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ABSTRACT
 

 Bayesian formulation is presented to address the parameters 
estimation under uncertainty in the crack growth prediction 
subjected to variable amplitude loading. Huang's model is 
employed to describe the retardation and acceleration of the 
crack growth during the loadings. Model parameters are 
estimated in probabilistic way and updated conditional on 
the measured data by Bayesian inference. Markov Chain 
Monte Carlo (MCMC) method is employed for efficient 
sampling of the parameter distributions. As the model under 
variable amplitude loading is more complex, the 
conventional MCMC often fails to converge to the 
equilibrium distribution due to the increased number of 
parameters and correlations. An improved MCMC is 
introduced to overcome this failure, in which marginal PDF 
is employed as a proposal density function. A center-
cracked panel under a mode I loading is considered for the 
feasibility study. Parameters are estimated based on the data 
from specimen tests. Prediction is carried out afterwards 
under variable amplitude loading for the same specimen, 
and validated by the ground truth data.  

Key Words : Prognostics and Health Management (PHM), 
Markov Chain Monte Carlo (MCMC), Crack growth, 
Variable amplitude loading. 

1. INTRODUCTION 

Although the reliability-based design technology for 
lifecycle is in its mature stage, it has its limited value due to 
the inability to account for the unexpected incidences during 
the in-service condition. Besides, critical systems such as 
aircraft tend to be operated without retirement even after the 
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unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited. 

design lives. In such cases, efficient maintenance techniques 
should be incorporated during the operation. Frequent 
preventive maintenance can, however, increase operating 
cost significantly, especially for aging aircraft. Recently, 
prognostics and health management (PHM) techniques are 
drawing considerable attention, which detect, monitor and 
predict the damage growth, from which only the faults 
indicating impending failure are repaired. As a result, 
condition-based maintenance (CBM) can be achieved, 
which significantly reduce the number of maintenance visits 
and repairs. 

Prognosis of crack growth is one of the active research 
topics in the PHM study because the physical model 
underlying the feature is relatively well known. Numerous 
literatures have been devoted to this topic, mainly focused 
on the probabilistic methods to address the associated 
uncertainties. Orchard and Vachtsevanos (2007) introduced 
an on-line particle-filtering-based framework for failure 
prognosis, and applied to a crack growth problem of UH-60 
planetary carrier plate. They assumed that the crack growth 
is described by a simple Paris model and the model 
parameters are known a priori, which is questionable in 
practical applications. Cross et al. (2007) developed a 
Bayesian technique for simultaneous estimation of the 
equivalent initial flaw size (EIFS) and crack growth rate 
distributions. AFGROW is used for the crack growth 
calculation for the fastener hole crack under constant 
amplitude load. Coppe et al. (2009, 2010) employed 
Bayesian formulation using the Paris model in which the 
model parameters are estimated and updated conditional on 
the measured crack data. A center-cracked panel under a 
mode I loading is considered for the study. An et al. (2011) 
conducted similar study by introducing Markov Chain 
Monte Carlo (MCMC) method for more efficient sampling 
of the parameters’ distribution. They payed particular 
attention to the parameters correlation as well as the 
imprecise data due to the noise and bias, which may make 
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the Bayesian estimation more difficult. It should be noted 
that all the previous studies have employed Paris model for 
the sake of simplicity which holds good under a constant 
amplitude loading.  

In this paper, the study by An et al. (2011) is extended to the 
case of variable amplitude loading, which involves more 
parameters in the crack growth model. The feasibility of 
Bayesian approach is studied to cope with the increased 
parameters in which the correlations are encountered. We 
have experienced that the MCMC does not work well, i.e., 
fails to converge at the equilibrium distribution. An 
improved MCMC method is introduced to relieve this 
problem by employing marginal PDF as a proposal density 
function. Feasibility of the method is illustrated by a center-
cracked panel under a mode I loading with constant and 
variable amplitudes, respectively. In the case of variable 
amplitude loading, the unknown model parameters are 
estimated based on the crack data by lab specimens under 
multiple set of constant amplitude loadings. The prognosis 
under variable loading is then conducted for the same 
specimen using the obtained parameter samples, and the 
remaining useful life (RUL) is predicted accordingly.  

