
BAYESIAN SOFTWARE HEALTH MANAGEMENT FOR AIRCRAFT
GUIDANCE, NAVIGATION, AND CONTROL

Johann Schumann1, Timmy Mbaya2, Ole Mengshoel3

1 SGT, Inc. NASA Ames, Moffett Field, CA 94035
Johann.M.Schumann@nasa.gov

2 University of Massachusetts, Boston
timstim@mail.com

3 Carnegie Mellon University, NASA Ames, Moffett Field, CA 94035
Ole.Mengshoel@sv.cmu.edu

ABSTRACT

Modern aircraft—both piloted fly-by-wire commercial air-
craft as well as UAVs—more and more depend on highly
complex safety critical software systems with many sensors
and computer-controlled actuators. Despite careful design
and V&V of the software, severe incidents have happened due
to malfunctioning software.

In this paper, we discuss the use of Bayesian networks to mon-
itor the health of the on-board software and sensor system,
and to perform advanced on-board diagnostic reasoning. We
focus on the development of reliable and robust health models
for combined software and sensor systems, with application
to guidance, navigation, and control (GN&C). Our Bayesian
network-based approach is illustrated for a simplified GN&C
system implemented using the open source real-time oper-
ating system OSEK/Trampoline. We show, using scenarios
with injected faults, that our approach is able to detect and
diagnose faults in software and sensor systems.

1. INTRODUCTION

Modern aircraft depend increasingly on the reliable operation
of complex, yet highly safety-critical software systems. Fly-
by-wire commercial aircraft and UAVs are fully controlled by
software. Failures in the software or a problematic software-
hardware interaction can have disastrous consequences.

Although on-board diagnostic systems nowadays exist for
most aircraft (hardware) subsystems, they are mainly work-
ing independently from each other and are not capable of re-
liably determining the root cause or causes of failures, in par-
ticular when software failures are to blame. Clearly, a pow-
erful FDIR (Fault Detection, Isolation, Recovery) or ISHM
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(Integrated System Health Management) system forsoftware
has a great potential for ensuring safety and operational reli-
ability of aircraft and UAVs. This is particularly true, since
many software problems do not directly manifest themselves
but rather exhibitemergent behavior. For example, when the
F-22 Raptors crossed the international date line, a software
problem in the guidance, navigation, and control (GN&C)
system did not only shut down that safety-critical component
but also brought down communications, so the F-22s had to
be guided back to Hawaii using visual flight rules.1

An on-board software health management (SWHM) system
monitors the flight-critical software while it is in operation,
and thus is able to detect faults, such as the F-22 problems, as
soon as they occur. In particular, an SWHM system

• monitors the behavior of the software and interacting
hardware during system operation.Information about
operational status, signal quality, quality of computation,
reported errors, etc., is collected and processed on-board.
Since many software faults are caused by problematic
hardware/software interactions, status information about
software components must be collected and processed,
in addition to that for hardware.

• performs diagnostic reasoning in order to identify the
most likely root cause(s) for the fault(s).This diagnos-
tic capability is extremely important. In particular, for
UAVs, the available bandwidth for telemetry is severely
limited; a “dump” of the system state and analysis by the
ground crew in case of a problem is not possible.

For manned aircraft, an SWHM can reduce the pilot’s
workload substantially. With a traditional on-board diag-
nostic system, the pilot can get swamped by diagnostic
errors and warnings coming from many different subsys-
tems. Recently, when one of the engines exploded on a

1http://www.af.mil/news/story.asp?storyID=
123041567
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Qantas A380, the pilot had to sort through literally hun-
dreds of diagnostic messages in order to find out what
happened. In addition, several diagnostic messages con-
tradicted each other.2

In this paper, we describe our approach of using Bayesian
networks as the modeling and reasoning paradigm to achieve
SWHM. With a properly developed Bayesian network, de-
tection of faults and reasoning about root causes can be per-
formed in a principled way. Also, a proper probabilistic treat-
ment of the diagnosis process, as we accomplish with our
Bayesian approach (Pearl, 1988; Darwiche, 2009), can not
only merge information from multiple sources but also pro-
vide a posterior distribution for the diagnosis and thus pro-
vide a metric for the quality of this result. We note that this
approach has been very successful for electrical power sys-
tem diagnosis (Ricks & Mengshoel, 2009, 2010; Mengshoel
et al., 2010).

