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ABSTRACT The simulation-based method includes direct Monte Carlo

This paper presents an efficient analytical Bayesian methddC) (Kalos & Whitlock, 2008), Importance Sampling
for reliability and system response estimate and update. THIS)(Gelman & Meng, 1998; Liu, 1996), and other MC sim-
method includes additional data such as measurements to féations with different sampling techniques. Analyticala
duce estimation uncertainties. Laplace approximatiomds p Proximation methods, such as first- and second- order relia-
posed to evaluate Bayesian posterior distributions airalytPility methods (FORM/SORM) have been developed to esti-
cally. An efficient algorithm based on inverse first-order re Mate the reliability without large numbers of MC simulation
liability method is developed to evaluate system responsesORM and SORM computations are based on linear (first-
given a reliability level. Since the proposed method in-order) and quadratic (second-order) approximations of the
volves no simulations such as Monte Carlo or Markov chairdimit-state surface at theost probable point (MPP)(Madsen
Monte Carlo simulations, the overall computational efficie ~ €t al-, 1986; Ditlevsen & Madsen, 1996). Under the condition
improves significantly, particularly for problems with cem that the limit-state surface at the MPP is close to its linear
plicated performance functions. A numerical example an®’ quadratic approximation and that no multiple MPPs ex-
a practica' fatigue Crack propagation pr0b|em W|th experiJSt N the ||m|t-5t5_\te Sl_Jrface, FORM/SORM are SUf‘fICIenﬂy .
mental data are presented for methodology demonstratioAccurate for engineering purposes(Bucher et al., 1990; Cai
The accuracy and computational efficiency of the propose& Elishakoff, 1994; Zhang & Mahadevan, 2001; Zhao &
method is compared with simulation-based methods. Ono, 1999). If the final objective is to calculate the sys-
tem response given a reliability index, the inverse reliabi
ity method can be used. The most well-known approach is
1. INTRODUCTION inverse FORM method proposed in (Der Kiureghian, Yan,

Efficient inference on reliability and responses of enginee & Chun-Ching, 1994; Der Kiureghian & Dakessian, 1998;
ing systems has drawn attention to the prognostics andrhealt! & Foschi, 1998). Several studies for static failure us-
management society due to the increasing complexity oéthoﬁ.”g the inverse FORM method have been reported in the
systems (Melchers, 1999; Brauer & Brauer, 2009). For higtitérature. (Du, Sudjianto, & Chen, 2004) proposed an in-
reliability demanding systems such as aircraft and nucleafrse reliability strategy and applied it to the integratatlist
facilities, time-dependent reliability degradation aretfpr- ~ and reliability design of a vehicle combustion engine pisto
mance prognostics must be quantified to prevent potenti;]{l{Sa.ranyasoontorn & Manuel, 2004) developed an inverse re-
system failures. Reliable predictions of system reliapdind  lability procedure for wind turbine components. (Lee, Cho
system responses are usually required for decision-making DU, & Gorsich, 2008) used the inverse reliability analysis
a time and computational resource constrained situatiba. T fOr reliability-based design optimization of nonlinear lthu
basic idea of time-independent component reliability psial ~ dimensional systems. (Cheng, Zhang, Cai, & Xiao, 2007)
involves computation of a multi-dimensional integral otres ~ Presented an artificial neural network based inverse FORM
failure domain of the performance function (Madsen, KrenkMmethod for solving problems with complex and implicit per-
& Lind, 1986; Ditlevsen & Madsen, 1996; Rackwitz, 2001). formance functions. (Xiang & Liu, 2011) applied the inverse
For many practical problems with high-dimensional parameFORM method to time-dependent fatigue life predictions.

ters, the exact evaluation of this integral is either amncaty Conventional forward and inverse reliability analysis is
intractable or computationally infeasible with a given éim based on the existing knowledge about the system (e.g., un-
constraint. Analytical approximations and numerical danu  derlying physics, distributions of input variables). Time
tions are two major computational methods to solve this probdependent reliability degradation and system responsegeha
lem (Rebba & Mahadevan, 2008). ing are not reflected. For many practical engineering prob-
Xuefei Guan et.al. This is an open-access article disgibunder the terms lems, usage monitoring or inspection data are usually avail
of the Creative Commons Attrigution 3.0 United States Licemggch per- .abl.e ata regular time interval e'.the( via Strl.JCtural heatltn- .
mits unrestricted use, distribution, and reproduction inraedium, provided  1tOring system or non-destructive inspections. The new in-
the original author and source are credited. formation can be used to update the initial estimate of sys-
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tem reliability and responses. The critical issue is hownto i 2. PROBABILISTIC MODELING AND L APLACE
corporate the existing knowledge and new information into ~ APPROXIMATION

the estimation. Many methodologies have been proposed {g s section, a generic posterior model for uncertaimpar
handle reliability updating problems. Bayesian updati®ig i gers is formulated using Bayes’ theorem to incorporaté-add
the most common approach to incorporate t|Pel’Sle add.'t'ci”ﬁ nal data such as measurements. Uncertainties from model
data. By continuous Bayesian updating, all the variab etgqarameters, measurement, and model independent variables
of interest are updated and the inference uncertainty can b§e systematically included. To avoid MCMC simulations as
significantly reduced, provided the additional data are-rel i, ¢assical Bayesian applications, Laplace approximitio
vant to the problem and they are informative. (Hong, 1997herived to obtain an analytical representation of the piste
presented the idea of reliability updating using inSpeTtio yistribution. The updated reliability and system respsrse
data. (Papadimitriou, Beck, & Katafygiotis, 2001) repdrte oaily be evaluated using this posterior approximation.

a reliability updating procedure using structural testilaga.

