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ABSTRACT 

Detection of damaged mechanical components in their early 
stages is crucial in many applications. The diagnostics of 
mechanical components is achieved most effectively using 
vibration and/or acoustical measurements, sometimes 
accompanied by oil debris indications. The paper describes 
a concept for fusion and decision for mechanical 
components, based on vibro-acoustic signatures. Typically 
in diagnostics of complex machinery, there are numerous 
records from normally operating machines and few 
recordings with damaged components. Diagnostics of each 
mechanical component requires consideration of a large 
number of features. Learning classification algorithms 
cannot be applied due to insufficient examples of damaged 
components. The proposed system presents a solution by 
introducing a hierarchical decision scheme. The proposed 
architecture is designed in layers imitating expert’s decision 
reasoning. The architecture and tools used allow 
incorporation of expert’s knowledge along with the ability 
to learn from examples. The system was implemented and 
tested on simulated data and real-world data from seeded 
tests. The paper describes the proposed architecture, the 
algorithms used to implement it and some examples. 

1. INTRODUCTION 

In diagnostics and prognostics, the decision is the process 
that determines the probability that a certain component, 
module or system is in a healthy state. In order to reach the 
decision, health indicators from a variety of sources related 
to a component are combined. In the implementation 
described herein a multi-layer approach is used. At each 
layer the features of a similar nature are combined. 

Two levels of decision can be identified: component-level 
and system-level decision. 

Component-level decision generates a single decision for 
each component. This is a complex decision as there are 
many different sources of information, sometimes 

contradicting, that should be taken into account. 

During the system-level decision, the health of each 
component is translated into recommendations for 
maintenance operations. This level of decision should 
incorporate root-cause analysis (RCA) type of logic. For 
example, let’s assume that an abnormal behavior was 
observed in components C1 (a massive gearwheel) and C2 
(an anomaly virtual component). During system-level 
decision, and knowing the system dynamics, it can be 
concluded that the actual component that requires 
maintenance operation is C3 (a pinion gear), which is 
connected to both the big gearwheel C1 and to the 
indication on the anomaly C2. It can also be concluded that 
the pinion gear C3 and the gearwheel C1 are, for example, 
part of module B1 and the most efficient maintenance 
operation is full replacement of module B1 and not only the 
faulty component. 

In this paper our focus is on component-level decision 
making. Information on the health of a single component is 
collected from several sources and should be integrated into 
a single decision. The component can be monitored by 
multiple sensors in several operating conditions. For each 
sensor and operating condition multiple health indicators 
can be calculated. 

2. VIBRATION ANALYSIS 

Analysis of vibration signals is performed in several stages. 
The following processing stages are implemented according 
to the OSA/CBM layers (MIMOSA) (see Figure 1). 

HA – Health 

Assessment

SD – State 

DetectionDM – Data Manipulation
DA – Data Acquisition

Data Selection
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Feature 
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Operating 
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 Figure 1. Vibration analysis processing stages 

2.1 Data Selection 

After data sampling the first step of processing is 
examination of the acquired data and selection of data 
appropriate for analysis. The data is screened in several 

Renata Klein et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 

 



Annual Conference of the Prognostics and Health Management Society, 2011 

 2 

stages (see grey blocks in Figure 1): validity, operating 
conditions and steadiness check. Data selection is a part of 
the OSA/CBM data acquisition layer (DA). 

The goal of the validity stage is to filter out invalid or 
corrupted sections of data such as sensor disconnection, 
saturation, spikes and others. 

The next stage of data selection is recognition of predefined 
operating modes. Operating modes are frequently repeating 
conditions during system regular operation that enhance the 
manifestation of the damaged components (for instance 
when the components are loaded) and satisfy specific 
requirements for data analysis.  

The last stage of data selection contains stationarity checks 
of the analyzed signals. 

