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ABSTRACT contradicting, that should be taken into account.

Detection of damaged mechanical components in gsly  During the system-level decision, the health of heac
stages is crucial in many applications. The diaicef component is translated into recommendations for
mechanical components is achieved most effectiuslpg ~ Maintenance operations. This level of decision khou
vibration and/or acoustical measurements, sometimegcorporate root-cause analysis (RCA) type of logior
accompanied by oil debris indications. The papecdees €xample, let's assume that an abnormal behavior was
a concept for fusion and decision for mechanicaPbserved in components C1 (a massive gearwheellCand
components, based on vibro-acoustic signaturesicayp (an anomaly virtual component). During system-level
in diagnostics of complex machinery, there are mooe decision, and knowing the system dynamics, it can b
records from normally operating machines and fewconcluded that the actual component that requires
recordings with damaged components. Diagnosticsagh  Maintenance operation is C3 (a pinion gear), whieh
mechanical component requires consideration of rgela connected to both the big gearwheel C1 and to the
number of features. Learning classification algons indication on the anomaly C2. It can also be caetlithat
cannot be applied due to insufficient examplesarhaged the pinion gear C3 and the gearwheel C1 are, famie,
components. The proposed system presents a soloyion Part of module Bl and the most efficient mainteanc
introducing a hierarchical decision scheme. Theppsed operation is full replacement of module B1 and oy the
architecture is designed in layers imitating expetecision ~ faulty component.

reasoning. The architecture and tools used allowy this paper our focus is on component-level denis
incorporation of expert's knowledge along with @ieility  making. Information on the health of a single comgatt is

to learn from examples. The system was implemeat®l  |iected from several sources and should be iategrinto
tested on simulated dat_a and real-world data fr.eardsd a single decision. The component can be monitongd b
tests. The paper describes the proposed archiéectle  jiple sensors in several operating conditions: &ach
algorithms used to implement it and some examples. sensor and operating condition multiple health datbirs

can be calculated.
1. INTRODUCTION

In diagnostics and prognostics, the decision isptocess 2. VIBRATIONANALYSIS

that determines the probability that a certain conemt,  analysis of vibration signals is performed in selestages.
module or system is in a healthy state. In ordeetzh the 1,0 following processing stages are implementedraing

decision, health indicators from a variety of sesrcelated {5 the OSA/CBM layers (MIMOSA) (see Figure 1).
to a component are combined. In the implementation

described herein a mu_lti—_layer approach is gsedemh | PR e | (oW~ Data Manipuition | D~ State) (HA -~ Health
layer the features of a similar nature are comhined

[Validity RS rating [Steadiness [ i [Feature Scores [Fusion]
.. . . mode processing extraction

Two levels of decision can be identified: comporent! _ — _ _

and system-level decision. Figure 1. Vibration analysis processing stages

Component-level dec_|S|9n generates a s_m_gle decifio 21 Data Selection

each component. This is a complex decision as theze

many different sources of information, sometimesAfter data sampling the first step of processing is
examination of the acquired data and selection atf d
appropriate for analysis. The data is screenedeieral
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stages (see grey blocks in Figure 1): validity, rafieg
conditions and steadiness check. Data selectianpart of
the OSA/CBM data acquisition layer (DA).

The goal of the validity stage is to filter out alid or
corrupted sections of data such as sensor disctonec
saturation, spikes and others.

The next stage of data selection is recognitiopretiefined
operating modes. Operating modes are frequentlyatéry
conditions during system regular operation thata@ck the

2.3 Decision

The stages after feature extraction are part ofsthte and
health assessment (SA and HA) OSA-CBM layers. A
decision regarding the health status of a compoisetaken
per run or flight of the machine.

The inputs to the decision process are normalieatlfes.
During the normalization process the distance ¢éaure
from the distribution of the same feature in noifnal
operating machines is calculated. Practically dyrin

manifestation of the damaged components (for imgtan normalization the Mahalanobis distance is calcdlate

when the components are loaded) and satisfy specifi

requirements for data analysis.