It is obvious that an SWHM system that is supposed to oper-
ate on-board an aircraft, in an embedded environment, must
satisfy important properties: first, the implementation ofthe
SWHM must have a small memory and computational foot-
print and must be certifiable. Second, the SWHM should ex-
hibit a low number of false positives and false negatives. False
alarms (false positives) can produce nuisance signals; missed
adverse events (false negatives) can be a safety hazard. Our
approach of using SWHM models, that have been compiled
into arithmetic circuits, are amenable to V&V (Schumann,
Mengshoel, & Mbaya, 2011).

The remainder of the paper is structured as follows: Sec-
tion 2. introduces Bayesian networks and how they can be
used for general diagnostics. In Section 3. we demonstrate
our approach to software health management with Bayesian
networks and discuss how Bayesian SWHM models can be
constructed. Section 4. illustrates our SHWM approach with
a detailed example. We briefly describe the demonstration
architecture and the example scenario, discuss the use of
a Bayesian health model to diagnose such scenarios, and
present simulation results. Finally, in Section 5. we conclude
and identify future work.

2. BAYESIAN NETWORKS

Bayesian networks (BNs) represent multivariate probability
distributions and are used for reasoning and learning under
uncertainty (Pearl, 1988). They are often used to model sys-
tems of a (partly) probabilistic nature. Roughly speaking,ran-
dom variables are represented as nodes in a directed acyclic
graph (DAG), while conditional dependencies between vari-
ables are represented as graph edges (see Figure 1 for an ex-
ample). A key point is that a BN, whose graph structure often

2http://www.aerosocietychannel.com/aerospace
-insight/2010/12/exclusive-qantas-qf32-flight-from
-the-cockpit/

reflects a domain’s causal structure, is a compact representa-
tion of a joint probability table if the DAG is relatively sparse.
In a discrete BN (as we are using for SWHM), each random
variable (or node) has a finite number of states and is param-
eterized by a conditional probability table (CPT).

During system operation, observations about the software and
system (e.g., monitoring signals and commands) are mapped
into states of nodes in the BN. Various probabilistic queries
can be formulated based on the assertion of these observations
to yield predictions or diagnoses for the system. Common BN
queries of interest include computing posterior probabilities
and finding the most probable explanation (MPE). For exam-
ple, an observation about abnormal behavior of a software
component could, by computing the MPE, be used to identify
one or more components that are most likely in faulty states.

Different BN inference algorithms can be used to answer
the queries. These algorithms include join tree propaga-
tion (Lauritzen & Spiegelhalter, 1988; Jensen, Lauritzen,
& Olesen, 1990; Shenoy, 1989), conditioning (Darwiche,
2001), variable elimination (Li & D’Ambrosio, 1994; Zhang
& Poole, 1996), and arithmetic circuit evaluation (Darwiche,
2003; Chavira & Darwiche, 2007). In resource-bounded sys-
tems, including real-time avionics systems, there is a strong
need to align the resource consumption of diagnostic com-
putation with resource bounds (Musliner et al., 1995; Meng-
shoel, 2007) while also providing predictable real-time per-
formance. The compilation approach—which includes join
tree propagation and arithmetic circuit evaluation—is attrac-
tive in such resource-bounded systems.

0.05      0.9         

Bearing Health
Bearing   ok         worn 

ok        0.99

worn    0.01

Bearing   ok        worn

no            0.9        0.05
yes           0.1        0.95

ok            0.95      0.1
low         

Vibration

Oil Pressure

Figure 1. Simple Bayesian network. CPT tables are shown
near each node.

Let us consider a very simple example of a Bayesian network
(Figure 1) as it could be used in diagnostics. We have a node
Bearing Health (BH) representing the health of a ball
bearing in a diesel engine, a sensor nodeVibration (V )
representing whether vibration is measured or not, and a node
Oil Pressure (OP ) representing oil pressure. Clearly,
the sensor readings depend on the health status of the ball
bearing, and this is reflected by the directed edges. The de-
grees of influence are defined in the two CPTs depicted next to
the sensor nodes. For example, if there is vibration, the prob-
ability that p(BH =∼ ok ) increases. To obtain the health
of the ball bearing, we input (or clamp) the states of the BN
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sensor nodes and compute the posterior distribution (or be-
lief) over BH. The prior distribution of failure, as reflected
in the CPT shown next toBH, is also taken into account in
this calculation.

Our example network in Figure 1 represents the joint proba-
bility p(BH,V,OP ) and is shown in Table 1. For simplicity,
we replace all CPT entries withθx (i.e.,θok ↔ BH is ok, and
θ∼ok ↔ BH is worn). Letλi indicate whether evidence of a
specific state is observed (i.e.,λv = 1 means evidence of vi-
bration is observed, andλv = 0 means no evidence of vibra-
tion is observed. The probability distributionp(BH,V,OP )
captured by the Bayesian network above is shown in Table 1.

