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ABSTRACT

Online fault diagnosis is critical for detecting the on-
set and hence the mitigation of adverse events that arise
in complex systems, such as aircraft and industrial pro-
cesses. A typical fault diagnosis system consists of: (1)
a reference model that provides a mathematical repre-
sentation for various diagnostic monitors that provide
partial evidence towards active failure modes, and (2)
a reasoning algorithm that combines set-covering and
probabilistic computation to establish fault candidates
and their rankings. However, for complex systems ref-
erence models are typically incomplete, and simplify-
ing assumptions are made to make the reasoning algo-
rithms tractable. Incompleteness in the reference mod-
els can take several forms, such as absence of discrim-
inating evidence, and errors and incompleteness in the
mapping between evidence and failure modes. Inaccu-
racies in the reasoning algorithm arise from the use of
simplified noise models and independence assumptions
about the evidence and the faults. Recently, data mining
approaches have been proposed to help mitigate some
of the problems with the reference models and reason-
ing schemes. This paper describes a Tree Augmented
Naive Bayesian Classifier (TAN) that forms the basis
for systematically extending aircraft diagnosis reference
models using flight data from systems operating with
and without faults. The performance of the TAN mod-
els is investigated by comparing them against an expert
supplied reference model. The results demonstrate that
the generated TAN structures can be used by human ex-
perts to identify improvements to the reference model,
by adding (1) new causal links that relate evidence to
faults, and different pieces of evidence, and (2) updated
thresholds and new monitors that facilitate the derivation
of more precise evidence from the sensor data. A case
study shows that this improves overall reasoner perfor-
mance.

This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

1. INTRODUCTION

An important challenge facing aviation safety is early de-
tection and mitigation of adverse events caused by sys-
tem or component failures. Take an aircraft, which con-
sists of several subsystems such as propulsion, avionics,
bleed, flight control, and electrical; each of these subsys-
tems consists of several dozen interacting components
within and between subsystems. Faults can arise in one
or more aircraft subsystems; their effects in one system
may propagate to other subsystems, and faults may in-
teract. To detect these faults, an onboard fault diagnosis
solution must be able to deal with these interactions and
provide an accurate diagnostic and prognostic state for
the aircraft with minimal ambiguity.

The current state of online fault diagnosis is focused
on installing a variety of sensors onboard an aircraft
along with reasoning software to automatically interpret
the evidence generated by them, and infer the presence
of faults. One such state of the art system is the Aircraft
Diagnostic and Maintenance System ADMS (Spitzer,
2007) that is used on the Boeing B777. ADMS can
be broadly categorized as a model-based diagnoser that
separates system-specific knowledge and the inferencing
mechanism.

Consider characteristics of some typical faults arising
in aircraft subsystems. Turbine blade erosion is a natural
part of turbine aging and wearing of the protective coat-
ing due to microscopic carbon particles exiting the com-
bustion chamber. As the erosion progresses over time,
it starts to affect the ability of the turbine to extract me-
chanical energy from the hot expanding gases. Even-
tually this fault manifests itself as increase in fuel flow
and gradual degradation of engine performance. This
causal propagation of faults is usually known to a do-
main expert and captured mathematically using a static
system reference model. As evidence gets generated by
aircraft installed sensors, a reasoning algorithm “walks”
the relevant causal paths and infers the current state of
the aircraft—in this case, turbine erosion of the propul-
sion engine.

The ADMS uses a fault propagation system refer-
ence model that captures the interactions between air-
craft components under various operating modes. A
Bayesian belief propagation network together with the
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Bayesian update rule provides an ideal framework for
onboard diagnostic reasoning using the reference model.
It provides the necessary transparency for certification as
a safety system, while allowing the subsystem manufac-
turer to encode proprietary fault models. The generation
of this reference model is mostly a manual process, and
often the most tedious step in the practical development
and deployment of an ADMS. While most of the knowl-
edge about fault propagation can be derived from earlier
aircraft designs, upgrades to component design (for ex-
ample using active surge control rather than passive on-
off surge prevention) create gaps in the knowledge base.
As the engineering teams “discover” the new knowledge
from an operating fleet, they are translated into expert
heuristics that are added to the specific aircraft model,
rather than applying systematic upgrades to the overall
reference model that was generated at design time.

Many of the shortcomings of the ADMS can be at-
tributed to incomplete and incorrect information in the
system reference model. In other words, there is a miss-
ing link in making systematic upgrades and increments
to the reference model as vast amount of operational data
is collected by operating airlines. We look at this prob-
lem as a “causal structure discovery” problem. Specifi-
cally, learning causal structures in the form of a Bayesian
Network built for classical fault diagnosis, wherein the
nodes represent system faults and failures (causes) and
available diagnostic evidence (symptoms)(Pearl, 1988).
Unlike associations, Bayesian networks can be used to
better capture the dependencies among failures (failure
cascade from one subsystem to another) and evidence
cascade (failure mode in one system triggering a symp-
tom in a nearby component). We adopt this approach,
and develop a data mining approach to updating existing
reference models with new causal information.

This paper presents a case study, an adverse event sur-
rounding an in-flight shutdown of an engine, which was
used to systematically augment an existing ADMS refer-
ence model. Section 2. describes the basic principles and
the constituents of a model-based onboard fault reasoner.
Section 3. describes the problem statement that formally
defines the model augmentation to be derived using op-
erational data. Next, section 4. describes the available
historic data surrounding the adverse event. Section
5. briefly discusses the challenges in taking operational
data and transforming it into a form that can be used by
the data mining algorithms. Section 6. then discusses
these data mining algorithms employed for construct-
ing the diagnostic classifiers as Tree-Augmented Naive
Bayesian Networks (TANs). Section 7. presents exper-
imental results of this case study to show how a human
expert could utilize the classifier structure derived from
flight data to improve a reference model. Metrics are de-
fined for evaluating classifier performance, and a num-
ber of different experiments are run to determine when
improvements can be made in the existing model. Sec-
tion 8. presents a summary of the approach, and outlines
directions for future work for diagnostic and prognostic
reasoning using the data mining algorithms.