2.2 Data Manipulation 

The OSA/CBM data manipulation (DM) layer in the current 
architecture is covered by signal processing and feature 
extraction. 

In the case of vibro-acoustic data, signal processing is the 
most complex and computationally intensive task 
implicating sophisticated flows of algorithms including 
many transformations from one domain of analysis to 
another (Klein, Rudyk, Masad, Issacharoff, 2009b, Antoni 
& Randall, 2002, and Klein, Rudyk, Masad, 2011). During 
signal processing the data is transformed into different 
signatures (instances of a domain) that enhance 
manifestation of damaged components while filtering out 
the excitations from other components. Signal processing is 
done on sections of raw data selected in the data acquisition 
stage.  

Feature extraction is a process in which the signatures are 
compared with signatures representing the population of 
‘healthy’ systems. Results of the feature extraction are 
condition indicators (features) of the ‘health’ status of 
specific failure modes of a mechanical component. These 
indicators organized as a function of time are called trends.  

The feature extraction process typically calculates and 
collects a large number of health indicators for different 
components of the system under test. The failure modes of a 
type of component are manifested in the relevant signatures 
according to a characteristic pattern.  

The typical failure modes of a bearing are damages to inner 
and outer races, rotating elements, or cage. The pattern of 
each failure mode of a bearing can be described by several 
harmonics of characteristic frequencies (also known as 
bearing tones or pointers) with sidebands representing the 
amplitude modulation. More details can be found in Klein, 
et al. (2009a), Klein et al. (2011), Bhavaraju, Kankar, 
Sharma, Harsha, 2010, Li, Sopon, He, 2009, and Hariharan, 
Srinivasan, 2009. 

2.3 Decision 

The stages after feature extraction are part of the state and 
health assessment (SA and HA) OSA-CBM layers. A 
decision regarding the health status of a component is taken 
per run or flight of the machine. 

The inputs to the decision process are normalized features. 
During the normalization process the distance of a feature 
from the distribution of the same feature in normally 
operating machines is calculated. Practically during 
normalization the Mahalanobis distance is calculated.  

The decision at each stage is generated as a probability to be 
in one of pre-defined states, for instance three states 
representing component health status: ‘Normal’, ‘Low’, and 
‘High’ indicating respectively a normally operating 
component, a component with a small deviation from 
normal, and a component with a large deviation from 
normal. An additional state should be considered to 
represent missing or incomplete information when the 
decision cannot be taken. In the presented application this 
state is named ‘Unknown’. A set of the 4 probabilities 
corresponding to the different states is called decision 
vector. The decision vector generated per run is stored in a 
trend of decisions.  

3. ARCHITECTURE OF THE DECISION AND FUSION 

A single feature or health indicator is a function of 
component type, sensor, operating mode, processing 
domain, pointers (harmonics and sidebands), and type of 
indicator. For example, processing domain can be orders, 
location – first harmonic of the shaft, and indicator – 
energy. To obtain the decision for a component it is 
therefore required to undergo the following stages: 
combination of indicators, pointers, processing domains, 
operating modes, and sensors. 

 

Figure 2. Layers of decision 
At the first decision stage features coming from different 
operating modes and pointers are merged. This process is 
called scoring and will be denoted L1. The second decision 
stage (L2) merges processing domains. During the third 
stage (L3) of decision all the failure modes are merged. At 
the next and final decision stage the information from all the 
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sensors is joined (L4). Figure 2 shows a schematic 
representation of decision layers. 

The architecture of the process (layers hierarchy) imitates 
the way an expert makes a decision. At the first stage (L1) 
the expert inspects a single spectrogram such as time-orders 
spectrogram. The expert checks the behavior of the several 
pointers corresponding to a failure mode as a function of the 
operating conditions. Depending on the component and 
failure mode under observation, processing domain and 
sensor the expert can decide whether the energy levels 
indicate damage. 

