At 
each time step on the macro time-scale, the time- and 
measurement-updates of the macro EKF is performed 
while, at each time step on the micro time-scale, the 
time- and measurement-updates of the micro EKF is 
performed. In the measurement-update of the macro 
EKF, the state estimate at the previous macro time step 
from the micro EKF is projected through the macro 
time step according to the state projection equation in 
Eq. (14). Then the state estimates at the current macro 
time step from the micro EKF are compared with the 
projected estimates and the differences are used to 
adapt the current parameter estimates. 
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Table 2 Algorithm of a multiscale framework with extended Kalman filter 

Initialization 
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 Time-update equations for the macro EKF 
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4.2 Numerical Implementation: Recursive 

Derivative Computation 

In the multiscale framework, the computation of Ck
θ in 

the macro EKF involves a total derivative of the state 
projection function with respect to the parameters θ as  
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Similar to the total derivative in Eq. (2), this 
computation also requires a recursive routine. 

Decomposing the total derivative into partial 
derivatives, we then obtain the following equation 
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The total derivative in the last term can be obtained by 
using the recursive equations Eqs. (3)-(5).  
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5. APPLICATION TO LI-ION BATTERY 

SYSTEM  

In this section, we use the proposed framework to 
estimate the SOC and capacity in a Li-ion battery 
system. When applied to the battery system, the 
multiscale framework can be treated as a hybrid of 
coulomb counting and adaptive filtering techniques and 
comprises two new ideas: (i) a multiscale framework to 
estimate SOC and capacity that exhibit time-scale 
separation and (ii) a state projection scheme for 
accurate and stable capacity estimation. Section 5.1 
presents the discrete-time cell dynamic model used in 
this study. Section 5.2 presents the multiscale 
estimation of SOC and capacity. 

5.1 Discrete-Time Cell Dynamic Model  

In order to execute the time-update in the micro and 
macro EKFs, we need a state transition model that 
propagate the SOC forward in time. In order to execute 
the measurement-update in the micro-EKF, we need a 
“discrete-time cell dynamic model” that relates the 
SOC to the cell voltage. Here we employ the enhanced 
self-correcting (ESC) model which considers the 
effects of open circuit voltage (OCV), internal 
resistance, voltage time constants and hysteresis (Plett, 
2004a). The effects of voltage time constants and 
hysteresis in the ESC model can be expressed as (Plett, 
2004a) 
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where x is the SOC, f the filter state, h the hysteresis 
voltage, α the vector of filter pole locations, γ the 
hysteresis rate constant, i the current, M(· , ·) maximum 
hysteresis, ηi the Coulombic efficiency, T the length of 
measurement interval, C the nominal capacity. We then 
obtain the state transition and measurement equations 
as  
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where OCV is the open circuit voltage, yk the predicted 
cell terminal voltage, R the cell resistance, S a vector of 
constants that blend the time constant states together in 
the output. 

5.2 Multiscale Estimation of SOC and Capacity  

We then begin to introduce the multiscale framework 
with EKF for the Li-ion battery system by drawing a 
flowchart in Figure 1, where T is a fixed time step 
between two adjacent measurement points, xk,l is the 
SOC estimate at the time tk,l = tk,0 + l·T., for 1 ≤ l ≤ L (k 
and l are the indices of macro and micro time-scales, 
respectively), y and i are the cell voltage and current 
measurements, and C is the cell capacity estimate. 
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Macroscale: 

l = L?

xk,l

No

Yes xk,L

(SOC)

Micro EKF

Macro EKF

(Capacity)

 

Figure 1: Flowchart of a multiscale framework with EKF for battery SOC and capacity estimation. 

 
 The framework consists of two EKFs running in 
parallel: the top one (micro EKF) adapting the SOC in 
the micro time-scale and the bottom one (macro EKF) 
adapting the capacity in the macro time-scale. The 
micro EKF sends the SOC estimate to the macro EKF 
and receives the capacity estimate from the macro EKF. 
In what follows, we intend to elaborate on the key 

technical component of the multiscale framework, the 
macro EKF, which consists of the following recursively 
executed procedures (see Figure 2): 

Step 1: At the macro time step k, the capacity 
transition step, also known as the time update step, 
computes the expected capacity and its variance based 
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on the updated estimates at the time step k ‒ 1, 
expressed as 

 
1 11 , .

k k kk k C C r
C C

− −

− + − +

−= Σ = Σ + Σ  (29) 

For a stable system, the capacity variance term tends to 
decrease over time with the measurement update to be 
detailed in the subsequent step. However, the process 
noise term always increases the uncertainty of the 
capacity estimate due to the addition of unpredictable 
process noise. To clearly illustrate the idea, we intend 
to classify the capacity estimates into three cases (see 
Figure 1): a larger estimate Ck‒1

(L), an accurate estimate 
Ck‒1

(N), and a smaller estimate Ck‒1
(S). 