2. BACKGROUND ON REFERENCE MODELS
AND REASONERS

Model-based strategies that separate system-specific
knowledge and the inferencing mechanism are preferred

for diagnosing large, complex, real-world systems. An
aircraft is no exception to this, as individual component
suppliers provide system-specific knowledge that can be
represented as a bipartite graph consisting of two types
of nodes: failure modes and evidence. Since this knowl-
edge acts as a baseline for diagnostic inferencing, the
term “reference model” is also used to describe this in-
formation. The set F' captures all distinct failure modes
defined or enumerated for the system under considera-
tion. A failure mode fm; € F may be occurring or not
occurring in the system, which is indicated by a 1 (occur-
ring) or 0 (not occurring) state. Often a —1 an unknown
state is also included in the initial state description. The
following are shorthand notations regarding these asser-
tions.

fm; = 0 &The failure mode is not occurring
fm; = 1 ©The failure mode is occurring

ey

Every failure mode has an a priori probability of oc-
curring in the system. This probability is given by
P(fm; = 1). Failure modes are assumed to be inde-
pendent of one another, i.e., given any two failure modes
fmg and fmj, P(fmg = 1|fm; =1) = P(fmy =1).

To isolate and disambiguate the failure modes, com-
ponent suppliers also define an entity called “evidence”
that is linked to sensors and monitors in the system. The
set DM denotes all distinct diagnostic monitors defined
for the system under consideration. A diagnostic monitor
associated with m; € DM, can either indict or exoner-
ate a subset of failure modes called its ambiguity group.
In other words, each monitor m; in the system is labeled
by three mutually exclusive values allowing a monitor to
express indicting, exonerating or unknown support for
the failure modes in its ambiguity group. The notations
are described in equation (2).

m; = 0 & Exonerating evidence
m; = 1 < Indicting evidence 2)
m; = —1 < Unknown evidence

An ideal monitor m; fires only when one or more fail-
ure modes in its ambiguity group are occurring. Given
the fact that the i*" failure mode is occurring in the sys-
tem, d;; denotes the probability that monitor m; will
provide indicting evidence under this condition.

dji; & P(m; = 1] fm; = 1), 3)

dj; is called the detection probability of the 4" mon-
itor with respect to failure mode fm;. A monitor may
fire when none of the failure modes in its indicting set
are present in the system. False alarm probability is the
probability that an indicting monitor fires when its cor-
responding failure modes in its ambiguity group are not
present in the system. That is,

€j & P(m; = 1|fm; = 0,Yfm,; € Ambiguity Set)
4

Designing a monitor often requires deep domain
knowledge about the component or subsystem, but the
details of this information may not be important from the
reasoner’s viewpoint. A more abstract view of the moni-
tor is employed in the reasoning algorithm. This abstrac-
tion is shown in Figure 1. With few exceptions, most
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Figure 1: Abstraction of Diagnostic monitor

diagnostic monitors are derived by applying a threshold
to a time-series signal. This signal can be a raw sensor
value or a derived quantity from a set of one or more
sensor values. We call this a condition indicator (CI)
and denote it as x(¢). Assuming a pre-defined threshold
value 0, we set m = 1 < z(t) < 0. A diagnostic mon-
itor may specify the underlying condition indicator and
the threshold or simply provide the net result of applying
a hidden threshold.

Figure 2 illustrates an example reference model graph-
ically, with fault modes (hypotheses) as nodes on the left,
and diagnostic monitors m; € DM on the right. Each
link has an associated detection probability, i.e., condi-
tional probability P(m; = 1|fm; = 1). In addition,
fault nodes on the left contain the a priori probability
of fault occurrence, i.e., P(fm;). Probabilities on the
DM nodes indicate the likelihood that a particular moni-
tor would indicate a fault in a nominal system. Bayesian
methods are employed to combine the evidence provided
by multiple monitors to estimate the most likely fault
candidates.

The reasoner algorithm (called the W-algorithm) com-
bines an abductive reasoning scheme with a forward
propagation algorithm to generate and rank possible fail-
ure modes. This algorithm operates in two steps: (1) Ab-
ductive reasoning step: Whenever a diagnostic monitor
my fires, it provides either indicting (if m; = 1) or exon-
erating (if my; = 0) evidence for the failure modes in its
ambiguity set, AG = {fmy, fma,... fmy}. This step
assumes that the firing of a DM implies at least one of the
faults in the ambiguity set has occurred; and (2) Forward
reasoning step: For each fm,; belonging to AG, this step
calculates all other diagnostic monitors that may fire if
any of the failure modes are indeed occurring. These
are called the evidence of interest. Let ms,mg, - de-
note this evidence of interest set. Some of these moni-
tors may be indicting evidence, for example mo = 1 or
they may be exonerating evidence, for example mgz = 0.
The reasoning algorithm calculates the joint probability
P(fmy =1,m; = 1,ms = 1,m3 = 0,...) of a spe-
cific failure mode fm; occurring in the system. As ad-
ditional monitors fire, the numeric values of these prob-
abilities increase or decrease, till a specific failure mode

hypothesis emerges as the highest-ranked or the most
likely hypothesis. The reasoning algorithm can gener-
ate multiple single fault hypotheses, each hypothesis as-
serting the occurrence of exactly one failure mode in the
system.

The reasoning algorithm may not succeed in reduc-
ing the ambiguity group to a single fault element. This
can happen for various reasons: (1) incompleteness and
errors in the reference model; (2) simplifying assump-
tions in the reasoning algorithm; and (3) missing ev-
idence (monitors) that support or discriminate among
fault modes. For example, a modest aircraft has over
5000 monitors and failure modes; estimating the detec-
tion probabilities, d;;, even for this aircraft is a challeng-
ing offline design task. Errors in d;;, and more specif-
ically missing the link between a monitor and a failure
mode (incompleteness) can adversely affect the reasoner
performance. Further, to keep things simple for the rea-
soner, a modeler may assume that the firing events for
monitors are independent. This eliminates the need for
the modeler to provide joint probability values of the
form, P(m; = 1,my, = 1| fm; = 1) (say for 4000 mon-
itors and 1000 faults the modeler would have to provide
1.56 x 10'° probability values), and instead approximate
it as P(mj = 1|fml = 1) X P(mk = 1|fmz- = 1).
This reduces the total number of probabilities to 4 x 106,
which is still a large number but orders of magnitude
less than the number required for the joint distributions
and the order of the joint distributions grow exponen-
tially when additional monitors fire. Designing a good
set of monitors is yet another challenging task. For ex-
ample, the modeler may have overlooked a new monitor
m,, that could have differentiated between failure modes
fm1 and fmg.