(Graves, Hamada, Klamann, Koehler, & Martz, 2008) applie®.1 Bayesian modeling for uncertain parameters

the Bayesian network for reliability updating. (Wang, Rabi  consider a generic parameterized madé{y; =) describing
Hurtado, Modarres, & Hoffman, 2009) used Bayesian reliy ghservable even; wherex is an uncertain model param-
ability updating for aging airframe. A similar updating ap- gter vector ang is model independent variable. If the model
proach using Maximum relative Entropy principles has alsqg perfect, one obtaindt(y; z) = d. In reality, such a perfect
been proposed in (Guan, Jha, & Liu, 2009). In those studiesysqe| s rarely available dué to uncertainties such as the si
'V||C'V1|EC simulations have been extek?swely used to draw samyjification of the actual complex physical mechanismsjstat
ples from posterior distributions. The Convergence Th@ore tica) error in obtaining the parameteyand the measurement

ensures the resulting Markov chain converges to the targ ; ; ity dictrib it ;
distribution (Gilks, Richardson, & Spiegelhalter, 1996)da %T]rgér[{r;icrl{ﬂelésg g ggcsggtggt%rgatigggtlons to describe those

it becomes almost a standard approach for Bayesian analysisgjyen the prior probability distribution of, p(z|M), and

with complex models. For practical problems with compli- e known relationship (conditional probability distrtn or
cated performance functions, simulations are time-comsym |ixelihood function) betweenl and z, p(d|z, M), the pos-

and efficient computations are critical for time constrdin®  tarior probability distributionp(z|d, M) is expressed using
liability evaluation and system response prognostics. ‘SomBayes’ theorem as

of the existing analytical methods includes variationathme

ods (Ghahramani & Beal, 2000) and expectation maximiza- p(z|d, M) = p(z|M)p(d|z, M) % o p(z|M)p(djz, M), (1)
tion methods (Moon, 1996). Those methods usually focus on h is th lizi
the approximation of distributions and does not providesa sy WhereZ = [y p(z|M)p(d|z, M)dz is the normalizing con-
tematical procedure for inverse reliability problems. tius- ~ Stant.

tural health management settings, simulation-based rdethq y/‘\i mOde.{{Vld iﬁ assflimefd to bel.thte ?_nly tf)ee:rs]ible rgoldel
may be infeasible because updating is frequently performe@d/V! IS omitted hereafter for simplicity. Let be the mode
prediction ana the error term (for example, the measurement

upon the arrival of sensor data. All these application ui ;
efE)ficient and accurate computations. Howev%F;, very fevnﬂtuoerror ofd). The variablel reads
iesdar_e avai(ljable. on the invesggatior] r(])f complete arlhﬂ/_tic d=m+e. 2)
updating and estimation procedure without using simufetio e .

pThe ogbjective of the pFr)oposed study is to de\g/elop an effi € probability distribution forn is represented by the func-
cient analytical method for system reliability and respomg- 10N p(m|z) = far(m) and the probability distribution for
dating without using simulations. Three computational eomS PY the functiop(ejz) = fx(e). The conditional proba-
ponents evolved in this approach are Bayesian updatirig; rel Pility distribution of p(d|z) can be obtained by marginalizing
bility estimation, and system response estimation givesiiar the joint probability distribution of(d, m, e|z) as follows:
ability or a confidence level. For Bayesian updating, Laplac
method is proposed to obtain an analytical representafion o p(d|z) = / / p(m|z)p(e|x)p(d, m, elz)dedm.  (3)
the Bayesian posterior distribution and avoid MCMC simula- MJE
tions. Once the analytical posterior distribution is obémi, Becausel = m + e,
FORM method can be applied to update system reliability or
probability of failure. In addition, predictions of system- p(d, z,elz) = 6(d —m —e). (4)
sponse associated with a reliability or a confidence level caSubstitute Eq. (4) into Eq. (3) to obtain
also be updated using inverse FORM method to avoid MC
simulations. —

The paper is organized as follows. First, a general Bayesian p(dfz) /M Jar(m) fip(d = m)dm. ®)
posterior model for uncertain variables is formulated. eRel
vant information such as response measures and usage m
itoring data are used for updating. Then an analytical a

roximation to the posterior distribution is derived based '
Eaplace method. Npext, FORM method is introduced to eszé(elx).: f52(€.) due to éhe modeling erron = M(y; z) + ¢.
timate system reliability levels and a simplified algorithm quation (2) is revised as
based on inverse FORM method is formulated to calculate d=M(y;x) +e+e. (6)
system response given a reliability level or a confidencellev L )
Following that, numerical and application examples are preMarginalizingp(mle,6) = d6(m — M(y; ) — ) overe to
sented to demonstrate the proposed method. The efficien

and accuracy of the proposed method are compared with sim-
ulation resul%/s. Prop P fr(m) = /EP(G|I)P(W|$79)C1€ = fe(m — M(y;x)). (7)