Step 2: Based on the capacity estimate Ck
‒, the state 

projection scheme projects the SOC through the macro 
time step, expressed as a state projection equation 
derived from Eqs. (14) and (28) 

 

1

, ,0 ,

0

.
L

k L k k j

jk

T
x x i

C

η −

−
=

⋅
= + ⋅∑  (30) 

As can be seen in Figure 2:, the projected SOCs exhibit 
large deviations from their true value (from micro 
EKF), which suggests a magnified effect of the 
capacity on the SOC.  

Step 3: Following the state projection step, the 
difference between the projected SOC and the 
estimated SOC by the micro EKF is used to update the 
capacity estimate, known as the measurement update. It 
is noted that the measurement update requires accurate 
SOC estimates which can be obtained from the micro 
EKF. The updated capacity estimate equals the 
predicted capacity estimate in Step 1 plus a correction 
factor, expressed as 

 ( )
, ,

ˆ ,

1 .
k k

C

k k k k L k L

C C

C k k C

C C K

K C

+ −

+ −

 = + − 

Σ = − Σ

x x�
 (31) 

where the Kalman gain Kk
C  and the total derivative Ck

C 

can be estimated using Eqs. (18) and (23), respectively.  
 

t

SOC/z

tk,0 tk,L

Ck
‒(L)

Ck
‒(N)

Ck
‒(S)

1

Microscale: T

Macroscale: L·T

1

2

Capacity transition

2

SOC projection

3 Measurement update

3

Ck−1
(L)

Ck−1
(N)

Ck−1
(S)

Ck
‒(L)

Ck
‒(N)

Ck
‒(S)

 
Figure 2: Procedures of capacity estimation in macro 

EKF. 

5.3 Remarks on Mutiscale Framework  

We note that the proposed framework decouples the 

SOC and capacity estimation in terms of both the 
measurement and time-scale, with an aim to avoid the 

concurrent SOC and capacity estimation relying on the 

only measurement (cell terminal voltage) in the dual 

EKF (Plett, 2004a). In fact, the very motivation of this 

work lies in the fact that the coupled estimation in the 

dual EKF falls short in the way of achieving stable 
capacity estimation, precisely because it is difficult to 

distinguish the effects of two states (SOC and capacity) 

on the only measurement (cell terminal voltage), 

especially in the case of the micro time-scale where the 

capacity only has a very small influence on the SOC. 

Regarding the measurement decoupling, the multiscale 
framework uses the cell terminal voltage exclusively as 

the measurement for adapting the SOC (micro EKF) 

which in turn serves as the measurement to adapt the 

capacity (macro EKF). Regarding the time-scale 

decoupling, the state projection using the coulomb 

counting in Eq. (30) significantly magnifies the effect 
of the capacity on the SOC, i.e., that the capacity 

affects the SOC projected on the macro time-scale 

(L·T) more significantly than that projected on the 

micro time-scale (T). The larger influence of the 

capacity on the SOC leads to the possibility of more 
stable capacity estimation, and that is precisely the 

main technical characteristic that distinguishes our 

approach from the dual EKF. 

6. SIMULATION AND EXPERIMENTAL 

RESULTS  

The verification of the proposed multiscale framework 
was accomplished by conducting an extensive urban 

dynamometer drive schedule (UDDS) test. In Section 

6.1, the synthetic data using a valid dynamic model of a 

high power LiPB cell are used to verify the 

effectiveness of the multiscale framework. Section 6.2 

reports the results of UDDS cycle life test on Li-ion 
prismatic cells.  

6.1 SOC and Capacity Estimation with Synthetic 

Data of High Power Cell 

Synthetic Data Generation 

In order to evaluate the performance of our proposed 
approach, we generated the synthetic data (T = 1s) 

using an ESC model of a prototype LiPB cell with a 

nominal capacity of 7.5Ah (Plett, 2006b). The root-

mean-square (RMS) modeling error compared to cell 

tests was reported to be less than 10mV (Plett, 2004b). 