BH V OP p(BH, V, OP )
ok v op λokλvλopθv|okθokθop|ok

ok v ∼op λokλvλ∼opθv|okθokθ∼op|ok

ok ∼v ∼op λokλ∼vλ∼opθ∼v|okθokθ∼op|ok

ok ∼v op λokλ∼vλopθ∼v|okθokθop|ok

∼ok v op λ∼okλvλopθv|∼okθ∼okθop|∼ok

∼ok ∼v op λ∼okλ∼vλopθ∼v|∼okθ∼okθop|∼ok

∼ok v ∼op λ∼okλvλ∼opθv|∼okθ∼okθ∼op|∼ok

∼ok ∼v ∼op λ∼okλ∼vλ∼opθ∼v|∼okθ∼okθ∼op|∼ok

Table 1. Probability distribution forp(BH,V,OP ).

According to this joint probability distribution table, the first
row (λokλvλopθv|okθokθop|ok) is representing the probabil-
ity that the health of the ball bearing is okay (λok = 1), and
that vibrations and good oil pressure are observed (λv and
λop = 1) would be 9.4% indicating a very low degree of
belief in such a state. Given the corresponding numerical
CPT entries this number is calculated asθv|okθokθop|ok =
0.1 ∗ 0.99 ∗ 0.95 = 0.09405. On the other hand, the fourth
row (λokλ∼vλopθ∼v|okθokθop|ok) representing the probabil-
ity that the ball bearing is okay (λok = 1), there is no vibra-
tions and good oil pressure (λ∼v andλop = 1) is much higher
(85%) as follows:θ∼v|okθokθop|ok = 0.9 ∗ 0.99 ∗ 0.95 =
0.84645.

Posterior marginals can be computed from the joint distribu-
tion:

p(BH,V,OP ) =
∏

θ
s|x

θs|x

∏

λs

λs

whereθs|x indicates a state’s conditional probability andλs

indicates whether or not states is observed. Here,θ variables
are known as variables,λ variables as indicators.

Summing all individual joint distribution entries yields
a multi-linear function—at the core of arithmetic cir-
cuit evaluation—referred to as thenetwork polynomialf

(Darwiche, 2009):

f = λokλvλopθv|okθokθop|ok+
λokλvλ∼opθv|okθokθ∼op|ok+
λokλ∼vλ∼opθ∼v|okθokθ∼op|ok+
λokλ∼vλopθ∼v|okθokθop|ok+
λ∼okλvλopθv|∼okθ∼okθop|∼ok+
λ∼okλ∼vλopθ∼v|∼okθ∼okθop|∼ok+
λ∼okλvλ∼opθv|∼okθ∼okθ∼op|∼ok+
λ∼okλ∼vλ∼opθ∼v|∼okθ∼okθ∼op|∼ok,

or in other words

f =
∑

E

∏

θ
s|x

θs|x

∏

λs

λs

whereE indicates evidence of a network instantiation.

An arithmetic is a compact representation of a network poly-
nomial. An arithmetic circuit (AC) is a directed acyclic graph
(DAG) in which leaf nodes represent variables (parameters
and indicators) while other nodes represent addition and mul-
tiplication operators. Size, in terms of number of AC edges,is
a measure of complexity of inference. Unlike treewidth, an-
other complexity measure, AC size can take network param-
eters (such as determinism and local structure) into account.

Answers to probabilistic queries, including marginals and
MPE, are computed using algorithms that operate directly on
the arithmetic circuit. A bottom-up pass over the circuit, from
input to output, evaluates the probability of a particular evi-
dence setting (or clamping ofλ parameters) on the state of the
network. And a top-down pass over the circuit, from output to
input, computes partial derivatives. From these partial deriva-
tives one can compute many marginal probabilities, provide
information about how change in a specific node affects the
whole network (sensitivity analysis), and perform MPE com-
putation (Darwiche, 2009).