Next, termsfy, (m) and fx(e) need to be determined. Con-
Sider a general case where the model predictiohas a sta-
tistical noise componerdt € £ with a distribution function
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For the purpose of illustratiorm,ande are assumed to be two The last term of Eq. (12) resembles remarkably a multivari-
independent Gaussian variables with standard deviatibns ate Gaussian distribution with a mean vectorgfand a co-

o. and o, respectively. This assumption is usually madeariance matrixy — [—V2lnp(xo|d)]_l. The normalizing
when no other information about the uncertain variables i%onstant is

available (Gregory, 2005). Equation (5) is the convolutidn

two Gaussians and it can be further reduced to another Gaus-

sian distribution as z / D qg ~ p(xo|d)/(27)7 3], (13)
X
1 —(d — M(y; z))?
pdlz) = e 5 P (2 3 (y2 ) - (8) 1 ) ) )
2m(0Z + 02) (02 +02) whereX = [~V2np(zo|d)] ", n is the dimension of the

Substituting Eqg. (3) into Eqg. (1) yields the posterior prob-va”ablex' and|x| 'S the deterr_mnant OE'. L
ability distribution of the uncertain parameterincorporat- . 1 ne non-normalized Bayesian posterior distributign|d)
ing the observable eveat The reliability or system state IS NOW approximated as
variables can readily be updated with Eq. (1). For problems
with high dimensional parameters, the evaluation of Eq. (1) p(z|d) ~ mexp {3 —20)"[Z"(x—=z0)}, (14)
is rather difficult because the exact normalizing consgnt A
which is a multi-dimensional integral, is either analytigin- _ I . o .
tractable or computationally expensive. Instead of evaiga which is a multivariate Gaussian distribution with a meac-ve
this equation directly, the most common approach is to drafr of zo and a covariance matrix. To computer, andX,
samples from it using MCMC simulations. For applicationsthe first step is to find the local maximalip(z|d) and eval-
where performance functions are computationally expensiviate the Hessian dfip(z|d) at the local maxima. Numeri-
to evaluate, this approach is time-consuming and hence n&@l root-finding algorithms can be used to find local maxima,
suitable for online updating and prognostics. To improwe th SUch as Gauss-Newton algorithm (Dennis Jr, Gay, & Walsh,
overall computational efficiency, Laplace method is pregbs 1981), Levenberg-Marquardt algorithm (More, 1978), trust
to approximate the non-normalized Bayesian posterioridist r€gion dogleg algorithm (Powell, 1970), and so on. Laplace
bution ofp(z|d). The derivation of Laplace approximation is method can yield accurate results given the target disioibu

ted below. is approximately Gaussian distributed, which is quite com-
presented below mon for practical problems (Gregory, 2005).
2.2 Laplace approximation for Bayesian posterior With the analytical representation of the posterior disti
distributions tion p(x|d), the updated reliability index can be calculated us-

ing the FORM method. In addition, updated system response
predictions associated with a reliability index or a conficks
level can also be calculated using inverse FORM method. For
the sake of completeness, the basic concept of the FORM and
inverse FORM methods are introduced briefly.

Consider the above non-normalized multivariate distrdsut
p(z|d) in Eq. (1) and its natural logarithimp(z|d). Expand-
ing lnp(z|d) using Tylor series around an arbitrary poirit

yields

Inp(z|d) =lnp(z*|d) + (z — ™) Vinp(z*|d)+
1
a(x — )" [V2Inp(z*|d)] (z — 2*)+ (9)
O((z — 2)%) The time-invariant reliability analysis entails compiaatof
’ a multi-dimensional integral over the failure domain of the
whereVinp(z*|d) is the gradient ofup(z|d) evaluated at*, ~ Performance function.

V2Inp(x*|d) is the Hessian matrix evaluatedzat, andO(-)
are higher-order terms. Assume that the higher-order terms

3. FORM AND INVERSE FORM METHODS

are negligible in computation with respect to the other term Pr = Plg(x) < 0] = / fx(z)dz, (15)
We obtain g(x)<0
Inp(x|d) ~ Inp(z*|d) + (z — %) Vinp(z*|d) + wherez € R" is a real-valued:-dimensional uncertain vari-
e able, g(z) is the performance function, such that:) < 0
(10) represents the failure domai# is the probability of fail-
l(x — 29T [Vzlnp(x*\d)] (z —2*). ure, andfx(x) is the joint probability distribution ofx.

