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ABSTRACT

The paper presents a novel approach for prognostics of faults
in mechanical drives under non-stationary operating condi-
tions. The feature time series is modeled as an output of
a dynamical state-space model, where operating conditions
are treated as known model inputs. An algorithm for on-line
model estimation is adopted to find the optimal model at the
current state of failure. This model is then used to determine
the presence of the fault and predict the future behavior and
remaining useful life of the system. The approach is validated
using the experimental data on a single stage gearbox.

1. INTRODUCTION

An important emerging feature of new generation of con-
dition monitoring systems enables prediction of future evo-
lution of the fault and thus enables the plant personnel to
accommodate maintenance actions well in advance. Even
more, it can predict the remaining useful life of the compo-
nent under changing operating condition, thus providing in-
formation to operators on how the different operating regimes
will lengthen or shorten the components useful life. This
is a relatively new research area and has yet to receive its
prominence compared to other condition monitoring prob-
lems (Heng, Zhang, Tan, & Mathew, 2009).

The focus in this paper will be on mechanical drives. They are
the most ubiquitous item of equipment in manufacturing and
process industries as well as transportation. During the oper-
ational life-cycle, these items are subjected to wear, fatigue,
cracks and other destructive processes. These processes can
not be directly observed or measured without interrupting the
operation of the machine. The extent of the damage has to be
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inferred from the available signals, which are usually vibra-
tions, acoustic emissions, oil contaminants, etc.

In this work, we follow an established approach for model-
based prognostics, which is to model the fault progression
using a dynamical model. This approach has been applied
to specific cases where the exact model of the fault was de-
rived. The model, combined with an appropriate state estima-
tion algorithm (e.g. Particle Filter) can be used to estimate
the current state and predict its future evolution (M. Orchard,
Kacprzynski, Goebel, Saha, & Vachtsevanos, 2008; M. E. Or-
chard & Vachtsevanos, 2009; Zhang et al., 2009; DeCastro,
Liang, Kenneth, Goebel, & Vachtsevanos, 2009). However,
most of the authors assume constant operating conditions of
the machine. Recently, (Edwards, Orchard, Tiang, Goebel, &
Vachtsevanos, 2010) analyzed the impact of variable operat-
ing conditions on the remaining useful life in terms of uncer-
tainty.

The aim of this work is to propose a new approach toward
model-based prognostics in which the operating conditions
are considered as a measured input into the model. Because
the exact relations between the model inputs, fault dimension
and measured signals are hard to derive, we propose an al-
gorithm for on-line estimation of these relations. The model
obtained in this manner can therefore be used to determine the
current state and trend of the fault, predict its future evolution
in different operating regimes and estimate its remaining use-
ful life (RUL).

The paper is organized as follows. Section 2 presents the
conceptual idea behind the proposed approach for a general
setup. Section 3 introduces the algorithm for model estima-
tion that can be used to apply the proposed approach. Section
4 presents the experimental setup that was used to collect the
data for algorithm validation. Section 5 shows the results in
terms of estimating the current state and trend of the fault and
predict its future evolution. Finally, Section 6 summarizes the
most important results and outlines the directions for further
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research.

2. THE IDEA OF THE PROPOSED APPROACH

Let us assume that there exists at least one feature that pro-
vides the information about the current extent of the fault in
a mechanical system and its value is available trough noisy
measurements. Furthermore, different operating conditions
affect the extent and the rate of change of the underlying fault
as well as the current feature value. Finally, when the faultoc-
curs, its progression can be described by a stochastic dynam-
ical process (Gašperin, Juričić, Boškoski, & Vižintin, 2011).

Following the above assumptions, the evolution of fault di-
mension in time can be described by the following model
(M. E. Orchard & Vachtsevanos, 2009):

xt+1 = f(xt,ut, θθθ) +wt (1a)

yt = g(xt,ut, θθθ) + vt (1b)

wherext is the system state,yt is the observed feature value,
ut is the vector of model inputs,θθθ is the vector of model pa-
rameters, finallywt andvt are random variables describing
system and measurement noise, respectively. The first equa-
tion in the model represents the fault evolution dynamics and
the second one describes the feature extraction. Assuming
that the values of the model parametersθθθ are known, this
model can be used to predict the future evolution of the fault
for any given sequence of the operating conditions (fixed or
variable)ut.