2. CRACK GROWTH MODEL 

When the load is applied in a constant amplitude, Paris 
model best describes the crack growth: 

 ( )d
,

d

ma
C K K a

N
s a p= D D = D ⋅  (1) 

where a  is the half crack size, N  is the number of cycles 
(flights), KD  the range of stress intensity factor (SIF) and 
  the geometric correction factor. In the case of the 
variable amplitude loading, however, the crack growth 
behavior is significantly different from that under constant 
loading, presenting the crack growth retardation and 
acceleration caused by the overload. Numerous models have 
been developed to adequately describe this behavior. A 
model based on the crack closure approach, which considers 
plastic deformation and crack face interaction in the wake of 
the crack, was proposed by Eiber (1971). Willenborg (1971) 
and Wheeler (1972) proposed other models based on the 
calculations of the yield zone size ahead of the crack tip. In 
this paper, crack growth model by Huang et al. (2007) is 
used, which is based on a modified Wheeler model to 
account for the overload and underload effect. Huang’s 
model consists of two parts, one being the scaling factor 

RM  which accounts for the crack growth under constant 

amplitude loading and the other the correction factor PM  

which accounts for the loading sequence interaction such as 
retardation and acceleration under variable amplitude. The 
expression is given as follows. 
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Here, R  is the stress ratio, 0eqK  and 0thK  are equivalent 

and threshold SIF range respectively, ,C m  are the Paris 

model parameters, and 1,   are the shaping parameters for 

RM . The parameters C , m , 0thK ,   and 1  are the 

fitting parameters under a constant amplitude loading, 
which determines the relationship between the crack growth 
rates /da dN  and SIF range K . The correction factor 

PM  is given by 
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where 
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where yr  is the plastic zone size ahead of the crack tip, r  is 

the increment in the plastic zone size due to the underload 
following an overload, n  is a shaping parameter determined 
by fitting to the test data under variable amplitude loading, 
and parameters with the subscript OL  denote those under 
the overload.  In Eq.(6) and Eq.(7),  is the plastic zone 
size factor which is dependent upon the constraints around 
the crack tip and the maximum applied stress, yield strength 
of the material, and specimen thickness (Voorwald et al. 
1991). The size of the each plastic zone is calculated in 
terms of the applied maximum SIF and yield strength y . 

The crack growth under variable amplitude loading is 
accounted for by incorporating the correction factor PM  

after decomposing the variable loading into the successive 
series of different constant amplitude loadings. 
Consequently, only the parameters C , m , 0thK ,   and 

1  are the unknown parameters to be estimated in this study. 

3. MARKOV CHAIN MONTE CARLO FOR PARAMETER 

ESTIMATION 

In this study, Bayes rule is used to account for the 
uncertainties in the parameters estimation (Bayes,1763): 
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      | |p L py y    (8) 

where  |y L  is the likelihood of observed data y  

conditional on the given parameters  ,  p  is the prior 

distribution of  , and  | yp  is the posterior distribution 

of   conditional on y . The equation states that our degree 

of belief on the parameter   is expressed as posterior PDF 
in light of the given data y . In general, the posterior 

distribution is given by complex expression in terms of the 
parameters, of which the sample drawing is cumbersome, 
and prohibiting the use of standard techniques of probability 
functions. MCMC has been recognized as an effective 
sampling method, which is based on a Markov chain model 
of random walk with the stationary distribution being the 
target distribution. Metropolis-Hastings is the most typical 
variants of the MCMC algorithm: 
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In this equation,  0x  is the initial value of an unknown 
parameter to estimate, nm  is the number of iterations or 

samples, U  is a uniform distribution,  p x  is the posterior 

distribution (target PDF), and   * | iq x x  is an arbitrary 

chosen proposal distribution which is used when a new 
sample *x  is to be drawn conditional on the current point 

 ix . Uniform or Gaussian distribution at the current point 
are the most common choices for the proposal distribution. 
Success and failure of the algorithm relies heavily on a 
proper design of the proposal distribution. In order to 
illustrate this, a target distribution of x  is considered 
(Andrieu et al, 2003): 

      220.3exp 0.2 0.7exp 0.2 10p x x x      (10) 

As the candidates of proposal distribution, normal 
distributions with three different standard deviation,  =1, 
 =10 and  =100, are attempted. The shapes of each 
distribution are compared in Figure 1(a). The MCMC 
sampling results using each three proposal distributions with 
the number of samples nm =5000 are shown in Figure 

1(b)~(d), respectively. Only the proposal distribution with 
 =10 gives acceptable result. In the general case with 
increased parameters and correlations, however, this would 
be much more difficult.  

An improved MCMC method is introduced in this study, 
which is to employ a marginal PDF as a proposal 
distribution: 
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where  q x  is the marginal PDF of x  defined by 

   1 1 1 1 1 1, , , , , ,i i i i np i i npq x p x x x x x dx dx dx dx                     (12) 

Conventional way to construct the marginal PDF requires 
intensive computation which requires large number of joint 
PDF evaluation. In this paper, a simpler approach, which 
employs Latin Hypercube Sampling (LHS), is used to 
facilitate efficiency because the marginal PDF needs not be 
precise in view of the proposal density function.  