On the next stage (L2) an expert seeks additional evidences 
for presence of the specific failure mode based on other 
processing domains such as envelope (usually by inspecting 
the time-orders spectrogram of the envelope). Evidences 
from several processing domains can strengthen or weaken 
the indications based on the component and failure mode 
under observation.  

After examination of different domains all the failure modes 
of the component will be considered. Evidences from all the 
failure modes are inspected and again can weaken or 
strengthen the final decision. As the damage progress other 
failure modes may also rise due to suboptimal component 
operation. For example, a damage of the bearing outer race 
might cause a damage of the bearing roller elements. 

When several sensors are used to perform the diagnostics of 
the component the final stage integrates their decisions. 
Based on relative location between the component and 
sensors some logic can be implemented to dismiss false 
positives. An example of such logic can be to take weighted 
voting between the sensors where the weight is proportional 
to the distance between the component under observation 
and the sensor. Such that more proximate sensors have a 
higher weight, but indications from several distant sensors 
will also be considered as indications of damage. 

The scoring layer (L1) is different from the other decision 
layers (L2-L4). The inputs for this layer are normalized 
features and the output is a decision vector. In all other 
layers the inputs and the outputs of a decision layer are 
decision vectors. 

4. SCORING LAYER (L1) 

The first stage of the decision process is the scoring. In this 
stage the various features that were extracted for a certain 
failure mode (energy, confidence1, pointer-location etc.) are 
                                                 
 
1 Confidence is a feature which represents a distance of a 
pattern (harmonics of the carrier and corresponding 
sidebands) from the population of healthy machine 
signatures – ‘score P’ in Klein et al., 2011.  

combined into a single number which may be regarded as 
the probability for a failure. 

Features associated with the same failure mode (e.g. an 
outer-race pattern with sidebands and without sidebands) are 
joined together, and results from different operating modes 
are analyzed together and joined into a single result. 

4.1 Scoring algorithm guidelines  

The main guidelines for the development of the scores 
algorithm are presented below. The feature extraction 
process and the definition of the specific features for 
bearings are described in Klein et al. (2011). Note that 
confidence levels and pointer locations2 are relevant only to 
bearings scores. 

1. In bearing scores, if the confidence is too low the 
respective energy levels should be disregarded. If the 
confidence is high the respective energy levels should 
be more significant. 

2. Consistently high energy and/or confidence levels 
should be more significant than sporadic high energies 
and confidence, since the latter may be caused by noise. 

3. Consistency is particularly important in a feature 
produced in approximately similar conditions, and (in 
bearings) ones which have close pointer locations. 

4. The final score will be a decision vector. 

4.2 Algorithm description 

The general scores algorithm can be separated into 5 steps 
as described below. The 1st stage is relevant only to bearing 
scores. 

4.2.1 Confidence filtering (for bearing scores) 

In order to accommodate the 1st guideline, we multiply the 
energy of each pattern by a decrease factor which is a 
function of the respective confidence ��, ��, … , ��� 	
�
�����, … , 
������ where f is a continuous monotonically 
ascending function with values in [0,1]. If f is properly 
configured, low confidence will lead to low energy levels. 

4.2.2 Energy conversion 

The 2nd guideline means that the affect of the energy on the 
score should be subadditive3. We therefore convert the 
energy values into new values using a continuous 
                                                 
 
2 The algorithm selects the location, with the highest 
corresponding z-score. This selection represents the most 
probable location of the peaks. 
3 A subadditive function is a function φ that φ(x+y) < φ(x) + 
φ(y). 
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monotonically ascending function φ:ℝ→ℝ, which is 
subadditive and in fact strictly subadditive above a certain 
threshold E0>0. Below E0 φ will be zero, so that low 
energies do not contribute to the score. Choosing the right 
function is a matter of assessing the distribution of energy 
values. For example a simple logarithmic function may be 
used. 