3. BAYESIAN NETWORKS FOR SOFTWARE HEALTH

MANAGEMENT

At a first glance, the SWHM does look very similar to a tradi-
tional integrated vehicle health management system (IVHM):
sensor signals are interpreted to detect and identity any faults,
which are then reported. Such FDIR systems are nowadays
commonplace in the aircraft and for other complex machin-
ery. It seems like it would be straight-forward to attach a
software to be monitored (host software) to such an FDIR.
However, there are several critical differences between FDIR
for hardware and software health management. Most promi-
nently, many software faults do not develop gradually over
time (e.g., like an oil leak); rather they occur instantaneously.
Whereas some of the software faults directly impact the cur-
rent software module (e.g., when a division-by-zero is de-
tected), there are situations where the effects of a software
fault manifest themselves in an entirely different subsystem,
as discussed in the F-22 example above. For this reason, and
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the fact that many software problems occur due to problem-
atic SW/HW interactions, both software and hardware must
be monitored in an integrated fashion.

Based upon requirements as laid out in Section 1., we are
using Bayesian networks to develop SWHM models. On a
top-level, data from software and hardware sensors are pre-
sented to the nodes of the Bayesian network, which in turn
performs its reasoning (i.e., updating the internal healthand
status nodes) and returns information about the health of the
software (or specific components thereof). The information
about the health of the software is extracted from the poste-
rior distribution, specifically from health nodes. In our mod-
eling approach, we chose to use Bayesian networks, which do
not reason about temporal sequences (i.e., dynamic Bayesian
networks) because of their complexity. Therefore, all sen-
sor data, which are usually time series, must undergo a pre-
processing step, where certain (scalar)featuresare extracted.
These values are then discretized into symbolic states (e.g.,
“low”, “high”) or normalized numeric values before pre-
sented to the Bayesian health model (Section 3.3).

3.1 Bayesian SWHM

3.1.1 Nodes

Our Bayesian SWHM models are set up using several kinds
of nodes. Please note that all nodes are discrete, i.e., each
node has a finite number of mutually exclusive and exhaustive
states.

CMD node C Signals sent to these nodes are handled as
ground truth and are used to indicate commands, ac-
tions, modes or other (known) states. For example,
a nodeWrite File System represents an action,
which eventually will write some data into the file sys-
tem, has been commanded. For our reasoning it is as-
sumed that this action is in fact happening.3 The CMD
nodes are root nodes (no incoming edges). During the
execution of the SWHM, these nodes are always directly
connected (clamped) to the appropriate command sig-
nals.

SENSOR node S A sensor nodeS is an input node similar
to the CMD node. The data fed into this node are sen-
sor data, i.e., measurements that have been obtained from
monitoring the software or the hardware. Thus, this sig-
nal is not necessarily correct. It can be noisy or wrong al-
together. Therefore, a sensor node is typically connected
with a health node, that describes the health status of the
sensor node.

HEALTH node H The health nodes are nodes that reflect
the health status of a sensor or component. Their pos-
terior probabilities comprise the output of an SWHM

3If there is a reason that this command signal is not reliable, the command
nodeC is used in combination with aH node to impact stateU as further
discussed below. Alternatively, one might consider using a sensor node in-
stead.

model. A health node can be binary (with states, say,
ok or bad), or can have more states that reflect health
status at a more fine-grained level. Health nodes are usu-
ally connected to sensor and status nodes.

STATUS node U A status node reflects the (unobservable)
status of the software component or subsystem.

BEHAVIOR node B Behavior nodes connect sensor,
command, and status nodes and are used to recognize
certain behavioral patterns. The status of these nodes is
also unobservable, similar to the status nodes. However,
usually no health node is attached to the behavioral
nodes.

3.1.2 Edges

The following informal way to think about edges in Bayesian
networks are useful for knowledge engineering purposes: An
edge (arrow) from nodeC to nodeE indicates that the state
of C has a (causal) influence on the state ofE.

Suppose thatS is a software signal (e.g., within the aircraft
controller) that leads into an input portI of the controller. Let
us assume that we wantS being 1 to causeC to be 1 as well.
Failure mechanisms are represented by introduced a health
nodeH. In our example, we would introduce a nodeH and
let it be a (second) parent ofI. More generally, the types of
influences typically seen in the SWHM BNs are as follows:

{H,C} → U represents how stateU may be commanded
through commandC, which may not always work as in-
dicated. This is reflected by the healthH of the com-
mand mechanism’s influence on the state.

{C} → U represents how stateU may be changed through
commandC; the health of the command mechanism is
not explicitly represented. Instead, imperfections in the
command mechanism can be represented in the CPT of
U .

{H,U} → S represents the influence of system statusU

on a sensorS, which may also fail as reflected inH. We
use a sensor to better understand what is happening in a
system. However, the sensor might give noisy readings;
the level of noise is reflected in the CPT ofS.