The last stage of data selection contains statilynelinecks
of the analyzed signals.

2.2 Data Manipulation

The OSA/CBM data manipulation (DM) layer in the reunt
architecture is covered by signal processing aratufe
extraction.

In the case of vibro-acoustic data, signal proogsss the
most complex and computationally intensive
implicating sophisticated flows of algorithms inding

'The decision at each stage is generated as a [iigbtabbe

in one of pre-defined states, for instance threatest
representing component health status: ‘Normal’ wl,cand
‘High’ indicating respectively a normally operating
component, a component with a small deviation from
normal, and a component with a large deviation from
normal. An additional state should be considered to
represent missing or incomplete information wher th
decision cannot be taken. In the presented apiglicahis
state is named ‘Unknown’. A set of the 4 probaieiit
corresponding to the different states is calledisiet

taskvector. The decision vector generated per runagedtin a

trend of decisions.

many transformations from one domain of analysis to

another (Klein, Rudyk, Masad, Issacharoff, 2009htoAi
& Randall, 2002, and Klein, Rudyk, Masad, 2011)ribg
signal processing the data is transformed intoersfit
signatures (instances of a domain) that
manifestation of damaged components while filtermg
the excitations from other components. Signal ssicg is
done on sections of raw data selected in the dafaisition
stage.

Feature extraction is a process in which the sigeatare
compared with signatures representing the populatib
‘healthy’ systems. Results of the feature extractire
condition indicators (features) of the ‘health’ taa of
specific failure modes of a mechanical componeliese
indicators organized as a function of time areechttends.

The feature extraction process typically calculatexd
collects a large number of health indicators fdifedént
components of the system under test. The failurdenof a
type of component are manifested in the relevamatiures
according to a characteristic pattern.

The typical failure modes of a bearing are damagesner
and outer races, rotating elements, or cage. Therpaof
each failure mode of a bearing can be describesebgral
harmonics of characteristic frequencies (also knoam
bearing tones or pointers) with sidebands reprewmprihe
amplitude modulation. More details can be foundilein,

et al. (2009a), Klein et al. (2011), Bhavaraju, Kan
Sharma, Harsha, 2010, Li, Sopon, He, 2009, anchiliamn,
Srinivasan, 2009.

enhanc

3. ARCHITECTURE OF THE DECISION AND FUSION

A single feature or health indicator is a functiaf
component type, sensor, operating mode, processing
Somaln pointers (harmonics and sidebands), and btfp
indicator. For example, processing domain can lukersy
location — first harmonic of the shaft, and indarat
energy. To obtain the decision for a componentsit i
therefore required to undergo the following stages:
combination of indicators, pointers, processing dos,
operating modes, and sensors.

Fusion of sensors
Per component

Fusion of fallure modes J

Decision
layer

L4

-
w

Per component, sensor

Fusion of domains
Per component, sensor, failure mode

L2

Scores determlnatlon
Per nnmponenl sensor, failure mode,

L1

e T e S e N

domain

Figure 2. Layers of decision
At the first decision stage features coming frorffedéent
operating modes and pointers are merged. This psoise
called scoring and will be denoted L1. The secoecision
stage (L2) merges processing domains. During tlirel th
stage (L3) of decision all the failure modes areged. At
the next and final decision stage the informatimm all the
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sensors is joined (L4). Figure 2 shows a schematicombined into a single number which may be regamted

representation of decision layers.

The architecture of the process (layers hierarémjates
the way an expert makes a decision. At the filsgest(L1)
the expert inspects a single spectrogram suchressdrders
spectrogram. The expert checks the behavior okéveral
pointers corresponding to a failure mode as a fanaif the

the probability for a failure.