Nonlinear models (1) are a very powerful description of the
process dynamics and can describe a broad range of dynamic
behavior. Usually the estimation methods include only a
specific family of models, e.g. as shown by (DeCastro et
al., 2009) or rely on approximation methods (M. Orchard et
al., 2008). If linearized, the expression (1) takes the form
(Gašperin et al., 2011)

xt+1 = Axt +But +wt (2a)

yt = Cxt +Dut + vt (2b)

In the model (2),wt andvt are random variables that follow
a normal distribution:

[

wt

vt

]

∼ N

([

0
0

]

,

[

Q S

ST R

])

(3)

If the functions governing the dynamical behavior of the fault
in (1) are known, the linear approximation can be computed
analytically. However, this has only been done for a limited
number of special cases and for a general setup, the model
parameters have to be assumed unknown. To alleviate this
problem we propose a data-driven approach for modeling and
prognostics, where the parameter of the linear model (2) are
estimated on-line based on the past data of the feature value.

The benefit of using a linear model is that the parameter esti-
mation algorithm can be implemented with minimal computa-
tional load and the analysis of the model (in terms of stability)

is less demanding than in the nonlinear case. The downside
is that linear model can only adequately describe the system
in a limited subspace of fault dimension and operating condi-
tions. However, this is partially alleviated by on-line parame-
ter estimation that provides an updated model as soon as the
conditions change.

2.1 Prognostics under variable operating conditions

It is well known (Heng et al., 2009) that the changes in operat-
ing conditions (e.g., load, temperature) can greatly affect the
fault in mechanical systems. A schematic representation of
different scenarios is given in Figure 1, where it can be seen
that under more favorable load, the life of the machine can be
significantly extended.
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Figure 1. Fault progression under different load scenarios

The exact relations between them and the fault dimension can
be obtained by advanced and complex modeling approaches,
which are usually not applicable to real-world condition mon-
itoring problems. The main advantage of implementing the
approach presented here is that it offers a systematic solution
to finding the relation between the machine operating condi-
tions, feature value and fault dimension. The added function-
ality of our solution can be summarized as follows:

• Detection of fault progression: The approach can sepa-
rate the fault evolution dynamics from the dynamics en-
forced by the variable operating conditions. This means
that we can detect the rate at which the fault is progress-
ing.

• Estimation of the remaining useful life: If the future
load profile of the machine is known, it can be used as an
input to the model and predict the future evolution of the
fault.
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3. MODEL ESTIMATION

In this chapter we will address the problem of estimating un-
known model parameters of the linear state-space models (2).
Estimating the state-space models is challenging because the
internal system states are not directly observed and therefore
all the information about them has to be inferred form the
measured data. The state sequence can be estimated from
the data, but the procedure requires the knowledge of the
model parameters. As this is usually not the case, an approach
that allows both the estimation of system states and unknown
model parameters is required.

3.1 Maximum likelihood estimator

Supposex is a random variable with probability density func-
tion p(x|θθθ), whereθθθ is a vector of unknown parameters. Let
XT = {x1,x2, . . . ,xT } be the set of observed values. The
probability density function ofXT is

p(XT |θθθ) = p(x1,x2, . . . ,xT |θθθ) (4)

The pdfp(XT |θθθ) is deterministic function ofθθθ and is referred
to as thelikelihood function. A reasonable estimator forθθθ
could then be to select the values in such a way that the ob-
served realizationXT becomes as likely as possible. Maxi-
mum Likelihood (ML) estimator for unknown parameters is
defined by

θ̂θθML(XT ) = argmax
θθθ

p(XT |θθθ) (5)

where the maximization is performed with respect toθθθ and
for a fixedXT .

Rather than (5) it is often convenient to operate with the log-
likelihood function.