In the algorithm (11), unlike the conventional MCMC, if the 
new sample *x  is not accepted, the 1i  'th sample is not 
assigned and the sampling is repeated until 1i  'th sample 
satisfies the MH criteria, which results in a little longer 
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Figure 1.  MCMC sampling results of the target PDF 

given by Eq. (10) 
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computing time. The uniform distribution,  0,1U  in the 

conventional MCMC is replaced here by  0,cU  where c  is a 

constant less than 1. By the authors' experience, it was 
found that as c  gets smaller, the overall time was decreased 
dramatically, while the obtained samples distribution did not 
change much. 

4. CRACK GROWTH UNDER CONSTANT 

AMPLITUDE LOADING 

In order to verify the new MCMC method, the data 
generated with fixed parameter values are used. Crack 
growth of a center-cracked panel of Al 7075-T6 under a 
mode I loading as shown in Figure 2 is considered. 
Assuming the effect of finite plate size is ignored, Paris 
model predicts the crack growth in terms of the fatigue 
cycles in the closed form expression as: 

    
2

21
21

2

m mm

i

m
a N NC a 

       
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 (13) 

where a  is the half crack size at cycle N , C  and m  are 
the two damage growth parameters to be estimated, ia  is 

the initial crack size which is assumed to be known, and 
  is the stress range due to the fatigue loading. Synthetic 

curve is generated for the case ia =10mm and 

 =78.6MPa. Assuming that the true parameters, truem  

and trueC are given by 3.8 and 1.5E-10 respectively, crack 

sizes are calculated according to Eq. (13) for a given N . 
Then, measurement errors with a deterministic bias b =-

2mm and random noise  0, 1.33N    are added 

intentionally to the synthetic curve for the generated data. 
10 sets of generated data are made at the interval of 100 
cycles. In this case, the unknown parameters consist of the 
two model parameters ,m C  and the two measurement 

errors ,b  . The joint posterior distribution of these 
parameters is given by 
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where f  and    ,p m p C  are the likelihood and prior 

PDFs of the two parameters respectively, given by 
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The synthetic curve and the generated data are plotted as 
black curve and solid dots with 10 numbers in Figure 3 
respectively. The unknown parameters are to be estimated 
conditional on this data based on the MCMC process with 
the number of samples being 5000. Using the conventional 
MCMC, proper sampling could not be achieved in spite of 
lot of trials. One instance of such result is given in Figure 
3(a). In Figure 3(a), the incorrect prediction using the failed 
samples is also given, in which the three dashed curves 
denote the median and 90% confidence bounds obtained 
from the distribution respectively. The green horizontal line 
denotes the critical crack size. On the other hand, the result 
of the improved MCMC is shown in Figure 3(b), which is 
instantly obtained at one attempt. The obtained PDF shapes 
look quite plausible and the correlation between m  and C  
is also identified clearly. The posterior predictive 
distribution of the crack growth obtained by the sampling 
results of the unknown parameters is shown inFigure 4. The 
improved MCMC predicts the crack growth quite well, 
following the synthetic curve by correcting the bias while 
the conventional MCMC could not. Therefore, the improved 

 

Figure 2. Specimen geometry ( t=4.1, b=152.5, a=6 
(mm)) 
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(a) Conventional MCMC. 
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(b) Improved MCMC. 

Figure 3. Prediction of the crack growth 
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MCMC is verified by predicting the synthetic curve with 
correct parameter estimation. 

5. CRACK GROWTH UNDER VARIABLE 

AMPLITUDE LOADING 

In the prognosis of crack growth under variable amplitude 
loading, the unknown model parameters C , m , 0thK ,   

and 1 are to be estimated conditional on the measured 

crack data under study. In this study, the unknown model 
parameters are regarded as the intrinsic property of the 
material such as the Elastic modulus. Therefore, the 
unknown model parameters under constant amplitude 
loading are assumed as identical to those under variable 
amplitude loading.  In view of this, data by Huang et al. 
(2007) are used for the prognosis, in which the cracks are 
grown for the lab specimens of Figure 2 under multiple sets 
of constant amplitude mode I loadings. 

Assuming the error between the data and true crack growth 
model follows Gaussian distribution with  0,N  , the joint 

posterior distribution of the parameters is given by Eq. (8) 

which   denote 1 0, , , , thC m K    and  , and y  are the 

measured crack data. L  is the likelihood given by 
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MCMC simulation is implemented to obtain the samples 
that satisfy the distribution. In this case, the conventional 
MCMC does not work at all due to the large number of 
parameters, and fails to obtain the target distributions. Even 
the improved MCMC gives inadequate distributions as 
given in Figure 6(a). The reason may be attributed to the Eq. 
(2)~Eq.(4), in which the parameters 1,   exist only when 

0R   whereas the data set include the case R =0. Ignoring 
this characteristics and taking all three data set equally into 
account in Eq.(16) leads to the improper marginal PDF. In 
order to resolve this issue, following four steps are taken 
during the MCMC simulation. 