Features associated with the same failure mode émg
outer-race pattern with sidebands and without siddbk) are
joined together, and results from different opagtmodes
are analyzed together and joined into a singleltresu

operating conditions. Depending on the componerd an4.1 Scoring algorithm guidelines

failure mode under observation, processing domaid a
sensor the expert can decide whether the energgislev
indicate damage.

On the next stage (L2) an expert seeks additiovideaces
for presence of the specific failure mode basedotirer
processing domains such as envelope (usually peatisig
the time-orders spectrogram of the envelope). Emids
from several processing domains can strengtheneaken
the indications based on the component and faioele
under observation.

After examination of different domains all the ta# modes
of the component will be considered. Evidences fedinthe
failure modes are inspected and again can weaken
strengthen the final decision. As the damage pssgother
failure modes may also rise due to suboptimal carapb
operation. For example, a damage of the bearingr aate
might cause a damage of the bearing roller elements

When several sensors are used to perform the ditigaf
the component the final stage integrates their sitats.

The main guidelines for the development of the asor
algorithm are presented below. The feature extracti
process and the definition of the specific featufes
bearings are described in Klein et al. (2011). Nthtat
confidence levels and pointer locatibmse relevant only to
bearings scores.

1. In bearing scores, if the confidence is too low the
respective energy levels should be disregardethelf
confidence is high the respective energy levelailsho
be more significant.

2. Consistently high energy and/or confidence levels

or should be more significant than sporadic high eiesrg
and confidence, since the latter may be causewisgn

3. Consistency is particularly important in a feature

produced in approximately similar conditions, am (
bearings) ones which have close pointer locations.

4. The final score will be a decision vector.

Based on relative location between the componet an4.2 Algorithm description

sensors some logic can be implemented to dismisg fa
positives. An example of such logic can be to takéghted
voting between the sensors where the weight isqotigmal

to the distance between the component under oligerva
and the sensor. Such that more proximate senswes da
higher weight, but indications from several distaahsors
will also be considered as indications of damage.

The scoring layer (L1) is different from the ottaacision
layers (L2-L4). The inputs for this layer are nofized
features and the output is a decision vector. Inotder
layers the inputs and the outputs of a decisiorrlare
decision vectors.

4. SCORINGLAYER(L1)

The first stage of the decision process is theisgotn this
stage the various features that were extracted foertain
failure mode (energy, confiderfcgointer-location etc.) are

! Confidence is a feature which represents a distarfica

The general scores algorithm can be separatedbisteps
as described below. Thé' stage is relevant only to bearing
scores.

4.2.1 Confidencefiltering (for bearing scores)

In order to accommodate thé& guideline, we multiply the
energy of each pattern by a decrease factor which i
function of the respective confidencéc, ey, ...,ey) =
(f(c)eq, ..., f(c)ey) wheref is a continuous monotonically
ascending function with values in [0,1]. fifis properly
configured, low confidence will lead to low enelgyels.

4.2.2 Energy conversion

The 2 guideline means that the affect of the energyhen t
score should be subadditiveWe therefore convert the
energy values into new values using a continuous

2 The algorithm selects the location, with the highe

pattern (harmonics of the carrier and correspondin@orreSponding_ z-score. This selection represergsntbst
sidebands) from the population of healthy machineg)rObable location of the peaks.

signatures — ‘score P’ in Klein et al., 2011.

A subadditive function is a functianthate(x+y) < ¢(x) +
o(y).
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monotonically ascending functiorp: R— R, which is Pienm = Sm Vi) 3)
subadditive and in fact strictly subadditive abaveertain
threshold Eg>0. Below Ey ¢ will be zero, so that low
energies do not contribute to the score. Choodirgright
function is a matter of assessing the distributbérenergy
values. For example a simple logarithmic functioayne

used.

425 Merging scores of fragments

Now we merge the scores of different record fragmewve
regard the different fragments as though they were
independent measuremehs,),.