{H} → S represents a direct influence of system healthH

on a sensorS, without modeling of state (as is done in
the{H,U} → S pattern). An example of this approach
is given in Figure 1.

{U} → S represents how system statusU influences a sen-
sorS. Sensor noise and failure can both be rolled into the
CPT ofS.

Table 2 shows the CPT for the last case. Here, we consider the
status of a file system (FS). The file system can beempty,
full, or filled to more than 95% (full95). If more space
is available, its state is labeledok. This (unobservable) state
is observed by a software sensor, which measures the current
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capacity of the file system (FC). Because this sensor might
fail, a health node (FH) indicates the health ofFC sensor as
ok or bad.

Because the sensor nodeFC has two parents (status node
FS and health nodeFH), the CPT table is 3-dimensional.
Table 2 flattens out this information: the rows correspond to
the states of the sensor node (1st group for healthy sensor,
2nd group for bad sensor). The rightmost four columns refer
to the states of theFS node. In this particular example, a file
system sensor, which is not working properly will not report
if the file system is almost full or full. Such a bad sensor will
only reportempty orok. This is reflected by the zero-entries
in the lower right corner of the CPT.

FS FH p(FC|FH, FS)
empty ok full95 full

empty ok 0.88 0.05 0.01 0.01
ok ok 0.1 0.6 0.2 0.1
full95 ok 0 0.2 0.7 0.1
full ok 0 0 0 1
empty bad 0.9 0.1 0 0
ok bad 0.1 0.9 0 0
full95 bad 0.5 0.5 0 0
full bad 0.5 0.5 0 0

Table 2. CPT table forp(FC|FH,FS).

3.1.3 Developing Conditional Probability Tables (CPTs)

The CPT entries are set based on a priori and empirical knowl-
edge of a system’s components and their interactions (Ricks
& Mengshoel, 2009; Mengshoel et al., 2010). This knowl-
edge may come from different sources, including (but not
restricted to) system schematics, source code, analysis of
prior software failures, and system testing. As far as a sys-
tem’s individual components, mean-time-to-failure statistics
are known for certain hardware components, however simi-
lar statistics are well-established for software. Consequently,
further research is needed to determine the prior distribution
for health states, including bugs, for a broad range of soft-
ware components. As far as a interaction between a system’s
components, CPT entries can also be obtained from under-
standing component interactions, a priori, or testing how dif-
ferent components impact each other. As an example, con-
sider a testbed like NASA’s advanced diagnostic and prog-
nostic testbed (ADAPT) (Poll et al., 2007), which provides
both schematics and testing opportunities. Using a testing
approach, one may inject specific states into the navigation
system and record the impact on states of the guidance sys-
tem, and perform statistical analysis, in order to guide thede-
velopment of CPT entries for the guidance system. Setting
of software component CPTs to reflect their interactions with
hardware can be conducted in a similar way. Clearly, the well-
known limitation of brute-force testing apply, and when this

occurs one needs to utilize design artifacts, system schemat-
ics, source code, and other sources of knowledge about com-
ponent interactions.

3.2 Software Sensors

Information that is needed to reason about software health
must be extracted from the software itself and all compo-
nents that interact with the software, i.e., hardware sensors,
actuators, the operating system, middleware, and the com-
puter hardware. Different software sensors provide informa-
tion about the software on different levels of granularity and
abstraction. Table 3 gives an impression of the various layers
of information extraction.

Only if information is available on different levels, the
SWHM gets a reasonably complete picture of the current situ-
ation, which is an enabling factor for fault detection and iden-
tification. Information directly extracted from the software
(Table 3) provide very detailed and timely information. How-
ever, this information might not be sufficient to identify a fail-
ure. For example, the aircraft control task might be working
properly (i.e., no faults show up from the software sensors).
However, some other task might consume too many resources
(e.g., CPU time, memory, etc.), which in turn can lead to fail-
ures related to the control task. We therefore extract a multi-
tude of different, usually readily available information about
the software.