Given the complexity of large systems such as an
aircraft, incompleteness in the reference model is ex-
pected. As one collects enough operational data, some
of these gaps can be addressed. The collection of as-
sumptions made about the fault hypotheses and moni-
tors results in the probability update function for each
fault hypothesis, fm;Vi € F, being computed using
a Naive Bayes model, i.e., P(fm;|m;,mg,m;--- =
a x P(mj,mg,my---|fm;) = a x P(mj|fm;) x
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Fuel metering fault
Fuel drain fault

Igniter assy fault

No Lightoff

Slow Start

Low stall margin for HPC
Low stall margin for LPC
Hot Start

QOverSpeed Shutdown

Inlet Fan fouling
HP Compressor fault <=
HP turbine fault <€

Nozzle clogging

Controller fault

Low Temp Margin at TKO
High inlet pressure loss
Low Temp Margin at CRU
Failed powerup test

Low stall margin for fan
Controller Ch A open

CverTemp Shutdown

Figure 2: Example Reference Model

P(m;|fm;) x P(mj|fm;) x --- where « is a normal-
izing constant. The direct correspondence between the
reference model and the simple Bayesian structure pro-
vides opportunities to use a class of generative Bayesian
model algorithms to build structures that are relevant for
diagnostic reasoning from data. These newly learned
structures can then be used with a systematic approach
for updating the system reference model. The following
work focuses on this systematic approach.

3. PROBLEM STATEMENT

The combination of the reference model and reasoner
when viewed as a single fault diagnoser can be in-
terpreted as a Noisy-OR classifier, which is a simpli-
fied form of a standard Bayesian Network. These net-
works that model diagnostic information (i.e., monitor-
fault relations) can be built from data itself as a prac-
tical application of data mining. A number of Ma-
chine Learning techniques for building Bayesian net-
works from data have been reported in the litera-
ture (Friedman, Geiger, & Goldszmidt, 1997), (Cheng,
Greiner, Kelly, Bell, & Liu, 2002),(Grossman & Domin-
gos, 2004). For example, state-based hidden Markov
Models (HMMs) (Smyth, 1994) and even more gen-
eral Dynamic Bayesian Network (DBN) (Dearden &
Clancy, 2001), (Lerner, Parr, Koller, & Biswas, 2000),
(Roychoudhury, Biswas, & Koutsoukos, 2008), (Verma,
Gordon, Simmons, & Thrun, 2004) formulations can
be employed to capture the dynamics of aircraft behav-
ior and effects of faults on system behavior and perfor-
mance. However, rather than addressing the problem as
a traditional data mining problem, it is approached as an

application that works to extend an existing ADMS. In
other words, the output of the data mining algorithms
have to be designed to provide information that sup-
plements existing expert-generated reference models, as
opposed to providing replacement forms of the refer-
ence model with corresponding reasoner structures. This
technique can be construed as a method for supporting
human experts, by having a human in the loop to in-
terpret the findings generated by the data mining algo-
rithm and make decisions on how to modify and update
the existing reference model and reasoner structures. By
including humans, who verify and integrate the model
enhancements, we turn the verification into a straightfor-
ward task for the human to either approve the selected
changes, or ignore them.

A systematic approach to the data mining task in this
context is to discover elements of the reference model
that can be augmented by comparing the results of a data
driven model produced from using a learning algorithm
against an existing structure extracted from the reference
model. The extraction of this existing structure from the
Reference Model begins by isolating a specific failure
mode. The failure mode chosen is often guided by the
available data where the mode was active. Isolating a
single failure mode from the reference model and the
monitors that indict the mode produces a tree structure
where the class node describes the binary presence of
that fault. The indicators(the leaves of the tree) have
probabilities for the indictment of the mode and false
alarm rates from the reference model that can be used
to construct the complete probabilistic space. This struc-
ture and probabilistic information is the classical defini-
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tion of a Naive Bayes classifier. With data and the use
of algorithms to build a Bayesian structure, the model
can be leveraged to improve this very specific structure.
Limiting it to a structure that preserves the general tree
of the Naive Bayes classifier eases the transition of in-
formation from the learned structure back to the original
model. This is balanced with our desire to add limited
causality into the network to help the expert understand
if there are health indicators which are correlated. This
information could be added back in limited ways to the
isolated structure, without requiring the entire reference
model to be changed from the Noisy-OR model. The
structure that is chosen for learning is a Tree Augmented
Naive Bayesian network, which we will discuss in more
detail in section 6.

The information added back to the reference model
falls into three areas:

1. Update Monitors Update the threshold 6 associ-
ated with a diagnostic monitor. The idea is to make
the monitor ¢ more sensitive to failure mode j (so
that it can be detected earlier, if it is present) with-
out sacrificing the false alarm rate, ¢; for the moni-
tor.

2. Add Monitors to Failure Mode Update the iso-
lated structure by adding a monitor that helps indict
the failure mode. Specifically this could take two
forms: (a) creating a new monitor with the requisite
probabilistic information, and adding a new dj; to
associate it with the failure mode, and (b) assigning
a non-zero number for d;; if the link did not already
exist with a previously created monitor.

3. Create Super Monitors Creating new monitors
that combine existing monitors, say m; and m;
such that the combination of monitor indictments
asserts stronger evidence for a specific failure mode
fmy. That is, calculate a stronger value for
P(m; = 1,m; = 1|fmy = 1) which is greater
than P(m; = 1|fmy = 1) x P(m,; = 1|fmy = 1).

In addition to establishing areas of improvement
found by comparing the data mining results with the ref-
erence model, the computational complexity of the data
mining algorithms should be manageable, so that they
can be used as exploratory analysis tools by the domain
experts. Potentially, the experts may apply a successive
refinement process by requesting a number of experi-
mental runs, each using a specific data set from an op-

erating fleet of aircraft, and the results from the n*" ex-
periment augments or confirms the reference model from
the (n — 1)*" experiment. This will result in a continu-
ous learning loop wherein historical observations from
the fleet are analyzed systematically to understand the
causal relations between failure modes and their mani-
festations (monitors). In addition, building models from
the data may also reveal unknown (or currently unmod-
eled) dependencies among failure modes that are linked
to the adverse event situations under consideration. Over
time, this learning loop will increase the accuracy and
time to detection (while reducing false positives) in the
diagnostic reasoner.

The next step is to explore and pre-process the avail-
able aircraft flight data for the data mining task. The pre-
processing plays a major role in determining the nature
of information derived from the data, and, using prior

knowledge of the aircraft domain the pre-processing al-
gorithms can be tailored to avoid the “needle-in-the-
haystack™ search problem.