For e<E0 φ(e) may be some small negative constant (instead 
of zero). φ may also be smoothed around E0 to prevent edge 
effects. After all we need φ to be subadditive only for large 
values. 

 ���, … , ���  ��
�����, … , 
������ (1) 

 

Figure 3. An example of a monotonically ascending 
function φ which is strictly subadditive above E0=1 

4.2.3 Interaction between record fragments  

In the data-selection stage the recording was fragmented 
into intervals with similar operation modes. In each 
fragment the vibrations were assumed to be stationary. Each 
fragment was processed separately. Now we wish to 
compare the features extracted from various fragments and 
look for consistency. According to guideline 3, we need to 
measure proximity of conditions and pointer locations 
(pointer locations are only relevant to bearings, since other 
components have fixed pointer locations which may be 
determined from their geometry). We construct a metric d 
based on measures of RPM, load, and other operation 
parameters, as well as pointer shifts, which may indicate if 
energies are related to the same origin. Using this metric we 
can determine the amount of correlation we may expect 
between the fragments. 

This correlation may then be used to increase or decrease 
energy levels.  

 ���  ��� � �����, ��, ��� , ����      �  1, … , � (2) 

where k and j are two distinct fragments. 

4.2.4 Initial score estimation 

In this step we turn energy levels ��� into probability. This 
is done by a configurable fuzzy filter. In accordance with 
guideline 4, we use several fuzzy filters ����. 

 ����   ������ (3) 

4.2.5 Merging scores of fragments 

Now we merge the scores of different record fragments. We 
regard the different fragments as though they were 
independent measurements4 !��. 

 !��  1 " #�1 " �����
$

�%�
 (4) 

4.2.6 Merging pointer scores 

Merging pointers is a simple matter of applying a statistical 
function g (such as mean, percentile etc.) on the scores 
produced in the previous step. 

  �&'��  (�!�� , … , !��� (5) 

The function g is applied to the results of all the patterns 
associated with the current failure mode. Thus, the scores of 
the various patterns are also merged. 

4.3 Algorithm illustration 

The results of the algorithm on two sets of simulated data 
are provided below. The first set represents features of 
bearing with damaged outer race OR (Figure 4), and the 
second set represents features of a healthy bearing with 
some abnormal energy levels that may occur due to feature 
overlap (Figure 5). Both sets of simulated features included 
outer race energy level for BPFO and its harmonics (ORS1 
and ORS2), energies of sidebands around a bearing fault 
frequency peak (OR1-OR6), and confidence levels for the 
outer race expected pattern. The labels on y axis of both 
figures represent different operating conditions (fragments). 

In both Figure 4 and Figure 5 when comparing graphs (a) 
and (b) the energies corresponding to the fragments with 
low confidence were decreased considerably, whereas 
energies corresponding to high confidence levels remained 
intact. On the next stage (c) consistently high levels in 
adjacent fragments were increased (see Figure 4). After the 
last stage (d) the energies that were well below the threshold 
yielded low probabilities. Comparing raw features (a) and 
the final scores (d) it can be observed that in the simulated 
damage (Figure 4) the scores are high whereas in the 
simulation of healthy bearing (Figure 5) the scores are small 
thus illustrating the capability of the algorithm to reduce 
false alarms. 

                                                 
 
4 The fragments merged can be considered independent 
because they represent separated segments of time and 
usually different operating modes with different load. 
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Figure 4. Results of damage in OR: a) raw features, on the 
left side – confidence and on the right – energy levels in 

logarithmic scale; b) energy levels after confidence filtering 
�)*; c) �)* after correlation of fragments �*; d) probability of 
abnormal behavior, before (upper graph) and after (lower 

graph) merge of record fragments. 