Software
errors flagged errors and exceptions
memsize used memory
quality signal quality
reset filter reset (for navigation)

Software Intent
fs write intent to write to FS
fork intent to create new process(es)
malloc intent to allocate memory
usemsg intent to use message queues
usesem using semaphores
userecursion using recursion

Operating system
cpu CPU load
n proc number of processes
m free available memory
d free percentage of free disk space
shm size of available shared memory
sema information about semaphores
realtime missed deadlines
n intr number of interrupts
l msgqueue length of message queues

Table 3. SWHM informations sources
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3.3 Preprocessing of Software and Hardware Sensor
Data

The main goals of preprocessing are to extract important in-
formation from the (large amounts of) temporal sensor data
and to discretize continuous sensor data to be used with our
discrete SWHM models. For example, the sensor for the
file system (FC) has the statesempty, ok, full95,
full. Preprocessing steps, which extract temporal features
from raw sensor data, enable us to perform temporal rea-
soning without having to use a dynamic Bayesian network
(DBN). This is a very prominent conceptual decision. By giv-
ing up the ability to do full temporal reasoning by means of
DBNs, which may be complex in design and execution, we
are able to use much simpler static health models and handle
the temporal aspects during preprocessing.

In particular, we use the following preprocessing techniques
(which can also be combined):

discretization A continuous value is discretized using a
number of monotonically increasing thresholds. For ex-
ample, Table 4 shows the discretization for file system
sensorFC.

min/max/average The minimal/maximal value or the
mean of the entire available time series is taken.

moving min/max/average A moving min/max/mean value
(with a selectable window size) is taken. In contrast to
the features above, we only consider the last few seconds
of the signal.

sum (integral) The sum (integral) of the sensor value is
taken. For example, the sum of “bytes-written-to-file-
system” (per time unit) approximates the amount of data
in the file system (assuming nothing is being deleted).

temporal Temporal states of sensor signals can be ex-
tracted, e.g., time difference between eventA and event
B.

time-series analysis Kalman filters can be used to corre-
late signals against a model. Residual errors then can
be used as sensor states (e.g., close-to-model, small-
deviation, large-deviation). Fast Fourier transformation
(FFT) can be used to detect cyclic events, e.g., vibrations
or oscillations.

Percentage (df) State

0 ≤ df < 5% empty
5 ≤ df < 80% ok

80 ≤ df < 95% full95
95 ≤ df full

Table 4. Discretization into states (right) by means of thresh-
olds (left).

4. DEMONSTRATION EXAMPLE

4.1 System Architecture

For demonstration purposes, we have implemented a sim-
ple system architecture on a platform that reflects real-time
embedded execution typical of aircraft and satellite systems.
Trampoline,4 an emulator for the OSEK5 real-time operat-
ing system (RTOS), is used as a platform rather than other
RTOSes more established in the aerospace industry (such as
Wind River’s VxWorks or GreenHills’ INTEGRITY). OSEK
is easily available, widely used for embedded control systems
in the automotive industry, and its capabilities were sufficient
for the purpose of our experiments.

The basic system architecture (Figure 2) for running SWHM
experiments consists of the OSEK RTOS, which runs a num-
ber of tasks or processes at a fixed schedule. For this sim-
ple SWHM demonstration system, (1) the simulation model
of the plant is integrated as one of the OSEK tasks, and (2)
hardware actuators and sensors are not modelled in detail,
which would have required drivers and interrupts routines.
Despite its simplicity, this architecture is sufficient to run a
simple simulation of the aircraft and the GN&C software in a
real-time environment (fixed time slots, fixed memory, inter-
process communication, shared resources).

The software health management executive, including prepro-
cessing, is executed as a separate OSEK task. It reads soft-
ware and sensor data, performs preprocessing and provides
the data as evidence to the sensor nodes of the (compiled)
Bayesian network. The reasoning process then yields the pos-
terior probabilities of the health nodes.

Control

Network

Bayesian

(Knowledge Base)

Arithmetic Circuit

SWHM ISWHM

RTOS Emulator
(OSEK/Trampoline)

Arithmetic Circuit
Inference Engine

Diagnosis

GN&C
Guidance
Navigation

Figure 2. Demonstration system architecture. The Bayesian
network model is compiled (before deployment) into an arith-
metic circuit representing the knowledge base. The real-time
operating system schedules three tasks: the controller, the
plant, and the SWHM inference engine.

4http://trampoline.rts-software.org/
5http://www.osek-vdx.org/
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4.2 Example Scenario

An experimental scenario aimed at the study of faults related
to file systems, inspired by the Mars rover SPIRIT reboot cy-
cle incident (Adler, 2006), has been implemented using the
system architecture. A short time after landing, the Mars
rover SPIRIT encountered repeated reboots, because a fault
during the booting process caused a subsequent reboot. Ac-
cording to reports (Adler, 2006), an on-board file system for
intermediate data storage caused the problem. After this stor-
age was filled up, the boot process failed while trying to ac-
cess that file system. The problem could be detected on the
ground and was resolved successfully.