4. AIRCRAFT FLIGHT DATA

It is important to extract flight data of the right type and
form that will potentially help to find and validate new
diagnostic information. Since the goal is early and reli-
able detection of an evolving fault in the aircraft, it is im-
portant that the data set formed for analysis span several
contiguous flights. This set should also include multiple
aircraft to account for aircraft-to-aircraft variations and
the heterogeneity of flight conditions and flight paths.
Our data set comes from a fleet of aircraft belonging to a
regional airline from North America. The fleet consisted
of 30+ identical four engine aircraft, each operating 2—5
flights each day. This work examines data spanning three
years of the airline’s operations.

The Aircraft Condition Monitoring System (ACMS)
is an airborne system that collects data to support fault
analysis and maintenance. The Digital ACMS Recorder
(DAR) records airplane information onto a magnetic tape
(or optical) device that is external to the ACMS. This
data is typically stored in raw, uncompressed form. The
DAR can record information at a maximum rate of 512
12-bit words per second via a serial data stream modu-
lated in either Harvard Bi-Phase or Bi-Polar Return-to-
Zero code. The recorded data is then saved permanently
to a compact flash card. The ACMS can be programmed
to record parameter data from the propulsion subsystem,
the airframe, the aircraft bleed subsystem, and the flight
management system at a maximum rate of 16 Hz. We
apply our initial data retrieval and pre-processing algo-
rithms to this raw time-series data that was made avail-
able to us in the form of multiple CDs.

A second source of information we referenced for this
study was adverse event annotations that is available in
a FAA developed Aviation Safety Information Analy-
sis and Sharing (ASIAS) database system. The ASIAS
database is a collection of adverse events reported by var-
ious airline operators. On searching this database for the
time period of the flight data available to us revealed that
an engine shutdown event had occurred for one of the air-
craft in our list. On one of the flights of this aircraft, the
third engine(out of four) aboard the aircraft shutdown au-
tomatically. As a result, the flight crew declared an emer-
gency situation and returned back to the airport where
the flight originated. Fortunately, there were no casu-
alties or serious injuries. For this study, we decided to
focus on this failure mode, mainly because the on board
reasoner or the mechanics who serviced the aircraft were
unable to detect any anomalies in the engine till the ad-
verse event occurred.

In more detail, an adverse event such as an engine
shutdown typically evolves as a sequence of anomalous
events and eventually leads to a situation, such as over
heating, that causes the shutdown. For this case study,
our objective was to analyze the ACMS flight data from
the aircraft prior to adverse event with the goal of defin-
ing anomalies in the system monitors that were not de-
fined for the existing ADMS. The primary intent was to
use these anomalous monitor reports to detect and iso-
late the root cause for the failure as early as possible,
so that the onset of the adverse event could be avoided.
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Investigation of the airline maintenance crew reports af-
ter the adverse event revealed that the root cause for
this adverse event was a faulty fuel metering hydro-
mechanical unit(Fuel HMA) in the third engine, which
was the engine that shut down. The fuel metering unit
is a controller-actuator that meters fuel into the com-
bustion chamber of the engine to produce the desired
thrust. Given that we now knew the time of the adverse
event and the root cause for the particular engine failure,
knowledge of the fuel metering unit impliedthat this was
a slowly evolving (i.e., incipient) fault that could very
likely start manifesting about 50 flights before the actual
engine shutdown adverse event. Therefore, we extracted
the [—50, 0] flight interval for the analysis, where 0 indi-
cates the flight number for which the adverse event oc-
curred and —50 indicates 50 flights before this one. We
assumed that the particular aircraft under study had one
faulty and three nominal engines. We collected relevant
data (discussed below) for all of the engines, and then ran
Bayesian classifiers to discover the differences between
the faulty and the nominal engines.

As we discussed earlier, all of the aircraft for the re-
gional airline were equipped with ADMS. The diagnoser
receives information at pre-defined rates from the di-
agnostic monitors. In this case study, we also assume
that we had access to the sequence of condition indica-
tors(CI) values that were generated. As discussed earlier,
the binary monitor output is produced by applying a pre-
defined threshold to the CI values. In our data mining
analysis, we use the CI’s as features, and compare the
thresholds derived by the classifier algorithms against the
thresholds defined in the reference model. The following
condition indicators and diagnostic monitors were avail-
able from this aircraft flight dataset.

StartTime This CI provides the time the engine takes to
reach its idling speed. Appropriate threshold gener-
ates the no start diagnostic monitor.

IdleSpeed This CI provides the steady state idling
speed. Appropriate threshold generates the hung
start diagnostic monitor.

peakEGTC This CI provides the peak exhaust gas tem-
perature within an engine start-stop cycle. Appro-
priate threshold generates the overtemp diagnostic
monitor.

N2atPeak This CI provides the speed of the engine
when the exhaust gas temperature achieves its peak
value. Appropriate threshold generates the over-
speed diagnostic monitor.

timeAtPeak This CI provides the dwell time when the
exhaust gas temperature was at its peak value. Ap-
propriate threshold generates the overtemp diagnos-
tic monitor.

Liteoff This CI provides the time duration when the en-
gine attained stoichiometry and auto-combustion.
Appropriate threshold generates the no lightoff di-
agnostic monitor.

prelitEGTC This CI provides the engine combustion
chamber temperature before the engine attained sto-
ichiometry. Appropriate threshold generates the hot
start diagnostic monitor.

phaseTWO This CI provides the time duration when
the engine controller changed the fuel set-point

schedule. There are no diagnostic monitors defined
for this CL.

tkoN1, tkoN2, tkoEGT, tkoT1, tkoPALT These CIs
provide the fan speed, engine speed, exhaust gas
temperature, inlet temperature and pressure alti-
tude, respectively, averaged over the time interval
when aircraft is operating under take off conditions.
There are no diagnostic monitors defined for these
CIs.

tkoMargin This CI provides the temperature margin for
the engine during take off conditions. Appropriate
threshold generates the medium yellow and low red
diagnostic monitors.

Rolltime This CI provides the time duration of the en-
gine’s roll down phase. Appropriate threshold gen-
erates the abrupt roll diagnostic monitor.

resdTemp These CI provide the engine exhaust gas
temperature at the end of the engine’s roll down
phase. Appropriate threshold generates the high
rtemp diagnostic monitor.

N2atDip, dipEGTC These CIs provide the engine
speed and the exhaust gas temperature at the
halfway point in the engine’s roll down phase.
There are no diagnostic monitors defined for these
CL

N2cutoff These CI provide the rate of change of the en-
gine speed at the halfway point in the engine’s roll
down phase. There are no diagnostic monitors de-
fined for these CI.

