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ABSTRACT 

 The objective of this work is to present a method to 

monitor the health of Auxiliary Power Units (APU) 

using a Dynamic Computational Model, Gas Path 

Analysis and Classification and Regression Trees 

(CART). The main data used to train the CART 

consists of measurements of the exhaust gas 

temperature, the bleed pressure and the fuel flow. 

 The proposed method was tested using actual APU 

data collected from a prototype aircraft. The method 

succeeded in classifying several relevant fault 

conditions. The few misclassification errors were found 

to be due to the insufficiency of the information content 

of the measurement data.
*
 

1. INTRODUCTION  

Increased aircraft availability is one of the most 

desirable fleet characteristics to an airliner. Delays due 

to unanticipated system components failures cause 

prohibitive expenses, especially when failures occur on 

sites without proper maintenance staff and equipments. 

In recent years researches have focused on providing 

new technologies which could prevent some failures or 

notify maintenance staff in advance when any 

component is about to fail. Health Monitoring (HM) 

provides this knowledge by estimating the current 

health state of components. This may guide the 

maintenance activities and spare parts logistics to 

properly remove or fix the component at the most 

suitable time and place. 

                                                           
* Vianna, W. O. L. et al. This is an open-access article distributed 

under the terms of the Creative Commons Attribution 3.0 United 

States License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author and source 

are credited. 

 Since the Auxiliary Power Unit (APU) represents a 

significant maintenance cost to an airliner, several HM 

studies have been conducted on this component (Vieira 

et al, 2009; Urban, 1967; Jones, 2007). Many of them 

exploit similar approaches to methods devoted to the 

main engines, due to the similarities in physical 

behavior. 

 Methods based on thermodynamic models, or gas 

path analysis, may provide more precise information as 

compared to data-driven methods. However, the use of 

model-based techniques still presents challenges when 

dealing with a large and heterogeneous fleet.  

 This paper aims to provide a HM solution based on 

a classification and regression tree (CART) employing 

data obtained from a mathematical model of an APU 

derived from thermodynamic principles. The proposed 

method is validated with APU field data. 

 The work is organized as follows. Section 2 

contains a brief description of the system under 

analysis. Section 3 presents the methodology adopted. 

Section 4 contains the model description used on the 

implementation. Section 5 presents the implementation 

steps and the results of the method applied on the APU 

performance data. The last section presents the 

conclusion of the study and some remarks. 

2. SYSTEM DESCRIPTION 

An APU is a gas turbine device on a vehicle with the 

purpose of providing power to other systems apart from 

engines. This power can either be of pneumatic nature, 

extracted from a bleed system, or of electrical type, 

extracted from the generator. APUs are commonly 

found on large aircraft, as well as some large land 

vehicles. Its primary purpose is to provide bleed to start 

the main engines. It is also used to run accessories such 



Annual Conference of the Prognostics and Health Management Society, 2011 

 2  

as air conditioning and electric pumps. It is usually 

located at the tail end of the aircraft as represented in 

Figure 1. 

 

Figure 1: APU at the tail end of an aircraft. 

 A typical gas turbine APU contains a compressor, a 

burner and a turbine as every conventional gas turbine. 

It also has a bleed system that controls the amount of 

extracted pneumatic power, a fuel system, a gearbox 

and a generator. Protective components such as anti-

surge, and guide vane may also be present. The logics 

and control are executed by the Full Authority Digital 

Engine Control (FADEC). A simplified APU 

representation is illustrated in Figure 2. 
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Figure 2: Simplified APU representation. 

 In order to provide proper information to the 

FADEC, the system must contain sensors for several 

variables, such as speed, exhaust gas temperature 

(EGT) and bleed pressure. A fuel flow meter may also 

be valuable but it is not an essential sensor. The EGT is 

a useful parameter for health monitoring and can 

indicate several failures such as core degradation and 

inlet blockage (SAE, 2006). A typical EGT profile 

during APU operation is indicated in Figure 3. 
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Figure 3: Typical EGT profile during the operation of 

an APU. 

 During the APU start an EGT peak is observed and 

can be used as a health monitoring feature (SAE, 2006). 

After the speed has reached its operational value the 

EGT stabilizes until the air conditioning system turns 

on. This produces an increase in EGT, which then 

reaches another steady-state value. When the engine 

starts, usually all other pneumatic sources are turned off 

so the APU can provide the required bleed.  

3. HEALTH MONITORING METHODOLOGY 

Gas path analysis is a methodology for monitoring gas 

turbines proposed by (Urban, 1967), which has been 

used in several studies for the purpose of health 

performance analysis (Saravanamuttoo et al, 1986) , 

(Li, 2003). Within the scope of APU monitoring, one of 

the main challenges consists of discriminating among 

possible failure modes affecting different components. 

In this context, promising results have been obtained 

with the use of classification methods (Vieira et al, 

2009), (Sabyasachi, 2008). 