In a more general setting, this scenario is dealing with bad
interaction due to scarce resources, and delays during access.
Even if no errors show up, a blocking write access to a file
system that is almost full, or the delivery of a message through
a lengthy message queue, can in the worst case cause severe
problems and emerging behavior.

For the purpose of demonstration, we designed a flawed soft-
ware architecture with a global message queue that buffers
all control signals and logs them in the file system (blocking)
before forwarding them (Figure 3). This message queue is
also used to transport image data from an on-board camera
(e.g., for UAV) to the radio transmitter. The relevant software
components of this simple architecture are: GN&C, message
queue, logging to file system, camera, transmitter, and plant.
On-board camera and transmitter are shown in Figure 3 but
not used in the experiments described in this paper.

File

Guidance
Navigation
Control

RTOS Emulator

(OSEK/Trampoline)

Message
Queue

Science
Camera

Transmitter

System

GN&C

Figure 3. Software architecture for file system related fault
scenarios, diagnosed using SWHM system.

Here, we are running the following scenario: the file system
is initially set to almost full. Subsequent control messages,
which are being logged, might stay longer in the message
queue, because the blocking write into an almost full file sys-
tem takes substantial time. This situation potentially causes
overflow of the message queue or leads to loss of messages.
However, even a small delay (i.e., a control message is not
processed within its allotted time frame, but one or more time-
frames later) can causeoscillationof the entire aircraft. This
oscillation, similar to PIO (pilot induced oscillation) can lead

to dangerous situations or even loss of the aircraft.

In this scenario, the software problem does not manifest itself
within the software system (e.g., in form of errors or excep-
tions). Rather, the overall behavior of the aircraft is impacted
in a non-obvious way.

Other possible scenarios with this setup, to be diagnosed by
the SWHM task, are:

• The pilot’s or autopilot’s stick commands are delayed,
which again results in oscillations of the aircraft.

• Non-matching I/O signal transmit/read/processing rates
between control stick and actuators result in plant oscil-
lations whose root causes are to be disambiguated.

• An unexpectedly large feed from the on-board camera
(potentially combined with a temporary low transmis-
sion bandwidth) can cause the message queue to over-
flow, which results in delays or dropped messages with
similar effects as discussed above.

• The controller and the science camera compete for the
message queue, which could (when not implemented
correctly) cause message drops or even deadlocks.

With our SWHM, the observed problem (oscillation) should
be detected properly and traced back to the root cause(s).

4.3 The SWHM Model

A Bayesian SWHM model for this architecture was designed
using the SamIam tool.6 A modular BN design approach was
attempted by first designing the SWHM model for the ba-
sic system including relevant nodes such as—in the aircraft
case—the pitch-up and pitch-down command nodes. The
pitch status nodes, the fuel status node, and the software,
pitch, and acceleration health nodes were introduced. Other
subnetworks were then added to this core Bayesian network
to obtain the complete SHWM model for the specific archi-
tecture used for SWHM experiments. The relevant nodes of
the subnetwork module added for SWHM experiment with
file system related faults are shown in Figure 4.

The Write File System command node indicates
whether a write to the file system is being executed. The
health nodes for the file system and the message queue reflect
the probabilities that they might malfunction. The status
nodes for the file system and the message queue represent
their unobservable states, while their sensor nodes reflect
sensor readings after preprocessing.

The only non-standard software sensor node in this SWHM
model is a sensor to detect oscillations or vibrations. A fast
Fourier transform (FFT) performs a simple time-series analy-
sis on major aircraft signals (e.g., accelerations or pqr rates).
With such a sensor, low-frequency oscillations (e.g., pilot-
induced oscillations (PIO)) or vibrations (with a higher fre-
quency) can be detected and fed into the SWHM model. The

6http://reasoning.cs.ucla.edu/samiam
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Write
File_System

File_system

Queue_length
Sensor

Sensor

Sensor

Health

Status

Status

Health

Sensor

Error

Delta_queue

Message_queue

Message_queue

File_System

File_System Delay

File_System

Rest of Bayesian SWHM
Network

Sensor
Oscillation

Figure 4. Partial Bayesian network for diagnosing faults po-
tentially taking place in the software architecture shown in
Figure 3.

SWHM reasoning then tries to perform a disambiguation on
the cause of the oscillation or vibration.

This Bayesian network is compiled into an arithmetic circuit,
which is integrated with the rest of the system as shown in
Figure 2.