This large volume of CI data (multiple aircraft, mul-
tiple flights) provides opportunities to study aircraft en-
gines in different operating scenarios in great depth and
detail. However, the data as extracted from the raw flight
data DAR files was not in a form that could be directly
processed by our classification algorithms. We had to de-
velop data curation methods to generate the data sets that
could be analyzed by the machine learning algorithms.

5. DATA CURATION

An important requirement for the success of data driven
techniques for knowledge discovery is the need to have
relevant and well-organized data. In our study, well-
organized implied getting rid of unwanted details, be-
ing able to structure the data on a timeline (having all of
the CI’s aligned in time, and the monitor output inserted
into the time line as a sequence of events), and applying
filtering algorithms to the noisy sensor data. Relevance
is an important concept, since it is necessary to extract
sequences of data that contain information about the par-
ticular situation being modeled. For example, if the goal
is to design a classifier that can identify a faulty situation
from one in which there is no fault, it is important that the
classifier be provided with both nominal and faulty data,
so that it can derive the discriminating features from the
data. Further, the systems under study are complex, and
they operate in different modes and under different cir-
cumstances. This information is likely to be important
for the classification task, so the data needs to be appro-
priately annotated with this information. It is clear that
unreliable data is unlikely to provide useful information
to an already effective reference model. Our (and oth-
ers) experiences show that the data curation task is often
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more time consuming and sometimes quite difficult (be-
cause of noisy, missing, and unorganized data) as com-
pared to the data mining task, which involved running a
classifier or a clustering algorithm on the curated data. A
good understanding of the nature of the data and how it
was acquired is critical to the success of the data mining
task.

In our study, the DAR files represented single flights
encoded in binary format. As a first step, we orga-
nized several thousands of these files by the aircraft tail
number. For each aircraft, the data was then organized
chronologically using the time stamp associated with the
particular flight. Since the case study involves an engine
shutdown situation, the data was further classified based
on the engine serial number so that the data associated
with each engine could be easily identified.

For practical reasons, given the size of the data, and
the need to extract specific sub-sequences for the data
mining task, we designed a relational database to cre-
ate an organized representation for the formatted data.
This made it easier to access the relevant data for dif-
ferent experimental analyses. For a data analysis ses-
sion, step 1 involved formulating data base queries and
collecting the extracted data segments into the form re-
quired by the classification algorithm. Step 2 was the
data curation step. A primary task at this step was re-
moving all extraneous non-flight data. For this analy-
sis, all ground-test information (data generated when the
maintenance crew ran a test when the aircraft was on the
ground) was defined as anomalous and removed during
the cleansing step. Step 3 involved running the classifi-
cation algorithms.

6. TREE AUGMENTED NAIVE BAYESIAN
NETWORKS

The choice of the data driven techniques to apply to par-
ticular problems is very much a function of the nature
of the data and the problem(s) to be addressed using
the data. The extracted portion of the reference model
discussed earlier can be modeled as a Naive Bayes rea-
soner. The independence assumptions of the model may
also be systematically relaxed to capture more discrimi-
natory evidence for diagnosis. There are several inter-
esting alternatives, but one that fits well with the iso-
lated structure is the Tree Augmented Naive Bayesian
Method (Friedman et al., 1997) abbreviated as the TAN
algorithm. The TAN network is a simple extension to
the Naive Bayes network formulation. The Root (the
fault mode) also know as the class node is causally re-
lated to every evidence node. In addition, the indepen-
dence assumption for evidence nodes is relaxed. An evi-
dence node can have at most two parents: one is the class
node, the other can be a causal connection to another
evidence node. These constraints maintain the directed
acyclic graph requirements and produce a more nuanced
tree that captures additional relationships among the sys-
tem sensors and monitors. At the same time, the learning
algorithm to generate the parameters of this structure is
computationally simpler than learning a general Bayes
net structure.

The TAN Structure can be generated in several dif-
ferent ways. One approach uses a greedy search that
constrains the graph from building “illegal” edges (i.e.,
a node having more than one parent from the evidence

nodes)(Cohen, Goldszmidt, Kelly, Symons, & Chase,
2004). Another procedure, sketched out in Algorithm
1, builds a Minimum Weighted Spanning Tree (MWST)
of the evidence nodes and then connects the fault mode
to all of the evidence nodes in the tree (Friedman et al.,
1997). We use this algorithm in our work. A standard
algorithm (e.g., Kruskal’s algorithm(Kruskal, 1956)) is
applied to generate the MWST. The edge weight compu-
tation for the tree structure utilizes a log-likelihood crite-
rion, such as the Bayesian likelihood value (Chickering,
Heckerman, & Meek, 1997) and the Bayesian Informa-
tion Criterion (BIC) (Schwarz, 1978). If the values are
naturally discrete or they represent discretized continu-
ous values, the Bayesian likelihood metric is preferred.
This is a simple metric, which calculates the likelihood
that two variables are dependent. The BIC is better
suited for data sets whose features are derived from con-
tinuous distributions (like a Gaussian Normal). For ei-
ther measure, the values are calculated for every pair of
evidence nodes and stored in a matrix. Note that the
value calculated for node 7 to node j is different for the
value calculated for node j to node ¢, Therefore, the di-
rected edges of the MWST represent the implied direc-
tion of causality, and the derived structure includes pre-
ferred causal directions (and not just correlational infor-
mation).

Figure 3: Example TAN Structure

An example TAN structure is illustrated in Figure 3.
The root node, labeled class, is the fault hypothesis of in-
terest. The other nodes represent evidence supporting the
particular fault hypotheses. For the structure in Figure 3,
rolltime, a monitor associated with the shutdown phase
of the aircraft is the anchor evidence node in the TAN
structure, called the observation root node. Like a Naive
Bayesian classifier, the fault hypothesis node (class) is
linked to all of the relevant monitor nodes that support
this hypothesis. Dependencies among some of the mon-
itors, e.g., rolltime and dipEGTC, are captured as addi-
tional links in the Bayesian network. Note that the TAN
represents a static structure; it does not explicitly cap-
ture temporal relations among the evidence. The choice
of the observation root node is important; in some ways,
it represents an important monitor for the fault hypothe-
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sis, since it is directly linked to this node. This means the
distribution used in the observation root node(whether it
be a discrete CPT, or a continuous distribution) is con-
ditioned only on the priors of the class distribution. The
rest of the MWST structure is also linked to this node.
All other conditional probability tables(CPTs) generated
for this TAN structure include the class node and at most
one other evidence node. The choice of the observation
root node may determine the overall structure of the tree,
but for the same data, the procedure for identifying the
stronger causal links should not change in any signifi-
cant way, i.e., the strong links will appear on all TANS,
irrespective of the choice of the observation root node.