L(θθθ) = log p(XT |θθθ) (6)

Since logarithmic function is monotonically increasing, max-
imizing the likelihood function is the same as maximizing its
logarithm,

θ̂θθML(XT ) = argmax
θθθ

L(θθθ) (7)

3.2 Likelihood function for dynamical models

Consider a dynamic state-space model, whereYT =
{y1,y2, . . . ,yT } are the measured system outputs,XT =
{x1,x2, . . . ,xT } is the unobserved sequence of system states
andθθθ is vector of model parameters. A straightforward way
to define the maximum likelihood parameter estimator for this
case is

θ̂θθML(YT ) = argmax
θθθ

p(YT |θθθ) (8)

where the data likelihood function can be expressed using
chain rule

p(YT |θθθ) = p (y1|θθθ)
T
∏

t=2

p (yt|Yt−1, θθθ) (9)

However, it is convenient to consider the log-likelihood func-
tion

L(θθθ) = log p(YT |θθθ) =
T
∑

t=2

log p (yt|Yt−1, θθθ) + log p (y1|θθθ)

(10)

And the maximum likelihood estimator is thus

θ̂θθML(YT ) = argmax
θθθ

p(YT |θθθ) = argmax
θθθ

L(θθθ) (11)

A closer look at the expressionp(yt|Yt−1, θθθ) in (10) reveals
that it depends on system states. Indeed

p(yt|Yt−1, θθθ) =

∫

p(yt|xt, θθθ)p(xt|Yt−1, θθθ)dxt (12)

The formulation of the above integral is problematic and in
general case no closed form solutions exist.

3.3 The Expectation-Maximization algorithm

The expectation-maximization algorithm can solve the ML
estimation problem in the case of incomplete or missing data.
Therefore, if the statesXT are considered as missing data,
this algorithm can be successfully deployed to solve the sys-
tem identification problem. Consider an extension to (8).

θ̂θθML(XT ,YT ) = argmax
θθθ

log p(XT ,YT |θθθ) (13)

The EM algorithm then solves the problem of simultaneously
estimating system states and model parameters by alternating
between two steps. First, it approximates the likelihood func-
tion with its expected value over the missing data (E-step),
and secondly maximizes the likelihood function w.r.t.θθθ (M-
step). A short overview of the algorithm will be presented,
while a more detailed explanation can be found in (Haykin,
2001; Gibson & Ninness, 2005).

1. Start with initial parameter estimateθθθ0.

2. Expectation (E) step:
Compute the expected value of the complete data log-
likelihood function.

Q(θθθ,θθθk) = Ep(XT |YT ,θθθk){log p(XT ,YT |θθθ)} (14)

3. Maximization (M) step:
Compute the optimal parameter vector value by maxi-
mizing the functionQ(θθθ,θθθk).

θθθk+1 = argmax
θθθ

Q(θθθ,θθθk) (15)

4. If convergence criteria are not satisfied, setk = k + 1
and return to step2.

According to the EM algorithm, the first task is to compute the
expected value of the complete data log-likelihood function

Q(θθθ,θθθk) = Ep(XT |YT ,θθθk){log p(XT ,YT |θθθ)} (16)
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where the joint likelihood of the measured output and system
states can be written as

p(YT ,XT |θθθ) = p(y1, . . . ,yT |x1, . . . ,xT , θθθ)p(x1, . . . ,xT |θθθ)

= p(x1|θθθ)
T−1
∏

t=1

p(xt+1|xt, θθθ)

T
∏

t=1

p(yt|xt, θθθ)

(17)

Taking into account Gaussian distributions and ignoring the
constants, the complete data likelihood function can be writ-
ten as

−2 log p(XT ,YT |θθθ) = log |P1|+ (x1 −µµµ1)
TP−1

1 (x1 −µµµ1)

+

T
∑

t=1

(xt+1 −Axt −But)
TQ−1(xt+1 −Axt −But)

+

T
∑

t=1

(yt −Cxt −Dut)
TR−1(yt −Cxt −Dut)

+ T log |Q|+ T log |R| (18)

The expected value of the above expression can be maximized
by the following choices (Gibson & Ninness, 2005):

[

A B

C D

]

= ΨΨΨΣΣΣ−1 (19)
[

Q S

ST R

]