A sequence of 15 urban dynamometer driving schedule 
(UDDS) cycles (see Figure 3a), separated by 30A 

constant current discharge and 5min rest, result in the 

spread of SOC over the 100%-4% range (see Figure 
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3b). To account for the measurement error, the current 

and voltage data were contaminated by zero mean 

Gaussian noise with standard deviations 200mA and 
10mV, respectively. 

Capacity Estimation Results 

To test the performance of the dual EKF and the 

multiscale framework with EKF, we intentionally offset 

the initial capacity value (7.0Ah) from the true value 

(7.5Ah). The results of capacity estimations by these 
two methods are summarized in Figure 3c and 3d, 

respectively, from which three important observations 

can be made. First of all, both methods produced 

converged capacity estimates with identical similar 

convergence rate. Indeed, the convergence rate can be 

adjusted by varying the process and measurement noise 
covariances which, respectively, represent the process 

uncertainty resulting from the model inaccuracy and the 

measurement uncertainty resulting from external 

disturbance that corrupts the measurement data. 

Secondly, the dual EKF yielded inaccurate and noisy 

capacity estimation (see Figure 3c) while the multiscale 
framework (L = 100) with EKF produced more 

accurate and stable capacity estimation (see Figure 3d). 

This can be attributed to the fact that the state 

projection in Eq. (30) magnifies the effect of the 

capacity on the SOC as well as removes to some extent 

the measurement noise. To minimize the effect of 

randomness in measurement noise, we repeated this 

simulation process ten times and obtained average 
RMS capacity estimation errors after convergence (at t 

= 200mins) to be 0.048Ah (relative error 0.640%) and 

0.033Ah (relative error 0.440%) for the dual EKF and 

the multiscale framework with EKF, respectively. 

Thirdly, it is observed that, although the multiscale 

framework with EKF produced stable capacity 
estimation, the estimate still exhibits small fluctuation 

over time. It is fair to say, however, that the small noise 

does not really affect the practical use of this estimate. 

Computational Efficiency 

In the previous subsection, we have demonstrated that 

the proposed multiscale framework yielded higher 
accuracy than the dual EKF. In this subsection, we 

compare the two methods in terms of computational 

efficiency. To minimize the effect of randomness in 

measurement noise, we employed the ten synthetic data 

sets with each being executed ten times. Our 

computations were carried out on a processor Intel 
Core i5 760 CPU 2.8GHz and 4 GByte RAM. The 

codes for both methods were self-devised hand-

optimized MATLAB codes running in Matlab 

environment (MATLAB Version 7.11.0.584, The 

MathWorks, Inc., Natick, MA USA). 

30A constant 
discharge

5min rest

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: Synthetic data and results of capacity estimation. Figure (a) plots the rate profile 

for one UDDS cycle and (b) plots the SOC profile; (c) and (d) plot the results of capacity 

estimation by dual EKF and multiscale framework with EKF, respectively. 
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To make our comparison of general use to other 

engineering systems, we ruled out the computational 

time required to execute the ESC model in this study. 
In fact, the measurement functions of two engineered 

systems may exhibit a large difference in the level of 

complexity, resulting in different amounts of 

computational time. Thus, we intend to minimize the 

effect of system-to-system variation and focus on the 

general functions in an EKF by assuming a negligibly 
small amount of time for the execution of the system-

specific measurement function (ESC model).  

 Table 3 summarizes the mean computational times. 

It is observed that the multiscale framework with EKF 

requires a smaller amount of computational time of 

1.456s for the sequence of 15 UDDS cycles, a 34.145% 
reduction over the dual EKF whose computational time 

is 2.210s. Note that the percent of improvement is less 

than 50%. This can be attributed to the following two 

reasons: (i) from the standpoint of computations on the 

micro time-scale, it is noted that, in addition to the 

time- and measurement-update computations for SOC 
estimation, both methods also require the recursive 

derivative computation which, to some extent, reduces 

their efficiency gap; and (ii) from the standpoint of 

computations on the macro time-scale, although the 

macro-EKF is executed only upon the completion of L 
= 100 executions of the micro-EFK, it still requires a 

certain amount of time to compute the time- and 

measurement-updates for capacity estimation. In spite 

of these points, it is fair to say, however, that the 

proposed method achieves considerable improvement 

over the dual EKF in terms of computational efficiency. 
This improvement is critical to alleviating the 

computational burden imposed on the hardware and 

thus enhancing the feasibility of applications.  