 

 

 

 
Figure 5. Results of healthy bearing: a) raw features, on the 

left side – confidence and on the right – energy levels in 
logarithmic scale; b) energy levels after confidence filtering 

�)*; c) �)* after correlation of fragments �*; d) probability of 
abnormal behavior, before (upper graph) and after (lower 

graph) merge of record fragments. 
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5. FUSION LAYERS (L2-L4) 

Each decision layer (L2-L4) can be implemented by a 
different decision model. All decision models share an 
identical interface and allow a plug-and-play behavior. 

In the current implementation 2 types of models were used: 
worst-case scenario and Bayesian network (Neapolitan, 
2003).  

5.1 Bayesian network model 

The Bayesian network model allows definition networks of 
arbitrary complexity. The network is initialized with a 
corresponding conditional probability table (CPT). This 
table defines the effect of each combination of inputs on the 
respective output. 

The model allows manual assign of CPT or learning of 
expected behavior using examples.  

5.2 Worst-case scenario (WCS) model 

The WCS model receives several decision vectors as input. 
The input vector with the highest deviation from the normal 
is selected as output of the model.  

One subject that should be specifically addressed is the case 
of non-zero ‘Unknown’ probability. It is clear that if one of 
the inputs contains non-zero probability in an abnormal state 
(indicating some kind of deviation from normal behavior), 
the ‘unknown’ state should be ignored. Otherwise if all 
other inputs indicate completely ‘normal’ behavior 3 options 
should be considered: 

1. To generate a ‘normal’ decision,  

2. To generate an ‘unknown’ decision, 

3. To generate a combination between ‘normal’ and 
‘unknown’ states by assigning non-zero probability to 
each. 

Each option has its own logic and should be considered 
depending on the application. 

5.3 Model selection 

Selection of the decision model for each decision layer is 
based on the level of mutual correlation between the merged 
decisions. If high level of correlation is expected between 
the merged decisions then it is beneficial to use the 
Bayesian network model. This model can incorporate 
complex interconnections between the elements and provide 
means for more sophisticated decision-making. For 
example, it is plausible that different processing domains 
(layer L2) will provide indications of declining health of 
component. Thus multiple weak indications may intensify 
the decision that the component’s health is declining. In 
contrast, if only a single weak indication was received it 

may be dismissed as no other supporting factors were 
detected. 

On the other hand, if minor or no correlation is expected 
between the input elements then a WCS model is more 
appropriate. It actually states the health of the combination 
is the same as the health of the weakest (highest probability 
of damage) element in that combination. For example, in the 
L4 layer a fusion of sensors is performed. At early stages of 
fault development only the closer sensors will be able to 
detect a shift from the normal. Depending on the sensors 
locations as the fault development progresses more distant 
sensors may or may not detect some discrepancy also. So in 
case of insufficient information on correlation between 
sensors and transmission path (component-sensor) a WCS 
decision may be selected.  

Decision modules used at each layer and corresponding 
parameters can be defined for each component separately 
based on available information and component specificity. 

In current application the L2 layer (fusion of domains) is 
implemented by Bayesian network model. Layers L3-L4 are 
using WCS model. 

6. ANALYSIS OF REAL DATA 

Data used in this section originates from PHM ’09 data 
challenge (Klein et al., 2009b). 

The PHM09 marked data set included 280 recordings of 4 
seconds, measured on the gearbox described in Figure 6, 
using two vibration sensors and a tachometer. All the 
bearings were similar. Some of the signals were recorded 
when the gearbox was in ‘spur’ configuration, and others 
when it was in ‘helical’ configuration. Data were collected 
at 30, 35, 40, 45 and 50 Hz shaft speed, under high and low 
loading. 

 
Figure 6. Challenge apparatus:  spur (S) and helical (H) 

configurations. 
The records used in the following analysis are listed in 
Table 1. 