2! The surfacey(x) = 0 is usually called limit-state surface.
. _ In FORM/SORM methods, the uncertain variable is usually
The term(x) is zero at local maxima (denoted ag) of the  transformed from the standard probability space to the-stan
distribution sinceVInp(zo|d) = 0. Therefore, if we choose gard Gaussian space, also referred toresiced variable
to expandnp(z|d) aroundz,, we can eliminate ternf«) in - gpace. Denote the transformed performance function@s,
Eq. (10) to obtain wherez € R" is ann-dimensional standard Gaussian vari-
able, also callededuced variable. The distance between the
closest point (most probable point (MPP), labeled as MPP in
Figure 1) on the limit-state surfaggz) = 0 to the origin in
the reduced variable space is the Hasofer-Lind reliabitiity

1 ‘ dex (Madsen et al., 1986), denoted®g;, in Figure 1. MPP
eMPCID 2 p(ao|d)exp {—5(90 = 20)" [ V*Iup(z0|d)) (= — wo)} - (12) s also known as theesign point.

Inp(x|d) ~ Inp(wo|d) + & (z — z0)” [V2Inp(zo|d)] (z — z0). (11)

Exponentiatingnp(x|d) of Eq. (11) yields



Annual Conference of the Prognostics and Health ManageS8wmaiety, 2011

limit-state surface to linear and quadratic terms. For example, using FORM
Ce@)=0 method yields the probability of failure as

PEORM = &(—By1), (18)

NORM -/ where® is the standard Gaussian CDF. The precision of this
' 4 approximation depends on the non-linearity of the liméttst
_ surface. Experience shows that FORM method yields accu-
\'\ rate results for general engineering purposes (Cheng,et al.
\/ 2007). FORM is a widely used computational model in reli-
MpR— ability index approach (RIA) for reliability-based desigp-
- _ timization (RBDO) since it finds the reliability indefy .
BrL N\ SORM The advantage of RIA is that the probability of failure is-for
wardly calculated for a given design. However, inverse reli
\ ability analysis in performance measure approach (PMA) is
known to be more robust and informative than the reliabil-
) ) . . ity analysis in RIA (Tu, Choi, & Park, 1999; Youn, Choi, &
Figure 1: Linear (FORM) and quadratic (SORM) approxima-py, 2005). The idea of inverse reliability analysis in PMA is
tions of the performance function at MPP on the limit-stateyg investigate whether a given design satisfies the prdbabil
surface. tic constraint with a target reliability inde®;. The inverse
reliability analysis can also be expressed as an optinoizati
Reliability analysis entails the computation/i;, and the  problem such that
design point, which is a standard constrained optimization minimize: g(=) subject tol||| = Bi. (19)

problem defined as
TS ; In inverse reliability analysis, among the different vedus
minimize: ||z|| - subject tog(2) = 0, (16) performance functiog(z) taking onz that pass through the
where||z|| denotes the distance between the peiaind the ¢ curve in the reduced variable space, the enh¢hat min-
origin in the reduced variable space. imizes the performance function is sought. Figure 2 illus-
The design point is generally not known a priori, hence arirates the inverse reliability analysis. The poirtis also
iterative process is required to find the design peinin the ~ called MPP and the corresponding minimal valuegof*)
reduced variable space such that;, = ||2*|| corresponds to is called probabilistic performance measure (PPM). Both re
the shortest distance betwegnand the origin of the reduced liability analysis and inverse reliability analysis searor
variable space. Because reduced variables are based on iEPs. The difference is that the former search for the MPP
mean and standard deviation of a normal distribution, time no on the limit-state surfacg(z) = 0 while the latter search for
normal variables must be transferred to its equivalent mbrm MPP on thes, curve. Based on the idea of inverse FORM
distribution. Rackwitz-Fiessler (Madsen, 1977) procedsr ~Pprocedure proposed in (Der Kiureghian et al., 1994), an effi-
usually adopted for this purpose. The idea requires the cigient and simplified iterative formula in the reduced valeab
mulative density function (CDF) and the probability depsit space is formulated as:

v

function (PDF) of the target distribution be equal to a nor- Vo(z1)
mal CDF and PDF at the value of variabteon the limit- Zke1 =2k + A |— ARSI (20)
state surface. This procedure finds the megnand standard IVg(zr)l

deviationo., of the equivalent normal distribution and thus ywhereV is the gradient vector with respect tcand\ is the
the variabler can be reduced to a standard Gaussian variablgiep size at théth iteration (a small constant is used in this
z = (& — peq)/0eq. Several algorithms are available to 10- formula instead of an adaptive value). The initial valyds
cates the design point’, for example the Hasofer & Lind syally assigned to the distribution mean value. The iterat

- Rackwitz & Fiessler (HL-RF) algorithm (Hasofer & Lind, procedure proceeds until a convergence is achieved, henw
1974; Rackwitz & Flessler, 1978). With an initial guessf

on the limit-state surface, the basic procedure computes th |2k+1 — 2]
new location forz* iteratively according to | 2541

_ 1 T wheres is a small quantity assigned by the user. For practical
T V() [Vo(ar)ze — 2] Vo(2t) (17) problems,e; = 10~ to 103 usually yields satisfactory es-
o ] timates (Cheng et al., 2007). Based on the iterative formula
A reasonable guess can be fixing the first1 components of  an algorithm locating MPP in inverse reliability problenss i
2o to its distribution means and solving for the last componengjiven as Algorithm 1.
on the limit-state surface. Tr|1e iterative| procedure teatss
based on some criteria such|gs1 — Sk| < €3, Whereeg is - - - -
a small control parameter assigned by userﬂs. Usuallf/ aval lg(gt'trzwatl)"li?v?r:gg)EORM algorithm solving MPP given a
of e = 10~* to 1072 yields accurate results foly ;, and the 9 _ y !
design point(Cheng et al., 2007). 1: Initiate zo and, setk = 0