4.4 Results

Analysis of experimental runs with this architecture indicated
that the system undergoing SHWM runs fine in the nominal
case (Figure 5). However, the SWHM inference engine was
instrumental in pointing toward the root cause of oscillations
when pitch-up and pitch-down commands to the aircraft plant
are affected by faults originating in the file system, causing
the aircraft to oscillate up and down rather than maintain the
desired altitude. For the purpose of our experiments, the file
system was set to almost full at the start of the run, and as
the system runs and controls are issued and logged, delays in
executions start taking place at timet = 30s (Figure 6) but
no software errors are flagged. Eventually, altitude oscilla-
tions are detected by a fast Fourier transform performed on
the altitude sensor readings shown in the middle panel of Fig-
ure 6. The bottom panel indicates that when the fast Fourier
transform eventually detects oscillations aroundt = 100s, the
SWHM infers that the posterior probability of good software
health drops substantially, while the posteriors of good health
of pitch and accelerometer systems are mostly high despite
some transient lows. This indicates a low degree of belief in
the good health of the software and that the most likely cause
for a state with oscillations would be a software fault. For the
purpose of this experiment, no additional pilot inputs were
assumed.

SHWM can also be instrumental in disambiguating the root
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Figure 5. Temporal trace for the nominal case of file system
based scenarios. The top panel shows pitch up and down com-
mands to the aircraft. The middle panel shows the readings of
altitude and vertical speed. The bottom panel shows the de-
gree of belief in the good health of the accelerometer sensor
(h accel, green), of the pitch signal (h pitch, red), and of
the software (h SW, thick blue line).

cause of oscillations when we add a pilot input node con-
nected to the oscillation detection fast Fourier transformsen-
sor node. The SWHM reasoner can then disambiguate the
diagnosis by evaluating whether the fault is due to PIO or a
software problem.

The SWHM models, which we have presented here are able
to recognize and disambiguate known failure classes. In gen-
eral, the handling of emergent behavior, i.e., the occurrence of
events or failures that have not been considered or modeled,is
an important task for a system-wide health management sys-
tem. Such failures can occur if the system is operated in a
new environment, or due to unexpected interaction between
components.

Our SWHM approach can—albeit with some restrictions—
detect and diagnose emergent behavior. If we model the soft-
ware behavior using safety and performance requirements (in
addition to specific pre-analyzed) failure modes, emergentbe-
havior, which manifests itself adversely by violating safety
requirements or lowers performance, can be detected and di-
agnosed.

In our experimental setting, relevant performance or safety
requirements could be: no vibrations or oscillations should
occur, and a smooth flight path without specific pilot input
should not require substantial actuator activation. With the
existing sensors and the reasoning capabilities of the Bayesian
network, the failure scenario discussed above would raise an
alarm due to the violation of these requirements.
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Figure 6. Temporal trace for a file system related fault sce-
nario resulting in oscillations. The SWHM inference engine’s
evaluation outputs show that the degree of belief in the good
health of the system’s software (blue in bottom panel) sub-
stantially drops when oscillations are eventually detected by
a fast Fourier transform at aboutt = 100s, after overflow of
the file system resulted in delayed pitch up and pitch down
command signals from the controller. Readings from the al-
titude sensor (blue in middle panel) show oscillating altitude
starting at aboutt = 30s.

5. CONCLUSIONS

Software plays an important and increasing role in aircraft.
Unfortunately, software (like hardware) can fail in spite of
extensive verification and validation efforts. This obviously
raises safety concerns.

In this paper, we discussed a software health management
(SWHM) approach to tackle problems associated with soft-
ware bugs and failures. The key idea is that an SWHM system
can help to perform on-board fault detection and diagnosis on
aircraft.

We have illustrated the SWHM concept using Bayesian net-
works, which can be used to model software as well as inter-
facing hardware sensors, and fuse information from different
layers of the hardware-software stack. Bayesian network sys-
tem health models, compiled to arithmetic circuits, are suit-
able for on-board execution in an embedded software envi-
ronment.

Our Bayesian network-based SWHM approach is illustrated
for a simplified aircraft guidance, navigation, and control
(GN&C) system implemented using the OSEK embedded op-
erating system. While OSEK is rather simple, it is We show,
using scenarios with injected faults, that our approach is able
to detect and diagnose non-trivial software faults.

In future work, we plan to investigate how the SWHM con-

cept can be extended to robustly handle unexpected and un-
modeled failures, as well as how to more automatically gener-
ate SWHM Bayesian models based on information in artifacts
including software engineering models, source code, as well
as configuration and log files.
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