K
an =1- 1_[(1 - pknm)
k=1

For e<E, ¢(e) may be some small negative constant (instead
of zero).p may also be smoothed arouBglto prevent edge
effects. After all we need to be subadditive only for large
values.

(4)

(wy, o uy) = @(f (e, ..., f(ew) 1)

. Merging pointers is a simple matter of applyingatistical
function g (such as mean, percentile etc.) on the scores
produced in the previous step.

4.2.6 Merging pointer scores

— 4 -4

scorey, = g(Pims - » Pym) (5)

The functiong is applied to the results of all the patterns
associated with the current failure mode. Thussttwees of
the various patterns are also merged.

o
2
T
|
|
S e A S R

ol — bk — b — o — =

4.3 Algorithm illustration

Figure 3. An example of a monotonically ascending
functiong which is strictly subadditive abog=1

4.2.3 Interaction between record fragments

In the data-selection stage the recording was fesdea

The results of the algorithm on two sets of simedatlata
are provided below. The first set represents festusf
bearing with damaged outer race OR (Figure 4), ted
second set represents features of a healthy beaitig
some abnormal energy levels that may occur duedtufe
overlap (Figure 5). Both sets of simulated featunetuded

into intervals with similar operation modes. In leac
fragment the vibrations were assumed to be statjolach
fragment was processed separately. Now we wish t
compare the features extracted from various fragsnand
look for consistency. According to guideline 3, weed to
measure proximity of conditions and pointer locasgio
(pointer locations are only relevant to bearingsces other  In both Figure 4 and Figure 5 when comparing gra@)s
components have fixed pointer locations which may band (b) the energies corresponding to the fragmesdtts
determined from their geometry). We construct arimet  low confidence were decreased considerably, whereas
based on measures of RPM, load, and other operati®@nergies corresponding to high confidence leveisaieed
parameters, as well as pointer shifts, which maljcate if intact. On the next stage (c) consistently highelevin
energies are related to the same origin. Usingntieisic we  adjacent fragments were increased (see Figureftr the

can determine the amount of correlation we may expe last stage (d) the energies that were well bel@athiheshold
between the fragments. yielded low probabilities. Comparing raw feature3 and

the final scores (d) it can be observed that insiheulated
damage (Figure 4) the scores are high whereas én th
simulation of healthy bearing (Figure 5) the scarssmall
thus illustrating the capability of the algorithra teduce
false alarms.

outer race energy level for BPFO and its harmo(@RS1
and ORS2), energies of sidebands around a beaauny f
Prequency peak (OR1-OR6), and confidence levelstlier
outer race expected pattern. The labels on y aixigoth
figures represent different operating conditiomagments).

This correlation may then be used to increase oredse

energy levels.
Vg = Ugpn + h(d(k,j),ujn,ukn) n=1,..

N (2

wherek andj are two distinct fragments.

4.2.4 Initial scoreestimation

* The fragments merged can be considered independent
because they represent separated segments of fiche a
usually different operating modes with differerado

In this step we turn energy levalg, into probability. This
is done by a configurable fuzzy filter. In accordarwith
guideline 4, we use several fuzzy filtexs,, .
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a| —
OR  ORS ORL OR2 OR3 OR4 OR5 OR6 ORS1  ORS2
55 - 65
50 - 60
45-55
b)
40- 50
35-45
30-40
ORL OR2 OR3 OR4 ORS OR6 ORS1  ORs2
55-65
50- 60
45-55
c)
40- 50
35-45
30-40
ORL OR2 OR3 OR4 ORS OR6 ORS1  ORs2
55-65
50- 60
45-55
d) 40- 50
35-45
30-40
ORL OR2 OR3 OR4 OR5 OR6 ORS1  ORsS2