 Classification and Regression Trees (CART) are a 

popular set of classification methods that have as one of 

its key characteristics the easiness of interpretation of 

the results. This feature facilitates the validation of the 

results or the adjustment of the classification rules on 

the basis of the knowledge of a system specialist.     

 CART uses a “learning sample” of historical data 

with assigned classes for building a “decision tree”, 

which expresses a set of classification rules in terms of 

a sequence of questions. The use of CART involves 

three stages (Timofeev, 2004): 

 1. Construction of the maximum tree 

 2. Selection of an appropriate tree size 

 3. Classification of new data using the resulting tree 

 The classification tree uses some rules to split the 

“learning sample” into smaller parts, thus creating the 

nodes and the tree itself. Such rules are called “splitting 
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rules”. Some examples are the “Gini splitting rule” and 

the “Twoing splitting rule”. The first one is the most 

broadly used (Timofeev, 2004) and uses the following 

“impurity” function: 

∑
≠

=
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tkpti )|()(  (1) 

where k and l are class indexes, t is the node under 

consideration and p(k|t) is the conditional probability of 

class k  provided in node t. 

 At each node the CART solves a maximization 

problem of the form: 
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where lP  and  rP  are probabilities of the left and right 

node respectively. 

 Using the Gini impurity function, the following 

maximization problem must be solved to isolate the 

larger class from other data 
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 The health monitoring algorithm proposed in the 

present work employs CART for failure classification 

based on residuals from faulty and healthy data in 

steady state condition. The first implementation step 

was choosing the failure modes, variables used for 

model seeded fault, list of sensors and operational data 

snapshots for analysis. 

 Eight types of faults were considered: 

1. Increase in shaft torque extraction; 

2. Increase in bleed; 

3. Reduction in compressor efficiency; 

4. Reduction in turbine efficiency;  

5. Speed sensor bias; 

6. EGT sensor bias; 

7. Reduction in combustor efficiency; 

8. Decrease in fuel flow. 

 The measured variables were assumed to be fuel 

flow, EGT and bleed pressure. Healthy data and faulty 

data were generated using the mathematical model of 

an APU derived from thermodynamic principles. The 

residuals used as inputs for CART were calculated as 

shown in Figure 4.  
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Figure 4: Calculation of the residuals employed in the 

proposed HM methodology. 

4. MODEL DESCRIPTION 

The thermodynamic model used in this work is 

represented schematically in Figure 5. 
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Figure 5: Block diagram of the APU model. 

 The model contains four inputs and three outputs, 

which represent the APU sensors. Three of the blocks 

model the thermodynamic behavior: the compressor, 

burner and turbine. 

 The inputs to the compressor block consist of 

ambient pressure and temperature, as well as shaft 

speed. The outputs are compressor torque, air flow, 

compressor pressure and temperature. The compressor 

behavior is based on a map which relates pressure ratio, 

airflow, speed and temperature as illustrated in Figure 

6. 
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Figure 6: Compressor map. 

  

 The pressure ratio (PR) is defined as: 

 in

out

P

P
PR =

 (4) 

where Pout is the outlet pressure and Pin is the inlet 

pressure. 

 The corrected air flow is defined as: 

δ

θ
WWc =

 (5) 

where W is the absolute air flow and δ and θ are given 

by: 

ref
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 (6) 
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where Pref is the standard day pressure, Tref is the 

standard day temperature and Tin is the inlet 

temperature. 

 The corrected speed (Nc) is defined as:  

θ

N
Nc =

 (8) 

where N is the absolute shaft speed. 

 The inputs to the burner block are air flow, 

compressor pressure and temperature, as well as fuel 

flow. The outputs are burner pressure and temperature, 

air flow and Fuel Air Ratio (FAR). The input-output 

characteristic of this component is represented as: 

 fuelair

fuelinair

out
WW

WLHVhW
h

+

+
=

..

 (9) 

where hin and hout are respectively the burner inlet and 

outlet enthalpies, Wfuel is fuel flow, Wair is the burner 

exhaust air flow and LHV is the fuel heating value. 

 The turbine is represented by a map as illustrated in 

Figure 7. 

 

Figure 7: Turbine map. 

 Apart from the thermodynamic blocks, two other 

components are modeled in Fig. 5. The first one is the 

controller, which reproduces one of the main features 

of the FADEC, namely the control of shaft speed by 

manipulation of fuel flow. Here, a PID controller is 

used. The other block represents the energy balance of 

the shaft speed, which can be described by the 

following equation: 

 
∫
∑∑ =⇒=

I
NNI

τ
τ &.

 (10) 

where I is the moment of inertia and Στ is the sum of 

compressor, turbine and generator torques. The latter 

represents the torque extracted from the APU to supply 

electrical components such as electrical pumps and 

lights. 