After finding the design point angly , by solving Eq. (16) 2 repeat )
using the iterative formula of Eq. (17), FORM or SORM 3:  calculatez;, according to Eq. (20)
can approximate the probability of failure using a linear or 4: calculated = %
quadratic approximation of the performance function,eesp .. ;. . . +1 e
tively. Both of them are based on Taylor series expansion of " |\ il 7 < ¢
the performance function around the design point truncated™ =t

<e, (21)

Zk+1
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For a given confidence level, the reliability indexes asso4.1 A numerical example with two uncertain variables

ciated with that level should be first calculated using iBeer cgnsider a performance functi — describ-
Gaussian CDF then the MPPs associated with these indengg an obsef\,ab,e event — f(w,%ﬁye), whgr;rxyandy are

can be calculated using Algorithm 1. System responses afg o uncertain variables andis an Gaussian error term with

readily evaluated with these MPPs. zero mean and a standard deviatiorrpf= 0.5. Variablex
is normally distributed with a mean of, = 2 and a stan-
A dard deviation o, = 0.5 and variabley is also normally

distributed with a mean, = 5 and a standard deviation
o, = 1.5. Variablesxz andy are correlated with a corre-

lation coefficient ofp,, = —0.5. The covariance matrix is
oi OO0y Pary . . .
Yoy = ooy ;’5 J}. f(z,y) > 9 is defined as fail-

ure event and the limit-state surfacefig,y) — 9 = 0. The
likelihood function can be expressed according to Eqg. (8) as

1 1[z— f(z,y) 2
p(zlz) = \/TTQGXP {—2 |:0'€:| } . (22)

Assume that the evidence of= 8 is observed. The poste-

rior distribution that encodes this information is formela
according to Eq. (1) as,

v

Figure 2: Inverse reliability analysis and MPP for targettpr 1 1 /e T .
ability of failure of 5, and the linear approximation of the per-  r(zl2) = P {—5 (y‘ _ jjjj) [Zay) ™ (é} _ ﬁjj)} X
formance function at MPP labeled as FORM. Valueg (@f) o '

are for illustration purposes only. LI {7; {z - f(w)] 2} '

2Toe 2 O

(23)

Both iterative formulae in Eq. (17) and Eq. (20) implicity _Based on the information given above, the prior estimate
assumes that the components:adre uncorrelated. For cor- ©Of the probability of failure for evenf(z,y) > 9 and the
related component variables in the correlated components Prediction of system responseassociated with a given relia-
need to be transformed into uncorrelated components via tHality or confidence level can be calculated using FORM and
orthogonal transformation of = L~1(:T), whereL is the = MVerse FORM methods. After obtaining the additional data

lower triangular matrix obtained by Cholesky factorizatif Iiigéfh?giee(jséirneqat'?ﬁecin gaeti%pda:ggegss’i?;?;trlleiﬁ(/%?\?ée? an-
the correlation matrix? such that.Z' = R, whereL’ is the yucalp Ire. p g pro y
Laplace approximaton orthe posterior o £q, (33). Thanth
The overall computational procedure according to the proboint (z*,*) and3 aﬁd the probabﬂit;/of failuré can be 9
posed method is summarized as follows: estimated using FORM accordingdd— )
1. Formulate Bayesian posterior distributions according t 10 calculate the confidence bound (e.dlo, up =
Eq. (8). [0.025, 0.975] bound) ofz, reliability indexes associated with
. o . the upper and lower limits are first calculated according to
2. Compute the posterior approximation according to Eqs, — &~'(lo) and8,, = ®'(up). The iterative inverse
(14). FORM formula of Eq. (20) solves the required design point

3. Reliability or probability of failure estimation is cale for S, and Sy Finally the confidence bound of can be

o : computed using these two design points. To compare the effi-
lated using iterative formula of Eq. (17) and Eq. (18). ciency and the accuracy, MC and MCMC simulations serve
4. To estimate system responses associated with a reliabfs benchmark solutions to this example. Table 1 presents

ity level or confidence level, calculate MPPs using Al-results for this example. The prior estimates for probgpili

gorithm 1 and then calculate system responses with thef failure (PoF) and interval prediction are calculatechgsi
obtained MPPs. FORM and inverse FORM methods, respectively. For this