Algorithm 1 TAN Algorithm Using MWST

1: INPUT:Dataset D of N Features and a label C

2: INPUT:Observational Root Node FRoot

3: INPUT:CorrelationFunction

4: OUTPUT:TAN Structure with Adjacency Matrix,
CLassAdjMat, describing the Structure

5. OUTPUT:Probability Values ProbVec for each
Node {Note: Corr is a matrix of the likelihood
that feature i is causally related to feature j (dif-
ferent values can be found for i to j and j to i)}
{Count(Node,ClassAdjMat,D) is a counting func-
tion, that takes the Data, the Class, the Full Adja-
cency Matrix of the TAN and for the Node finds
either the CPT for discrete-valued features, or the
set of means and covariances to describe the Gaus-
sian Normal Distributions of the Node for continu-
ous valued variables.} {AdjMat describes the par-
ents so that correct data slices can be isolated and
used in the counting. }

6: for feature; = 0 to feature; = N do

7. for feature; = 0to feature; = N do

8: if feature; # feature; then

9: Corr (i,j) = CorrelationFunction(fi, fj ,D)
10: end if

11:  end for

12: end for

13

: AdjMat = MWST(Corr, FRoot){ Build a Minimum
Weighted Spanning Tree using the Correlation Ma-
trix and the Root chosen}

14: for feature; = 0to feature; = N do

15:  ClassAdjMat(feature;,C) = 1 {Connect ev-

ery feature to the Class Node to build the TAN}

16: end for

17: ProbVec(C) = Count(C,ClassAdjMat,D) {Estimate

the parameters, starting with the class}

18: for feature; = 0to feature; = N do

19:  ProbVec(feature;) =

Count(feature;, ClassAdjMat, D)

20: end for

21: RETURN: (AdjMat, ProbVec)

When the inference is used to assign a faulty or nomi-
nal label to the observed flight data, the result will be bi-
ased towards one class(fault) over another based on the
CI value of the observation root node. This shift also
changes some causal relationships and may impact how
the counting algorithm for parameter estimation groups
the data and produces probabilities for the evidence. In
a later section we discuss how these choices can be used
by the domain expert to make effective improvements to

the reference model for the AHM.

This choice of the observation root node, as shown in
Algorithm 1 is an input parameter to the algorithm. This
choice is normally based on a ranking computed using a
heuristic, such as the highest BIC value. The algorithm
in Weka (Hall et al., 2009) builds TANs with every fea-
ture as the root node of the MWST. It compares the gen-
erated structures, using a scoring metric such as the log-
likelihood for the training data. The structure with the
best score is then chosen as the classifier structure. An-
other approach could use domain knowledge to choose
this node. For example, using expert knowledge of the
system one may choose the sensor that is closest to the
fault under consideration because it is not likely to be
causally dependent on other sensors. The implication in
the classifier is that it will be closest to indicating a fault.

Consider the example TAN shown in Figure 4. When
the data for constructing the TAN is extracted from
flights just before the adverse event occurred, the root
node chosen by the Weka scheme is idlespeed. This
node connects to the rest of the MWST, which in this
case is the starttime feature, to which the rest of the fea-
ture nodes are connected. Using data from flights that
were further away (before) from adverse event occur-
rence, the Weka algorithm picked PeakEGTC as the root
node. This is illustrated in TAN structure in Figure 5.
However, the derived causal link from idlespeed to start-
time to a large group of nodes is retained at the bottom
right of Figure 5. The similarities and shifts in the TAN
structures from different segments of data typically in-
forms the domain expert about the underlying phenom-
ena due to the fault that is captured by the monitors. We
discuss this in greater detail when we develop our case
study in Section 7..

6.1 Implementations Used for Building TANs

Two different implementations can be employed for the
TAN algorithms used in the experiments. The first is
one that attempts to maintain the continuous nature of
the features and build Gaussian Normal distributions for
the nodes. It is implemented in MATLAB using the
Bayesian Network Toolkit (Murphy, 2011).

The second method from the Weka (Hall et al., 2009)
toolkit, uses a discretization algorithm which looks to bin
each of the features into sets that unbalance the classes
to provide the best possible split. For this case study, it
produced more accurate classifiers, however, there were
situations where it created a number of very fine splits
in the feature values to define all of the class structures.
The result was excessive binning, which produced very
large conditional probability tables. When considering a
more general view, methods that produce excessive bin-
ning are likely to be less robust to noise. Therefore, one
has to consider these trade offs when choosing between
these approaches.

7. EXPERIMENTS

To evaluate the data mining approach and demonstrate
its ability to improve a diagnoser reference model, we
conducted a case study using real flight data from the
regional airline described earlier. We defined three stan-
dard metrics: (1) classification accuracy (2) false pos-
itive rate, and (3) false negative rate to systematically
evaluate the TAN learning algorithm. Starting from the
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flight in which the adverse event occurred for a partic-
ular aircraft, we used the earliest time to detection as
another metric to evaluate the improvement in the sys-
tem reference model after it has been updated with new
information generated from the TAN classifier structure.
The particular case study discussed here was an aircraft,
where an overheated engine caused the engine to shut-
down. This was considered to be a serious adverse event,
and the pilots decided to return to the originating airport.
By comparing the data from the faulty engine against the
three other engines on the aircraft, which operated nor-
mally, starting from 50 flights before the adverse event,
we were able to generate additional monitor information
that reliably pointed to a FuelHMA problem (i.e., leak
at the fuel meter) 40 flights before the actual incident.
We break up the case study into three experiments and
discuss their details next.

7.1 Experiment 1

The first task was to investigate the effectiveness of the
generated classifier structures in isolating the fault con-
dition using the condition indicator information derived
from the flight data. We used condition indicators (CIs)
rather than the health indicators (HIs) in this analysis
because they make fewer assumptions about the nature
of the data. We hypothesized that the original expert-
supplied thresholds for the HIs were set at conservative
values to minimize the chances for false alarms, and
our derived classifier structures could potentially pro-
vide better thresholds without sacrificing the accuracy
and false alarm metrics. This would lead to faster de-
tection times.