= ΦΦΦ−ΨΨΨΣΣΣ−1ΨΨΨT (20)

where

ΦΦΦ =
1

T

N
∑

t=1

Ep(XT |YT ,θθθk)

{[

xt+1

yt

]

[

xT
t+1,y

T
t

]

}

(21)

ΨΨΨ =
1

T

N
∑

t=1

Ep(XT |YT ,θθθk)

{[

xt+1

yt

]

[

xT
t ,u

T
t

]

}

(22)

ΣΣΣ =
1

T

N
∑

t=1

Ep(XT |YT ,θθθk)

{[

xt

ut

]

[

xT
t ,u

T
t

]

}

(23)

and the required expected values of the system states can be
computed using a standard Kalman smoother (Haykin, 2001).

The estimated values of model parameters at a time instance
T , along with the estimated state sequence and the model
structure defined by (2) constitute the model of the fault dy-
namics at this particular time instance and is labeledMT .

3.4 Algorithm Summary

The presented algorithm, adopted for machine health estima-
tion and prognostics can be summarized as follows:

1. Select time windowN and setT = N + 1.

2. Run the EM algorithm for model estimation
using past data yT−N , yT−N−1, . . . , yT and
uT−N , uT−N−1, . . . , uT .

3. Use the estimated modelMT and statexT to analyze the
fault and predict future behavior of the system.

4. When the new feature value is collected, setT = T + 1
and return to step 2.

4. CASE STUDY

For the purpose of the development and verification of the
model-based prognostics tools, the experimental test bed has
been used (Figure 2). It consists of a motor-generator pair
with a single stage gearbox. The motor is a standard DC mo-
tor powered through DC drive. A generator is being used as
a break and the generated power is being fed back in the sys-
tem, thus achieving the breaking force.

Figure 2. The test bed

The most informative and easily accessible signals that offer
information on gear health are vibration signals (Combet &
Gelman, 2009). In our setup, the vibration signals are ac-
quired from a sensor placed on the output shaft bearing.

4.1 Experimental run

The set of gears was subjected to a time-varying load pro-
file. The speed was kept constant throughout the experiment.
Vibration signals were acquired every 5 minutes and each ac-
quisition took 5 seconds.

The complete experiment lasted approximately 180 hours. At
the end extensive pitting damage was clearly visible on both
gear and pinion, as shown in Figure 3.

Figure 3. Gear condition after 180 hours of operation
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4.2 Gear fault dynamics

The main source of vibrations in meshing gears originates
from the changes in the bending stiffness of the gear teeth
as well as variations in the torsional stiffness of the shafts
and supporting bearings (Howard, Jia, & Wang, 2001). As
gear teeth rotate through the meshing cycle the overall bend-
ing stiffness changes according to the number of teeth present
in the meshing contact. Under constant operating conditions,
these variations are expressed as a spectral component posi-
tioned at the gear mesh frequency.

A localized fault alters the original tooth stiffness profile. This
alteration occurs every time the damaged tooth enters a mesh-
ing contact. This localized fault affects the produced vibra-
tions by the appearance of an additional modulation compo-
nent around the original gear mesh frequency (Randall, 1982).
As the fault progresses and spreads on all teeth the changes in
the gear mesh frequency component become more apparent.

As our goal is to perform the earliest possible estimation of
the remaining useful life of the observed gears, we have based
our algorithm on the information contained in the signal’s en-
ergy portion extracted from the sidebands around the princi-
ple gear mesh component. This value was computed for each
vibration acquisition session and the corresponding time se-
ries represents the feature values.