Table 3 Comparison results of computation efficiency 
with ten synthetic data sets  

Method 
Computational 

time (s) 

Improvement 

(%) 

Dual EKF 2.210 --- 

Mutiscale EKF 1.456  34.145 

 

6.2 SOC and Capacity Estimation with UDDS 

Cycle Life Test of a Prismatic Cell  

Description of Test Procedure 

In addition to the numerical study using synthetic data, 
we also conducted the UDDS cycle test to verify the 

effectiveness of the multiscale framework. The cycle 

test data were extracted from an accelerated life test 

(ALT) that is currently being performed on sixteen 

1500-mAh Li-ion prismatic cells. We set up a UDDS 

test system (see Figure 4) which comprises of an 
MACCOR Series 4000 cycle tester with a data 

acquisition device, an Espec SH-241 temperature 

chamber and a test jig as a connector holder for 

prismatic cells. Sixteen prismatic cells were placed in 

the temperature chamber and held by the test jig 
throughout the test.  

 

 

Prismatic Cells

Test JigTemperature Chamber

Data Acquisition Device

MACCOR Cell Tester

 
Figure 4: Experiment setup – UDDS cycle life test system. 

All cycling experiments were performed at a 
constant room temperature, i.e., 25˚C. A two-level 
design of experiment (DOE) was used to study the 
effects of charging and discharging conditions on the 
health degradation. With two levels for charging 
conditions (1.0C and 1.5C) and discharging conditions 
(1.0C and 2.0C), we have four experimental settings as 
shown in Table 4. Based on the cell degradation data 

obtained from tests, we will develop real-time SOH and 
SOL prediction algorithms. Figure 5 shows the detailed 
test procedure. After every 10 charging and discharging 
cycles with specified rates in Table 4, cells are tested 
with 10 urban dynamometer drive schedule (UDDS) 
cycles for algorithm verification, followed by a small 
rate (0.05C) constant discharge for capacity check. 
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Capacity and impedance check

10 cycles charging and 

discharging

50 hrs 40 hrs

80hrs

4.2V

3.0V

One cycle (40 hrs)

Constant discharge: ~20hr 

(capacity check, 0.05C)

UDDS: ~20hrs 

(test algorithm; impedance check)

 
Figure 5: Detailed test procedure. 

 

Table 4 Experiment settings 

Charging 
Rate 

Discharging 
Rate 

Number of 
Cells 

1.0C 1.0C 4 

1.5C 1.0C 4 

1.0C 2.0C 4 

1.5C 2.0C 4 

 
 
The capacity degradation of the 1500-mAh prismatic 

Li-ion cells under the first cycling condition in Table 3 
is plotted in Figure 6. Under this condition, the cell 
capacity exhibits a linear relationship with the number 
of cycles and decreases by about 0.1Ah (6.5%) after 
200 charging and discharging cycles. In what follows, 
we do not intend to investigate how to utilize this 
degradation behavior for SOL prediction but to employ 
the UDDS cycle test data before the cycling (1.0C 
charging, 1.0C discharging) from the first two cells to 
verify effectiveness of the proposed multiscale 
framework. The cycle test (see Figure 7a) is composed 
of 10 UDDS cycles, separated by 1C constant charge 
for 18 min and 18 min rest. This test profile resulted in 
the spread of SOC over the 4%-100% range. The SOC 
profile for 10 UDDS cycles is plotted in Figure 7b, 
where the SOC increases by about 9% during each 
charge period between cycles.  
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Figure 6: Capacity degradation under 1.0C 
charging rate and 1.0C discharging rate. 

Training of ESC Cell Model 
The current and voltage measurements of Cell 1 were 
used to train the ESC model (Plett, 2004a) while Cell 2 
was treated as the testing cell. We followed the 
procedures described in (Plett, 2005) to obtain the open 
circuit voltage (OCV) curve. Through numerical 
optimization, optimum ESC model parameters were 
obtained which minimize the root mean squared (RMS) 
error of cell terminal voltage. The numerical 
optimization was performed using with a sequential 
quadratic programming (SQP) method. We employed a 
nominal capacity of 1.5Ah, a measurement interval of T 
≈ 1s, and four filter states nf = 4. The voltage modeling 
results for one UDDS cycle are shown in Figure 8, 
where a good agreement can be observed. 
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Figure 7: SOC profile and one cycle rate profile for 
UDDS cycle test. Figure (a) plots the rate profile for 
one UDDS cycle and (b) plots the SOC profile for 

10 UDDS cycles. 

1000 1050 1100

3.8

3.9

4

4.1

4.2

Time (min)

C
e
ll 

te
rm

in
a
l 
v
o
lt
a
g
e
 (

V
)

 

 

True

Estimated

 

Figure 8: Modeled and measured cell terminal 
voltage for one UDDS cycle. 