From the ASIAS database, we extracted the aircraft
and flight number in which the adverse event occurred.
The report also indicated the nature of the fault that
caused the adverse event, and knowledge of the fault pro-
vided context to our domain expert as to when this fault
could be detected in the engine system. Our expert sur-
mised that the fault would most likely start manifesting
about 50 flights prior to the adverse event. The initial
dataset that we then formulated consisted of the calcu-
lated ClIs for all 50 of the identified flights. Each engine
has its set of monitors, therefore, we had four sets of
CIs, one for each engine. For analysis, we considered
two ways for organizing this data. The first approach
combined the four engine CI’s as four separate features
associated with one data point (i.e., one flight). Since we
had 25 different ClIs, this meant the dataset consisted of
50 data points, with each data point defined by 100 fea-
tures. The second approach looked at each engine as a
separate data point. Therefore, we formed four datasets,
each with with 50 data points and 25 features. From the
problem definition, it was clear that one of the four en-
gines was faulty, and other three were most likely nomi-
nal for the 50 flights that we were analyzing. Therefore,
we chose the latter approach for representing the data. To
label the dataset appropriately for the classification study
that we applied in this experiment, the three engines of
the aircraft that showed no abnormalities (1, 2, and 4)
were labeled as nominal, and the data points correspond-
ing to engine 3, where the shutdown incident occurred,
was labeled as faulty.

The classifiers were trained and evaluated using 10-
Fold Cross validation (180 samples for training, and 20
for testing) with the nominal engine data being agnos-

tic of which engine produced the data. All of the CIs
described in 4. were used as features in the classifier al-
gorithm. The TAN generation algorithm from the Weka
toolkit were used to derive the necessary classifiers. The
fact that the discretized representation of the conditional
probabilities were employed made it easier to find the
threshold values for the diagnostic monitors that were
linked to each CI. This is discussed in greater detail in
Section 7.3. The derived TAN structure is illustrated in
Figure 6.

The classification accuracy for this TAN structure was
high, the average accuracy value was 99.5% with a .7%
false positive rate and 0% false negative rate. These ini-
tial results were encouraging and to better understand
them, the experiment was extended to confirm that the
classifier results were be attributed to the evolving fault
in engine 3 and it was not just an artifact of the differ-
ences between the different engine characteristics. The
above experiment was repeated with the training data
including one of the nominal engines (1, 2, or 4) and
the faulty engine, 3. The other two nominal engines
were used as the test data. If the classifier split the re-
maining nominal engine data between the nominal and
faulty classes derived, this would indicate that its struc-
ture more likely an artifact of engine placement on the
aircraft. This experiment was repeated two more times,
each time using a different nominal engine providing the
training data and the other two being used as the test data.
For all 3 experiments, the fault classification accuracy re-
mained high, indicating that the classifier was truly dif-
ferentiating between the fault and no-fault conditions.

7.2 Experiment 2

The positive results from the classification task led to the
next step, where we worked with a domain expert to de-
termine which of the CIs in the classifier provided the
best discrimination between the faulty and nominal con-
ditions. This information would provide the necessary
pointers to update the current reference model. As a first
step, the expert examined the TAN created using data
from the 50 flight set used in Experiment 1. The ex-
pert’s attention was drawn to the complex relationship
between certain pairs of CI’s during different phases of
the flight:(1) rolltime and dipEGTC during the Shutdown
phase, and (2) PeakEGTC and Starttime from the Startup
phase. The expert concluded that there was a likely de-
pendence between the shutdown phase of flight n and
the startup of the next flight, » + 1. The reasoning was
that an incomplete or inefficient shutdown in the previ-
ous flight created situations where the startup phase of
the next flight was affected. The expert hypothesized that
this cycle of degradation from previous shutdown to the
next startup resulted in the fault effect becoming larger
and larger, and eventually it would impact a number of
ClIs of the faulty engine.

This phenomena was investigated further by designing
an experiment to track how the causal structure and ac-
curacy of the classifiers derived from different segments
of data. The different segments were chosen as intervals
of flights before the flight with the adverse event occur-
rence as shown in Table 1. The 50 flights were divided
into 5 bins of 10 flights each. A test set was constructed
from the remaining 40 flights (data with nominal and
faulty labels) as well as the samples of CIs from engine
3 after it had been repaired (after engine 3 was repaired,

10
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Bin | Training Flights | Acc.on Holdout Set | FP% | Obs. Root Node | Children of ORN | Notes

1 1to 10 97.65% 2.30% IdleSpeed StartTime Thresholds Chosen
from this Bin due to
low FP

2 ITt0 20 93.90% 5.70% peakEGTC liteOff,dipEGTC | peakEGTC Impor-
tant Node

3 21to 30 94.65% 5.30% peakEGTC liteOff,dipEGTC peakEGTC  Impor-
tant Node

4 31t0 40 96.62% 3.50% startTime peakEGTC Links startTime and
PeakEGTC

5 41 to 50 96.06% 4.10% liteOff phaseTwo,RollTime | Links Startup and
Rolldown CI

Table 1: Accuracy, False Positive Rate, Observational Root Node and Immediate Child Node for Classifiers Created

from different data segments
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no anomaly reports were generated by mechanics, and
no further adverse events were reported for engine 3 in
the ASIAS database, therefore, it was considered to be
nominal). Table 1 shows the accuracy and false posi-
tive rate(FP%) metrics reported for the five experiments.
The observation root node, and its immediate child in the
generated TAN structures are also shown.

The conventional wisdom was that the accuracy and
false positive metrics would have the best values for the
classifiers generated from data close to the adverse event,
and performance would deteriorate for the TAN struc-
tures derived from bins that were further away from the
incident. The actual results show partial agreement. The
bin 1 experiment produced the highest accuracy and low-
est false positive rate, but the next best result is produced
for TAN classifiers generated from the bin 4 data. This
prompted the domain expert to study the bin 1 to bin 4
TANSs more closely. The expert concluded that two Cls,
startTime and peakEGTC showed a strong causal con-
nection for bin 4, and startTime was highly ranked for
the bin 1 TAN. On the other hand, PeakEGTC was the
root node for bins 2 and 3. This study led the domain
expert to believe that a new monitor that combined start-
Time and peakEGTC would produce a reference model
with better detection and isolation capabilities. The pro-
cess of designing and testing the diagnoser with the new
monitor is described as Experiment 3.

7.3 Experiment 3

Working closely with the data mining researchers, the
domain expert used the framework in the problem state-
ment to reconcile the results from Experiment 2 to sug-
gest explicit changes in the reference model; this in-
cluded: (1) updates to the threshold values that specified
the diagnostic monitors (i.e., updated Hls from the CIs),
(2) a new monitor that could be added to the current ref-
erence model and (3) the addition of a “Super Monitor”
to the reference model.