] o ) simple example, just a few function evaluations ensure ob-
Prior estimations are evaluated according to Steps 3 andtdining converged results. A crude Monte Carlo simulation

using prior distributions. To illustrate the proposed neeth \ith 105 samples yields very close results. For the posterior

several examples are presented in the next section. estimate with Bayesian updating, the proposed analytial s
lutions using Laplace, FORM, and inverse FORM (results are
4. EXAMPLES labeled as iFORM in all the tables hereafter) methods are ver

close to the solution obtained using MCMC simulation with

A numerical example is given first to illustrate the overalla chain length ofl0°. By comparing the number of function
procedure, and a practical fatigue crack propagation prokevaluations between the analytical and MC or MCMC solu-
lem with experimental data and a beam example with finitgions, it is observed that the proposed analytical method ca
element analysis data are demonstrated. Comparisons witeduce the computational cost by several orders of magnitud
traditional simulation-based methods are made to invatgtig It would be significantly advantageous to use the proposed
the accuracy and computational efficiency of the proposednalytical procedure for time constrained or online praimo
method. systems.
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Table 1: Probability of Failure (PoF), confidence interv@l)(estimates, and the number of function evaluations (Nf6E)
f(z,y) = x +y. Bothz andy are normally distributed with means of 2 and 5 and standawihtiens of 0.5 and 1.5,
respectively. The correlation coefficient betweeandy is —0.5. The failure is defined ag(z, y) > 9.

Method PoF 95 CI NFE
prior FORM,IFORM 0.030181 4.2579.7430 21
MC 0.030417 4.24939.7455 106
posterior Laplace,FORM,IFORM 0.0045455 6.6538.9852 47
MCMC 0.0046910 6.65068.9898 106

4.2 Rédiability updating and response prognostics of a For this particular crack and geometry configurationy =

fatigue crack damaged system with experimental rafsec(ra/w)]Ac. Termse andm are uncertainty model
data parameters that are usually obtained via statistical ssgva
In this section, a practical fatigue crack damage problem ianalysis of experimental testing data. For convenieheds
presented with experimental data. As a typical damage modesually used instead ef Given a specific number of loading
in many structures, the reliability of a system with possibl cycles, solving the ordinary differential equation in Eg4)
fatigue cracks must be accurately quantified in order tocavoigives the corresponding crack size.
severe failure events. Because fatigue crack propagation i The first fifteen crack growth trajectories from Virkler's
a time-dependent process, crack growth prognosis providekataset identifies these two parameters using Maximum Like-
valuable information for system maintenance or unit replac lihood Estimation as a joint Gaussian distributionlbfc, m)
ment. Due to the stochastic nature of fatigue crack propagavith a mean vector ofiy = [—26.7084, 2.9687] and a co-
tion, fatigue crack growth is not a smooth and stable procesgariance matrix o, = [ 0.5435 —0-0903}_
Therefore additional information such as usage infornmatio —0-09030.0150
from health monitoring systems and crack size measures from (Ine, m) — L
inspections can be used to update various quantities af inte 7" T 5 /T%0]
est. By performing continuous updating, uncertaintie®-ass 1 (25)
ciated with system reliability and crack size prognosislocan exp {—5 [(Inc, m) — o] £5* [(Inc, m) — uo]T}
reduced for decision-making. Because crack growth equa-
tions are usually in the forms of differential equations er fi  As we mentioned earlier in this section, another specimen
nite element models, simulation-based methods are relativ from the rest of the dataset is arbitrarily chosen to represe
more expensive in terms of computational cost. To demonthe target system. The reliability and crack growth progno-
strate the updating procedure with the proposed method aris of this target system are of interest. The prior estimate
validate its effectiveness and efficiency, experimenttd dee  of reliability and fatigue crack growth prognosis of the-tar
incorporated in this example. A portion of the experimentalget system can then be estimated using this joint distdhuti
data is used to obtain the parameter distributions of thekcra and the model in Eq. (24). LeM(N;Inc,m) denotes the
growth equation and one from the rest of the dataset is arbmodel output (crack size) given a number of loading cycles
trarily chosen to represent the "actual” target systemstFir N and parametertac andm. Three crack size measures
we estimate PoF and crack growth prognosis with the priog,; with corresponding numbers of loading cycl®s at the
parameter distributions. Then we choose a few points fromearly stage of the target system are chosen to represent the
the "acutal” target system to represent measurements froectual inspection data. They afe;, N;) = (10,33062),
crack size inspections. These measures are used to perfofay, No) = (11,55101), and(az, N3) = (12,75569). The
Bayesian updating with the analytical methods proposed igtandard deviation of Gaussian likelihood is also estichate
previous sections. Both system reliability and crack glowt aso, = 0.304mm. The failure event is defined as the crack
prognosis are updated. Results are compared with simmatiosize exceeding 40.0mm given the number of loading cycles as
based methods in terms of accuracy and efficiency. 220,000. With these additional measurement data, the-poste
(Virkler, Hillberry, & Goel, 1979) reported a large set of rior distribution of(Inc, m) (with r response measures) reads
fatigue crack propagation data on aluminum alloy 2024-T3.
The dataset consists of fatigue crack propagation trajecto Pn(Inc,m) o< po(Inc, m)x
ries recorded from 68 center-through crack specimens, each 1 M(N-1 2 (26)
of which has the same geometry, loading, and material con- expd — = Z |:az — M(Nj; nc,m}
figurations. Each specimen has a widthwof= 154.2mm 2~
and a thickness off = 2.54mm. The initial crack size is ) B ) )
ap = 9.0mm. A constant cyclic loading with a stress range Following the proposed analytical procedure, we obtain
of Ao = 48.28MPa was applied. Without loss of generality, updated results of reliability and crack size prognosis: Ta
the classical Paris’ equation (Paris & Erdogan, 1963) is choble 2 shows the prior and posterior (updated) results of PoF
sen as the crack growth rate governing equation. Other cragd 95% interval predictions of crack size at 220,000 load-
growth equations can also be applied with the same procéag cycles. We can observe from this table that the simuiatio
dure. Paris’ equation describes the crack growth rate per orimethod requires 200,000 function evaluations while the ana