1. The marginal PDFs of 0, , thC m K are constructed from 

R=0 data set. In this process, 1,   is not necessary since 

R=0 makes RM  independent on 1,  . 
2. The ranges of 0, , thC m K are given from the percentiles of 

the marginal PDF of 0, , thC m K . 

3. The marginal PDFs of   and 1  are constructed from the 

remaining two sets R=-1 and R=0.5 under the ranges of 

0, , thC m K of the process 2. 

4. All the marginal PDFs thus obtained are then used in the 
main process of improved MCMC as given by (11). 

As a result, Figure 6(b) is obtained, in which the 
distributions of the parameters   exhibit plausible shape, 
and represent our degree of confidence due to the 
uncertainties caused by the insufficient data and 
measurement errors. 

Once the distributions are obtained by the MCMC, the 
prognosis under variable amplitude loading is conducted 
using the obtained parameter samples. This is just to 
implement the crack growth simulation by integration of 
Eq.(2) to obtain the future crack size distribution using each 
of the parameter samples. The remaining useful life (RUL) 
can be predicted from this result. The same specimen is used 
in this study since the actual data of crack growth are 
available by Huang et al. (2007) under the variable loading 
condition as a ground truth data. The loading condition for 
prognosis process is given in Figure 7, in which a single 
cycle consists of the p  numbers of repeated load between 

3.48~68.13 MPa  and the q numbers of overload with 

3.48~103.02 MPa . This loading condition is repeatedly 
applied to the specimen generating total load cycles. Two  
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Figure 5. Fatigue crack growth data under constant 
amplitude loading for Al 7075-T6 (Huang et al, 
2007) 
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cases of 50p   , 1q   and 50p   , 6q   are considered. 

The results of the predictive simulation are shown in Figure 
8, in which each blue curve represents a single result using 
realized parameters while the red curve represents the 
ground truth data made by the test of identical loading 
condition. Figure 9 also represents the confidence bounds 
obtained from the predictive distribution. The width of the 
curve in this figure may be attributed to the uncertainty of 
insufficient data and measurement errors. The RUL 
distribution shown in Figure 10 is obtained by calculating 
the cycles at which the crack of each sample grows to a 
critical crack size. 10% percentile as well as the true RUL 

values are indicated by the marks respectively. Recall that in 
this study, the parameters were first estimated using the 
three specimens under constant amplitude loadings, 
followed by prognosis for the fourth specimen under 
variable loadings using the estimated parameters. The test 
data of the last specimen was used just for validation of the 
prognosis.  

6. CONCLUSION 

In this paper, Bayesian formulation is presented to identify 
the uncertain parameters in the crack growth problem under 
variable amplitude loading. Huang's model is employed to 
describe the retardation and acceleration of the crack growth 
during the loadings. As the conventional MCMC does not 
work well in the case of increased parameters and 
correlations as in this problem, improved MCMC method is 
introduced by employing marginal PDF as a proposal 
density function. Feasibility of the method is illustrated by a 
center-cracked panel under a mode I loading with constant 
and variable amplitudes, respectively. In the case of variable 
amplitude loading, parameters are first estimated based on 
the data from specimen tests under a multiple constant 
amplitude loadings, and prognosis is followed based on the 
parameters with another specimen under variable loading. 
The result is validated by the actual test data. The drawback 
of this approach is that the model parameters  are identified 
by the lab experiments, and are used for the prognosis of a 
real part (although, in this case, the same specimen is 
chosen), of which the material and operating conditions may 
be somewhat different. Therefore, the estimated RUL has 
wide range to represent the general life of the entire 
specimen. 

More desirably, the measured data from the real part 
undergoing variable amplitude loading may be utilized for 
the parameters estimation as well as the prognosis. 
Additional work toward this direction will be made in the 
final draft.  

 

Figure 7. Variable amplitude loading 
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(a) Sample data from direct application of improved 
MCMC 
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the improved MCMC 

Figure 6. Histogram of samples for the parameters 
generated by the improved MCMC 
method 
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Figure 8. Crack growth simulation under variable 
amplitude loading using each sample of 
parameters (red curve :ground truth data) 
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Figure 9. Confidence bounds of crack growth 
simulation under variable amplitude loading 
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