Input shaft – SIS – 32T

H -16T

Idler shaft – SM

LOAD
Output shaft – SO

S – 48T

H – 24T

S – 96T

H – 48T

S – 80T

H – 40T

BI input BI output

BM input

BO input

BM output

BO output
Sin

Input 
sensor

Sout

Output 
sensor
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Figure 7. bA1, sensor Sin (L2) 

 

Figure 8. bA1, sensor Sout (L2) 

 
Figure 9. bA1 final decision (L4) 

 
Figure 10. bB1, sensor Sin (L2) 

 
Figure 11. bB1, sensor Sout (L2) 

 
Figure 12. bB1 final decision (L4) 
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 Name bA1 bB1 Other damages 

1 Spur 1 Good Good Good 

2 Spur 2 Good Good Gear 

3 Spur 6 Inner race Ball Gear, Shaft 

4 Spur 8 Good Ball Shaft 

Table 1. Analyzed records and corresponding bearing 
damages (bA1, bB1). 

Recordings from 2 sensors (called Sin and Sout) were 
provided. Both bearings are identical and located closer to 
sensor Sin. Bearing bA1 was mounted on the input shaft and 
bearing bB1 on the idler shaft. The corresponding bearing 
tones overlap since the idler shaft rotates at a third of the 
rotating speed of the input shaft (see Klein et al., 2009b). 

Results of fusion layers are presented in Figure 7-Figure 12. 
Due to space limitations the score results are not presented 
herein. All the graphs present probabilities for damage in a 
gray scale color map (white represents zero probability and 
black a probability of 1). Conclusions maybe derived on 
probabilities of damage for components (L4) or failure 
modes (L2) according to a specific sensor. For practical 
purposes the decision on component probability of damage 
(L4) is the most relevant. 

Figure 7, Figure 8, Figure 10 and Figure 11 show results of 
domain fusion (layer L2). Three domains corresponding to 
the leftmost subplots were fused. The domains that were 
considered were: order of the dephased signal, order of the 
envelope of the band-pass filtered signal, and order of the 
envelope of the dephased signal (see Klein et. al., 2009b). 
The fusion result is displayed on right subplot of each 
figure. The columns of each subplot correspond to the 
bearing failure modes (IR – inner race, OR – outer race, 
BSF – ball), and the rows correspond to the different records 
as described in Table 1. 

In Figure 7 incorrect indications of ball damage can be 
observed. This is due to the bearing tones overlap 
mentioned beforehand. The third harmonic of ball spin 
frequency (BSF) of bB1 coincides with BSF of bA1. In the 
case of the PHM’09 challenge apparatus the discrimination 
between these bearings is problematic. In practical cases this 
situation is rare. 

Figure 9 and Figure 12 present results of failure mode and 
sensor fusion (layers L3 and L4 respectively). On the 
leftmost subplots results of layer L3 (failure mode fusion) 
are displayed. Each subplot corresponds to a single sensor. 
The rightmost subplot represents the result of layer L4 
(sensor fusion) which is actually the final decision. 

All damages were recognized correctly. All recordings from 
undamaged bearings were classified correctly as well. 
Moreover, the probabilities for sensor Sin were significantly 
higher compared to the probabilities for sensor Sout. This 

may be due to the fact that the bearings are located closer to 
sensor Sin. 

It should be noted that the damages in other components did 
not affect the decisions for the bearings bA1, bB1. 

7. CONCLUSIONS 

Hierarchical architecture of knowledge based system for 
decision and fusion was presented. The architecture was 
implemented using an original scoring algorithm and 
Bayesian belief networks.  

The hierarchy and algorithm design was inspired by 
vibration expert reasoning. The system allows incorporation 
of expert knowledge along with ability to learn from 
examples.  

The architecture was tested with both simulated and real 
data and displayed good discrimination between damaged 
and healthy mechanical components. Detection of the 
damage in bearings was not affected by damages in shafts 
and/or gears. 

In the future the system should be checked on more 
extensive data collections. Implementation of additional 
decision models such as neural networks and other types of 
classifiers may be also considered. As well the condition 
probability tables of the Bayesian networks can be 
determined automatically based on examples. 
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