Oq

constant cyclic load as lytical method requires less than 200 function evaluations
da produce similar results. _ _
— = ¢(AK)™, (24) Figure 3 presents crack growth prognosis results obtained
dN by the proposed analytical method. MCMC simulation re-

whereA K is the stress intensity range in one loading cycle sults are displayed in the same figure for comparison. Severa
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Table 2: Prior and updated estimates of Probability of FailiPoF), confidence interval (Cl) for crack size, and the loeim
of function evaluations (NFE) for fatigue crack problem.eTilure is defined as the crack size exceeds= 40mm at the
number of loading cycled/. = 220, 000. 95% CI predictions are calculated at the number of loadydes equal tav...

Measures Method PoF 95% CI NFE
0(prior) FORM,iIFORM 0.0467 28.829041.3095 60 ]
MCMC 0.0498 28.941741.4685 2 x 10°
1 Laplace,FORM,IFORM 0.0225 28.36%29.8084 96
MCMC 0.0186 28.356339.5466 2 x 10°

5 Laplace,FORM,IFORM 0.0042 27.79287.4207 105

MCMC 0.0039 27.698937.3537 2 x 10°
3 Laplace,FORM,IFORM 0.0002 27.24884.9112 111
MCMC 0.0001 27.081%34.6913 2 x 10°
50 " " T T T 50 " " " ' N
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Figure 3: Prior and posterior prognostics of fatigue craakgh trajectory using the proposed method (Laplace,iFQRMI
the traditional simulation-based methods (MCMC). Mediad 85% interval predictions are presented: (a) prior esiona
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number of cycles

©

0
0

50000 100000 150000 200000 250000
number of cycles

(d)

(b) updated with 1 measure; (c) updated with 2 measuresp@ited with 3 measures.

aspects can be observed and interpreted: 1) The proposed ditrese uncertainties cause the prior estimation deviabes fr
alytical Laplace and (inverse) FORM method yields almosthe actual target system. 3) Inspection data, or crack seze m
surement in this example, is critical to improve the accyrac
MCMC simulations, which can be confirmed by observingfor time-dependent nonlinear system prognostics. With in-
Figure 3(a-d). 2) In Figure 3(a), the prior median and irdérv spection data, uncertainties can be greatly reduced. Agrsho
in Figure 3(b-d), both the median and interval predictiars f
tem because of various uncertainty associated with thé cracrack growth trajectories become closer to the actualdraje
propagation process such as the material uncertainty, Imodeories as more measurements are integrated into the Bayesia

identical prognostic results to those obtained using titil

prediction of the crack growth is far from the actual targests

ing uncertainty, as well as measurement uncertainty. Thesgdating process.
uncertainties are finally encoded into the model parameter
(Ine, m) in form of distributions through statistical regression.
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4.3 A cantilever beam example Using the proposed method we obtain results shown in Ta-

A beam example is used to examine the proposed methgy® (3)- Simulation-based results are also listed in tHieta
through finite element analysis (FEA). Data from FEA pro-0f comparison.
vide representative sensor output. By analyzing the sensor
output data, frequency information of the beam is extratded ] ] . -
update the finite element model and also the reliabilitylleve Table 3: Prior and posterior estimates of probability of
For the sake of illustration and simplification, we use a $emp failure (PoF) in the beam example. Frequency data (first four
cantilever beam. More complex full-scale structural fiei= = natural frequency extracted from synthesized noisy data vi
ment model analysis follows the same procedure as present&#T) are used to perform Bayesian updating. Statistics of
here. a (mean,standard deviation(SD)) and computational cost in
A cantilever aluminum beam is divided into ten elementsterm of number of function evaluations (NFE) are shown.
using finite element modeling, as shown in Figure (4). The
bear% is 1m long, 0.1m wideg and 0.01m thickg Th((a ziesig Method PoF _ NFE a(mean,SD)
cross section area i = 0.001m?. Assume the cross section  Prior: MC 0.004428 105 1.0, 0.02
area of the first segment of the beam (attached to the wall) Laplace,FORM  0.0182 57  0.9757, 0.0134
is modeled byAd; = aA due to manufacturing uncertainty, MCMC 0.0164 10° 0.9760, 0.0135
where terma is a Gaussian variable with a mean of 1 and
a standard deviation of 0.5. Because of usage (aging) and o
material degradatiory may vary along time. Othger s(egmg)nts Results of the proposed method are similar to those ob-
have deterministic cross section dimensions that are equal {2ined using traditional simulation-based methods. Hawev
the design value ofl. The material has a Young’s modulus the computational cost is much smaller. Finite element mod-

_ 10 ; 3 3 els in practical problems are usually more sophisticatad th
of £/ = 6.96 x 10""Pa and a density &£73 x 10°kg/m". this beam example, and simulation-based methods are not

feasible for such computationally extensive problems. The
proposed method provides an alternative to solving sudb+pro

lems and it yields accurate results under the condition that

uncertain variables are approximately Gaussian-like.