Figure 4. Results of damage in OR: a) raw featweshe  Figure 5. Results of healthy bearing: a) raw fezuon the

left side — confidence and on the right — energglein left side — confidence and on the right — energglein
logarithmic scale; b) energy levels after confidefittering  logarithmic scale; b) energy levels after confidefittering
1; ¢) u after correlation of fragments d) probability of i, ¢) u after correlation of fragment d) probability of
abnormal behavior, before (upper graph) and aftever abnormal behavior, before (upper graph) and alibeve
graph) merge of record fragments. graph) merge of record fragments.
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5. FUSIONLAYERS(L2-L4) may be dismissed as no other supporting factorse wer

Each decision layer (L2-L4) can be implemented by édetected.

different decision model. All decision models shae  On the other hand, if minor or no correlation ipested
identical interface and allow a plug-and-play babav between the input elements then a WCS model is more
appropriate. It actually states the health of thmlgination
is the same as the health of the weakest (higlmebapility
of damage) element in that combination. For examplthe
L4 layer a fusion of sensors is performed. At eathges of
fault development only the closer sensors will Ibée o
detect a shift from the normal. Depending on thesees
The Bayesian network model allows definition netkgoof ~ locations as the fault development progresses miistant
arbitrary complexity. The network is initialized twi a  sensors may or may not detect some discrepancySisim
corresponding conditional probability table (CPThis case of insufficient information on correlation Wween
table defines the effect of each combination ofitson the  sensors and transmission path (component-sens&fLC8
respective output. decision may be selected.

In the current implementation 2 types of modelsenesed:
worst-case scenario and Bayesian network (Neapolita
2003).

5.1 Bayesian network model

The model allows manual assign of CPT or learnifig oDecision modules used at each layer and correspgndi
expected behavior using examples. parameters can be defined for each component selyara
based on available information and component sipégif

5.2 Worst-case scenario (WCS) model In current application the L2 layer (fusion of dang is
The WCS model receives several decision vectoisag. ~ implemented by Bayesian network model. Layers L3atet
The input vector with the highest deviation frore thormal  using WCS model.

is selected as output of the model.

. . _ 6. ANALYSISOF REAL DATA
One subject that should be specifically addresséde case

of non-zero ‘Unknown’ probability. It is clear thidtone of ~ Data used in this section originates from PHM 'O&tad
the inputs contains non-zero probability in an abved state  challenge (Klein et al., 2009b).

(indicating some kind of deviation from normal beloa), The PHMO09 marked data set included 280 recordirigh o

tr;ﬁ u_nkn(t)vv.nd_staf[te shoulldt ll)e‘ |gnore|,dt.) Ch)thei rw?eallf seconds, measured on the gearbox described ineFgyur
othér Inputs Indicate completely ‘normal” benhawooptions using two vibration sensors and a tachometer. A# t

should be considered: bearings were similar. Some of the signals wererdsd

1. To generate a ‘normal’ decision, when the gearbox was in ‘spur’ configuration, anteocs
o T ‘unk  decisi when it was in ‘helical’ configuration. Data werellected
- Togenerate an ‘unknown" decision, at 30, 35, 40, 45 and 50 Hz shaft speed, underdmghow

3. To generate a combination between ‘normal’ andoading.
‘unknown’ states by assigning non-zero probabildy
each.

Bloutput

|

Input shaft - SI

leFirex
II;
(@7

Each option has its own logic and should be comsitle —
depending on the application. o —

T
=
£

Idler shaft - S| S=48T

5.3 Model selection

Selection of the decision model for each decisayet is [— == —
based on the level of mutual correlation betweemtierged 1 < — ] -
decisions. If high level of correlation is expecteetween 8| 8|
the merged decisions then it is beneficial to ube t
Bayesian network model. This model can incorporate L
complex interconnections between the elements emdde

means for more sophisticated decision-making. For
example, it is plausible that different processt@mains
(layer L2) will provide indications of declining akh of
component. Thus multiple weak indications may isifsn
the decision that the component’s health is dewijniln
contrast, if only a single weak indication was reeé it

Figure 6. Challenge apparatus: spur (S) and hé€hba
configurations.