In terms of modeling the gear fault dynamics the feature value
is the model output while the known inputs into the model are
torque and temperature. The model inputs and outputs are
shown in Figure 4.
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Figure 4. Top: torque and temperature (inputs), Bottom: vi-
bration feature (output)

5. RESULTS

The developed algorithm for model estimation was imple-
mented with the sample size ofN = 200, which corresponds
to approximately 16 hours. The unknown model parameters
are:

θθθ = [A,B,C,D,Q,R] (24)

whereQ andR are covariance matrices of Gaussian random
variableswt andvt, respectively. The model structure is de-
fined by selecting the number of hidden states, measured in-
puts and outputs. In our case, the state dimension ism = 2,
the number of inputs isn = 2 (torque and temperature) and
the model hasd = 1 measured output (vibration feature). The
unknown model parameters are thus matrices with the follow-
ing dimensions:

A ∈ R
m×m,B ∈ R

m×n,C ∈ R
d×m,

D ∈ R
d×n,Q ∈ R

m×m,R ∈ R
d×d (25)

Prior to running the algorithm, these parameters have to be
initialized to some values. In this problem formulation, the
selection of the initial values is not crucial as the likelihood
function for linear system is unimodal and there is no threat
of divergence. The values of all the matrix entries were thus
set to a neutral value of0.1.

5.1 Detecting the trend of the fault

After a modelMT is obtained at a certain time pointT , it
can be analyzed to determine the current trend of the fault,
even under variable operating conditions in the period of data
acquisition. This is made possible because the state-space
model can distinguish between the feature dynamics that is
due to the variable operating conditions (model input matrix
B) and the dynamics due to the fault progression (system state
matrix A). Therefore, by analyzing the eigenvalues of the
system matrixA, one can determine weather the fault pro-
gression has a stable dynamics (i.e. it will remain of a con-
stant size) or unstable dynamics (i.e. the fault dimension will
increase in time).

A more illustrative way to present this is by visualizing thefu-
ture evolution of the feature value at constant operating con-
ditions. In Figure 5, this is done for two different timesTpred,
one with stable and one with unstable dynamics.
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Figure 5. Detection of the fault progression at non-stationary
operating conditions

It can be seen that in the first case (Figure 5 (top)), the pre-
dicted feature value is constant, which means that the fault
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will not progress. TheTpred here was44h and no fault was
indeed present at that time. In the second case (Figure 5 (bot-
tom)), the model was estimated atTpred = 78h, where the
fault started to increase and the model thus predicted the grad-
ual increase of the feature value even at a constant load.

5.2 Model-based prognostics under non-stationary
conditions

The modelMT includes all the information about the cur-
rent fault state as well as the relation between the operating
conditions and the fault. Therefore it can be used to predict
the evolution of the fault under variable operating conditions.
For example, if the future time profile of the load is known,
the model can predict the feature time series for that specific
load profile. The example of such a prediction is shown in
Figure 6
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Figure 6. Long term prediction under variable load atTpred =
44h

It can be seen that the model predicted a stable fault dynam-
ics and the changes in the feature value only occur due to
changes in the load. In the actual experiment, the initial fault
occurred around the timeTf = 55h, which is impossible to
predict with the model that is based only on the data up to
timeTpred < Tf .

Effect like this may occur because the underlying model is
linear and serves only as a local approximation. However, it
is crucial to note that if such a fault occurs, it is reflected in
the feature values data and the algorithm will quickly incor-
porate the new data into the model and produce the updated
parameter values.

After the model is adapted to the new data, the prediction is
updated and a result of a later prediction is shown in Figure 7.

It can be seen, that the actual feature value almost always lies
within the95% confidence interval of the prediction.

6. CONCLUSIONS

The paper presents a new approach for model-based prognos-
tics of mechanical drives under non-stationary operating con-
ditions. The novelty of the proposed algorithm lies in the use
of dynamical model to describe the relations between operat-
ing conditions, fault dimension and vibration feature value.
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Figure 7. Long term prediction under variable load atTpred =
75h

The model assumes linear relations between these quantities
which can be interpreted as a local approximation of the oth-
erwise complex nonlinear relations. The benefit of this ap-
proximation is that the model parameters can easily be esti-
mated on-line. This means that the model is constantly up-
dated as new data arrive.

The approach was validated on a laboratory test bed using a
single-stage gearbox and vibration sensors. The problem was
to detect and predict the faults in gear and the model anal-
ysis and prognostics on the experimental data validated our
hypotheses.

Future work will include validation of the approach for esti-
mation of the remaining useful life of the gear and examine
how the RUL depends on the load profile. However, to prop-
erly conduct this study, further experiments are required.
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