The CPTs generated by the learned classifier were de-
fined as discretized bins with split points that could be
interpreted as thresholds. Looking at the bins, the lowest
false positive rate occurred in bin 1. For the observation
root node, the thresholds were updated using the results
for bin 1 by comparing the split values with the origi-
nal thresholds. For the remaining nodes, their causality
with respect to the observation parent was removed by
marginalizing to remove that particular variable. Once
marginalization is applied, the CPT lists the probabil-
ity values at the nominal versus faulty split points. The
domain expert studied these split values and made de-
cisions on whether the new split values should update
the thresholds in the reference model. The trade off was
to improve the accuracy of fault detection without in-
troducing too much noise (uncertainty) into the decision
process.

Studying the TAN structures provided additional in-
formation to the domain expert. When the slowStart HI
fired, the expert discovered that this was not because the
startTime during start up was slow; sometimes the fault
occurred when the startTime was too fast. This implied
a new HI could be added to the failure mode that now
examines if startTime is under a threshold and too fast.
The addition of this HI(called fastStart) to the reference
model would be to speed up detection by adding new
evidence to indict the fault.

Experiment 2 also showed a causal relationship ap-
pearing between startTime and peakEGTC. The domain
expert suggested adding this as a “super monitor”. This
new HI would combine information from the fastStart
HI and the HighTemp HI to identify the fuelHMA fault
in the reference model. In other words, if both moni-
tors fired, then this new monitor would also fire directly
implicating the fault hypothesis. In other words, joint
occurrence of these two monitors provides stronger evi-
dence of the fault than if one considers the effect of the
two monitors individually. For example, in the origi-
nal structure that showed a possible relationship between
monitors in flight N and flight N+1, the causality might
cause this new monitor to fire only when the two HI in-
volved fire in that explicit sequence, flight n and flight
n + 1. Not only does this super monitor combine the
results from other monitors, but it also indicates cyclic
behaviors that again provide very useful diagnostic infor-
mation. In general, these “super monitors” could model
complex interactions thus increasing the overall discrim-
inability properties of the reasoner. The consequence of
using a super monitor, is that the usefulness of the two
monitors used in the construction are lost. These are re-
moved from the links to the failure mode being exam-
ines(however they remain for any other failure mode).
In this situation, the just created monitor for fast start-
Times would be removed as well as the HighTemp HI in
place of a new super monitor for a fast start and a high
engine temperature on start up.

To show that this new super monitor and the updated
thresholds produce better results, multiple traces of the
monitor output were made for the 50 flight data set. This
included 10 nominal flights after the problem was caught
and corrected. The first trace is only a recording of the
original monitors designed by the expert. The second
trace includes the new monitors(both the fast startTime
monitor and “super monitor”) derived by the data mining
analyses, as well the updated information(thresholds).
Run separately, they can be analyzed to determine if the
reasoner finds the fault sooner in the trace and indicates
that maintenance is more than likely needed for the air-
craft.

These results from the reasoner simulations are shown
in Figures 7 and 8. The traces illustrate the reasoner’s
inferences at different flight numbers before the actual
incident occurrence. This analysis demonstrates how far
before the adverse event the reasoner would reliably de-
tect the fault, and potentially generate a report that would
lead to preventive maintenance, and, therefore, avoid-
ance of the adverse event. With the original reference
model the reasoner was unable to disambiguate between
three potential fault candidates at any point leading up
to the event. All of the fault candidate hypotheses re-
quired more evidence to support the isolation task. This
would not avoid the unfortunate shutdown and the emer-
gency return to the originating airport. Figure 8 shows
the reasoner trace for the new reference model. Using the
updated thresholds and the new super monitor(which is
derived from a new monitor itself and one original moni-
tor) suggested by the data mining algorithms led to a cor-
rect isolation of the fault, i.e, the fuelHMA problem. In
this case, the reasoner originally hypothesized five fault
conditions: four of these were linked to the faulty en-
gine and one was a vehicle level hypothesis. As further
monitor information became available, fuel metering re-
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mained the only plausible candidate, and the fault hy-
pothesis was established unambiguously. The fact that
this isolation by the reasoner occurred 30 flights before
the incident is significant because it gave sufficient ad-
vanced warning to the maintenance crews to fix the prob-
lem before an emergency situation developed.

This case study provides encouraging results in the
area of diagnoser model improvement through data min-
ing. It indicates that it may be possible to uncover new
information about the relationship between components
on a vehicle and how they can be harnessed to improve
diagnostic reasoning. Not only can it help isolate faults,
but also potentially catch them earlier in the cycle. These
three experiments provide a general direction to assist-
ing a domain expert in improving their work, and giving
them access to new or missing information.

8. CONCLUSIONS AND FUTURE WORK

The overall results from this case study generated pos-
itive results and show the promise of the data mining
methodology and the overall process that starts from data
curation and ends with systematic updates to and verifi-
cation of the system reference model. The results pre-
sented clearly demonstrate that the data mining approach
is successful in: (1) discovering new causal relations in
the reference model, (2) updating monitor thresholds,
and (3) discovering new monitors that provide additional
discriminatory evidence for fault detection and isola-
tion. Experiment 3 demonstrated that the new knowl-
edge leads to better diagnoser performance in terms: (1)
early detection, and (2) better discriminability. An im-
mediate next step will be to generalize this methodology
by applying it to other adverse event situations. In the
longer term, to further validate this work, we plan to ad-
vance this research in a number of different directions.

e Validation of the approach and classifier structures
generated by looking at additional engine data sets
from other flight data that report the same and re-
lated adverse events. To establish the robustness of
the work, it is important to extend the analysis to
looking at multiple occurrences of the same adverse
event, and to compare the thresholds, relations, and
monitor structures generated by the extended data
analysis.

e Extension of the analysis methodology beyond sin-
gle systems and subsystems. A rich source of infor-
mation about fault effects involves looking at the
interactions between subsystems, especially after
fault occurrence begins to manifest. Of particular
interest is looking at cascades of monitors and cas-
cades of faults. In this framework, studying the re-
sponse of the avionics systems under different fault
conditions would be very useful.

e Advance our data mining techniques to extract
causal relations between avionics and other sub-
systems, as well as study correlations between the
combined avionics and engine features and adverse
vehicle events, such as in-flight engine shutdowns
and bird strikes. Understanding what features of
a flight differentiate situations when a pilot starts
compensating for what may be a slowly degrad-
ing component that originates from a bird strike
will help us gain a better understanding of how to

monitor the actual operation of the aircraft with
its subsystems under various conditions. This also
presents interesting problems from the application
and development of machine learning algorithms to
utilize in this data mining problem.
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