  

5. RESULTS 

For the construction of the initial classification tree, a 

set of 180 data vectors was generated. This dataset 

generation consisted of 20 simulations of APUs 
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startups for each of the failure modes and other 20 

simulations for the APU operating without faults. 

Different loads, simulating pumps, engines and air 

cycle machine were used. 

 The data vectors collected comprised residual 

values of EGT, fuel flow and bleed pressure.    

  The resulting classification tree is presented in 

Figure 8. 
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Figure 8: Initial classification tree. 

 Analyzing the initial classification tree it is possible 

to notice the great number of nodes possibly resulting 

in overfitting of the training data. This problem was 

solved by pruning some nodes of the tree using expert 

knowledge provided by an APU system specialist. 

Some of the failure modes were very similar and it 

would be a better strategy to group them into a reduced 

number of nodes. The resulting tree is presented in 

Figure 9. 
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Figure 9: Classification tree resulting from the pruning 

procedure. 

  It is possible to observe in Figure 9 that some of the 

failure modes were grouped into the same node, 

indicating that they could not be separated based on the 

sensors that were used. Although the initial objective 

was to classify all failure modes, some ambiguities 

could not be resolved. However, the level of isolation 

provided by the proposed tree was considered adequate, 

as it helps to reduce significantly the troubleshoot time 

on an event of failure. 

 The proposed method was tested using actual 

data collected in the field. The dataset consisted of 18 

data vectors comprising 6 healthy states and 12 failure 

events. The data were collected with the engine, the 

electric pump and the air cycle machine in either on or 

off state, as shown in  

Table 1.  

 

Table 1: Field data. 

 ACM Pump Engine 

Healthy off off off 

Healthy off off on 

Healthy off off on 

Healthy on on off 

Healthy on on on 

Healthy off off on 

Excessive Bleed off off off 

Excessive Bleed on on off 

Excessive Bleed off off off 

50% Inlet Blockage off off off 

50% Inlet Blockage on on off 

50% Inlet Blockage off off off 

75% Inlet Blockage off off off 

75% Inlet Blockage on on off 

75% Inlet Blockage off off off 

Fuel Filter Blockage off off off 

Fuel Filter Blockage on on off 

Fuel Filter Blockage off off off 

 

 Although the "Inlet Blockage" was neither modeled 

nor used for the training of the classification tree, the 

effects due to this type of failure are very similar to 

those of an “EGT sensor bias”.  Therefore, it is 

expected that these particular conditions should be 

classified as “EGT sensor bias” failures. 

 The results for the classification are presented in 

Table 2. 

Table 2: Classification results for the field data. 

Ground Truth Classification 

Healthy No failure 

Healthy No failure 

Healthy No failure 

Healthy No failure 

Healthy No failure 

Healthy No failure 

Excessive Bleed Compressor Eff. loss 

Excessive Bleed Excessive Bleed 

Excessive Bleed Excessive Bleed 

50% Inlet Blockage EGT Sensor 

50% Inlet Blockage EGT Sensor 

50% Inlet Blockage No failure 

75% Inlet Blockage Excessive Bleed 

75% Inlet Blockage Excessive Bleed 

75% Inlet Blockage EGT Sensor 

Fuel Filter Blockage Fuel Module 

Fuel Filter Blockage Fuel Module 

Fuel Filter Blockage No failure 
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 Observing the results presented in Table 2, one can 

notice that the classification algorithm was able to 

classify correctly all healthy states, that is, no healthy 

system was classified as faulty. On the other hand, the 

algorithm was not able to classify correctly all  failure 

events. 

 In order to identify possible improvements on the 

method proposed, all classification errors were 

analyzed observing the raw data. 

 Looking at the data from “50% inlet blockage” and 

“fuel filter blockage” faults, both classified as “no 

failures”, no significant difference in the parameters 

were observed, as compared to a situation without fault. 

The conclusion is that the "Inlet Blockage" and the 

"Fuel Filter Blockage" were not sufficient to cause any 

modification on the monitored variables. One factor 

that could contribute to these errors is the difference in 

the behavior of the APU in hot and cold starts. This 

effect was not modeled in the present work.    

 Lack of precise calibration and modeling data, 

specifically compressor and turbine maps and lack of 

precise bleed flow test data lead to errors on “Excessive 

Bleed” being classified as “compressor efficiency loss” 

and the “75% Inlet Blockage” classified as “Excessive 

Bleed”. 

6.  CONCLUSION 

This paper presented an APU health monitoring method 

using a Dynamic Model and a Classification and 

Regression Tree (CART). The CART was used to 

classify APU failure modes based on measurements of 

the exhaust gas temperature, the bleed pressure and the 

fuel flow. 

 After designing the CART, the method was tested 

using real APU data. Although the method was not 

capable to classify correctly all failure modes, it 

showed promising results.  
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