The records used in the following analysis areedisin

Table 1.
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Domain: Domain:
DetrendOrderNAENV_dePha.Peaks DetrendOrderNAENVFilter. Peaks Fused domains

OR IR BSF ORrR IR BSF OR IR BSF OR IR BSF

Domain:
DetrendOrderNAdePha.Peaks

Figure 7. bAl, sensor Sin (L2)

Domain: Domain:
DetrendOrderNAENY_dePha.Peaks DetrendOrderNAENVFilter. Peaks Fused domains

Figure 8. bA1l, sensor Sout (L2)

Figure 9. bA1 final decision (L4)

Domain:
DetrendOrderNAGePha.Peaks

Domain: Domain:
DetrendOrderNAENY_dePha Peaks DetrendOrderNAENVFilter. Peaks Fused domains

OR R BSF OR R BSF OR IR BSF OR R BSF

Domain:
DetrendOrderNAGePha.Peaks.

Figure 10. bB1, sensor Sin (L2)

Domain: Domain:
DetrendOrderNAENY_dePha Peaks DetrendOrderNAENVFilter. Peaks Fused domains

Figure 11. bB1, sensor Sout (L2)

Figure 12. bB1 final decision (L4)
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Name | bAl bB1 | Other damaggs
1| Spurl| Good Good Good
2 | Spur 2| Good Good Gear
3| Spur 6| Innerrace Ball| Gear, Shaft
4| Spur 8| Good Ball | Shaft

Table 1. Analyzed records and corresponding bearing
damages (bA1l, bB1).

may be due to the fact that the bearings are Idadtser to
sensor Sin.

It should be noted that the damages in other coemtsrdid
not affect the decisions for the bearings bA1, bB1.
7. CONCLUSIONS

Hierarchical architecture of knowledge based sysfem
decision and fusion was presented. The architecias
implemented using an original scoring algorithm and

Recordings from 2 sensors (called Sin and Sout)ewerBayesian belief networks.

provided. Both bearings are identical and locateder to
sensor Sin. Bearing bA1 was mounted on the inpaft simd
bearing bB1 on the idler shaft. The correspondiagrimg
tones overlap since the idler shaft rotates atira tf the
rotating speed of the input shaft (see Klein et2109b).

Results of fusion layers are presented in FiguFégtie 12.
Due to space limitations the score results arepnegented
herein. All the graphs present probabilities fomdge in a
gray scale color map (white represents zero préibabnd

black a probability of 1). Conclusions maybe dediven

probabilities of damage for components (L4) or uil
modes (L2) according to a specific sensor. For tialc
purposes the decision on component probabilityashage
(L4) is the most relevant.

Figure 7, Figure 8, Figure 10 and Figure 11 shosults of
domain fusion (layer L2). Three domains correspogdd
the leftmost subplots were fused. The domains tere
considered were: order of the dephased signaly aidthe
envelope of the band-pass filtered signal, and roofi¢he
envelope of the dephased signal (see Klein et2809b).
The fusion result is displayed on right subplot ezch
figure. The columns of each subplot correspond he
bearing failure modes (IR — inner race, OR — ousme,
BSF — ball), and the rows correspond to the differecords
as described in Table 1.

In Figure 7 incorrect indications of ball damagen dae

The hierarchy and algorithm design was inspired by
vibration expert reasoning. The system allows ipocation

of expert knowledge along with ability to learn rro
examples.

The architecture was tested with both simulated srad
data and displayed good discrimination between denha
and healthy mechanical components. Detection of the
damage in bearings was not affected by damagekaiftss
and/or gears.

In the future the system should be checked on more
extensive data collections. Implementation of aduél
decision models such as neural networks and ofpesstof
classifiers may be also considered. As well theditam
probability tables of the Bayesian networks can be
determined automatically based on examples.
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