In this section, three examples are presented to demamstrat

Y - | m and validate the proposed analytical method. Some impiortan

the cross section area of fixed-end element (#1) is uncertain .aSpeCtS of the pl:Oposed methOd are C|059|Y revealed! tnclud
ing the computational benefits in terms of efficiency and accu

Figure 4: The cantilever beam finite element model. Thd2Ccy. Appropriate conditions to assure these benefits ace al
cross section area of the first element (attached to the walfjnalyzed:

is uncertain due to manufacture and usage and is modeled b

A, = aA, whereA = 0.001m? is design cross section area °- CONCLUSIONS

anda ~ Norm(1,0.022). In this paper, an efficient analytical Bayesian method fer re
liability and system response updating is developed. The
The failure event is defined as the first natural frequencynethod is capable of incorporating additional information
is less than 8Hz due to the degradation of the stiffness of theuch as inspection data to reduce uncertainties and im-
beam. The sensor data are synthesized by seiting0.95  prove the estimation accuracy. One major difference be-
and solving the dynamical equation of the beam under a freveen the proposed work and the traditional approach is that
vibration. After adding 5 percent of Gaussian white noisethe proposed method performs all the calculations includ-
the first four mode frequency data are extracted from the sef?g Bayesian updating without using MC or MCMC simu-
sor data using Fast Fourier Transformation (FFT). They arétions. A numerical example, a practical fatigue crackppro
(f1, fa, f3, f4) = (8.03,50.5, 142, 280) H . agation problem with experimental data, and a finite element
Based on the above information, the Bayesian posteridPeam problem with FEA data are presented to demonstrate
for uncertain variablex given the frequency information ex- the proposed method. Comparisons are made with traditional

posterior:

tracted from the sensor data is simulation-based methods to investigate the accuracyfand e
) ficiency. Based on the current study, several conclusioams ar
p(u)aexp{_l(“*j) } drawn.
QF Oj 27) 1. The proposed method provides an efficient analytical
B ‘ ETEPR 2 computational procedure for computing and updating system
X‘“‘XP{ ;_1 ({whi [(-@rf)*M(e) + K(@) {6:}], ) } reliability responses. No MC or MCMC simulation is re-

quired therefore it provides an feasible and practical -solu
whereN is the number of measured mode ands the num-  tion to time constrained or online prognostics. The method
ber of measured mode shape coordinates. Teoty is the is also beneficial for structural health monitoring probéem
ith weighting factor for ith frequency component in the like where Bayesian updating and system response predictiens ar
lihood function. For the purpose of illustratiofw} is con-  frequently performed upon the arrival of sensor data.

figured such that each frequency component has a coefficient2. The proposed method is capable of incorporating addi-
of variation of 0.1. Termd®I(«) andK(«) are the mass and tional information such as the inspection data and usage dat
stiffness matrices, respectively. Becausés a variable, ac- from health monitoring system by way of Bayesian updat-
tual values folM(«) andK(«) depends on each realization ing. This property is beneficial for highly stochastic time-
of a. Term{¢}, is the ith mode shape. For the current datadependent nonlinear system where prior estimates for-relia
N =4 andF = 20. bility and system response may become unreliable along with
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system developing. By continuous Bayesian updating, esti- lower-level data in reliability assessmentReliability
mation uncertainties can be reduced. Engineering & System Safety, 93(8), 1273-1279.

3. The proposed method yields almost identical resultéregory, P. (2005).Bayesian logical data analysis for the
to those produced by traditional simulation-based methods physical sciences: a comparative approach with Math-
given that uncertain variables are approximately Gaussian ematica support. Cambridge Univ Pr.
distributed. This is true for most of the engineering prade Guan, X., Jha, R., & Liu, Y. (2009). Probabilistic fa-
where the uncertain parameters are normal or log-normal tigue damage prognosis using maximum entropy ap-
variables (which can be transformed and truncated into nor- proach. Journal of Intelligent Manufacturing, 1-9.
mal variables). When these conditions are not assured,the re (10.1007/s10845-009-0341-3)
sults need careful interpretations. The efficiency and@oyu  Hasofer, A., & Lind, N. (1974). Exact and invariant second-
of the proposed method is demonstrated and verified using moment code formatJournal of the Engineering Me-
three examples. The proposed method provides an alteznativ chanics Division, 100(1), 111-121.
for time-constrained prognostics problems. If the problenHong, H. (1997). Reliability analysis with nondestructive
involves too many random variables, traditional simulatio inspection.Sructural Safety, 19(4), 383-395.
based method may be more appropriate. Systematical coralos, M., & Whitlock, P. (2008). Monte carlo methods.
parisons of the method with other approaches such as varia-  Wiley-VCH.

tional method will be conducted in the future. Lee, I, Choi, K., Du, L., & Gorsich, D. (2008). Inverse anal-
ysis method using MPP-based dimension reduction for
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