SOC and Capacity Estimation Results 
The SOC estimation results for the training cell are 
shown in Figure 9, where we observe accurate SOC 
estimation produced by the multiscale framework (L = 
1200). Table 5 summarizes the SOC estimation errors 
under two different settings of the initial SOC. Here, 
the RMS and maximum errors take into account the 
initial offset in the case of an incorrect initial SOC and 
are formulated as  

 

( )
2

, ,

,

, ,
,

1
ˆ ,

ˆmax .

RMS k l k l

k j

Max k l k l
k j

x x
nm

x x

ε

ε

= −

= −

∑
 (32) 

where nm is the number of measurements and reads 
69,173 (about 1290mins) in this study; and xk,l is the 
true SOC at the time tk,l estimated with the coulomb 
counting technique. It is observed that the RMS SOC 
estimation errors produced by the multiscale 
framework are less than 4.00%, regardless of initial 
values of the SOC. As expected, the SOC estimation 
with incorrect initial SOC (20%) shows larger errors 
than those with correct initial SOCs (4.84% and 4.77% 
for Cells 1 and 2, respectively). However, the RMS 
SOC estimation errors with incorrect initial SOC (20%) 
are still less than 4.00% since the multiscale framework 
produced converged SOC estimate for both cases. 
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Figure 9: Estimated and true SOC estimate 
for 10 UDDS cycles. 

Table 5 SOC estimation results under different settings 
of initial SOC and capacity 

Initial SOC SOC errors  Cell 1 Cell 2 

Correct (4.84% 
and  4.77% for 
Cells 1 and 2) 

RMS (%) 1.21 1.22 

Max (%) 4.58 4.95 

Incorrect (20%) 
RMS (%) 3.79 3.65 

Max (%) 15.16 15.23 

 
Regarding the capacity estimation, both results with 

initial values smaller than the true value (see 
Figure10a) and larger than the real value (see 
Figure10b) for all the two cells exhibit convergence to 
the true capacity within an error range of around 5%. 
The noise in the capacity estimate is due to the SOC 
estimation error. We note that the time-scale separation 
in the SOC and capacity estimation enables converged 
capacity estimation in spite of SOC estimation error. 



  

 

(a) 

 

(b) 

Figure 10: Capacity estimation results for UDDS cycle test. Figures (a) and (b) plot 
capacity estimation results by the multiscale framework with the initial values smaller than 

and larger than the true value, respectively. 

7. CONCLUSION 

This paper presents a multiscale framework with EKF 
to efficiently and accurately estimate state and 
parameter for engineered systems that exhibit time-
scale separation. We applied the proposed framework 
applied to the Li-ion battery system for SOC (state) and 
capacity (parameter) estimation. The main contribution 
of this paper lies in the decoupling of the SOC and 
capacity estimation from two perspectives, namely the 
measurement and time-scale, through the construction 
of a multiscale computational scheme. The resulting 
benefits are the significant reduction of the 
computational time as well as the increase of the 
accuracy in the capacity estimation. The former benefit 
makes the proposed methodology more attractive than 
the dual EKF for onboard estimation devices where the 
computational efficiency is the key aspect for practical 
use. Results from UDDS simulation and testing verify 
the effectiveness of the proposed framework for SOC 
and capacity estimation. As mentioned in Section 6.2, 
we are currently conducting ALTs (cell aging tests) on 
16 Li-ion prismatic batteries. Based on the upcoming 
testing results, we aim to extend the proposed 
multiscale framework for efficient and accurate SOL 
prediction based on readily available measurements in a 
dynamic environment (e.g., UDDS cycling). 
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NOMENCLATURE 

C cell capacity  

F state transition function 

G state measurement function 

i current 

L number of micro steps in a macro time step 

r vector of process noise for model parameters 

T time between micro time step  

x cell state of charge 

y cell terminal voltage 

u vector of observed exogenous inputs 

v vector of measurement noise 

w vectors of process noise for states  

η columbic efficiency 

EKF extended Kalman filter  

HEV hybrid electric vehicle  

SOC state of charge 

SOH state of health 

SOL state of life 
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