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ABSTRACT

Distributed fault diagnosis solutions are becom-
ing necessary due to the complexity of modern
engineering systems, and the advent of smart
sensors and computing elements. This paper
presents a novel event-based approach for dis-
tributed diagnosis of abrupt parametric faults in
continuous systems, based on a qualitative ab-
straction of measurement deviations from the
nominal behavior. We systematically derive dy-
namic fault signatures expressed as event-based
fault models. We develop a distributed diagnoser
design algorithm that uses these models for de-
signing local event-based diagnosers based on
global diagnosability analysis. The local diag-
nosers each generate globally correct diagnosis
results locally, without a centralized coordinator,
by communicating a minimal number of mea-
surements between themselves. The proposed ap-
proach is applied to a multi-tank system, and re-
sults demonstrate a marked improvement in scal-
ability compared to a centralized approach.

1 INTRODUCTION
The complexity of modern engineering systems war-
rants the adoption of fault diagnosis capabilities to en-
sure system safety, reliability, and availability. Faults
must be quickly isolated so that mitigation or recovery
actions may be taken. As systems become more com-
plex, it is correspondingly more difficult to develop
and deploy centralized diagnosis solutions. Further,
such centralized schemes have single points of failure,
do not scale as the size of systems increases, and have
large computational and memory requirements. This,
along with the increased pervasiveness of distributed,
networked components, fuels the need for distributed
diagnosis frameworks.

In previous work, we have developed a centralized
framework for qualitative event-based diagnosis for
parametric faults in continuous systems (Daigle et al.,
2009). Deviations of measured behavior from pre-
dicted nominal behavior, termed fault signatures, are

captured qualitatively using magnitude and slope sym-
bols, forming the basis of the qualitative fault isolation
scheme (Mosterman and Biswas, 1999). The orders in
which these deviations manifest, termed relative mea-
surement orderings, are also used for fault isolation,
thus forming event-based descriptions of fault-induced
behavior. This diagnostic information may be com-
puted from the system model and used to build event-
based diagnosers similar to those used for discrete-
event systems (DES) (Sampath et al., 1996). However,
this centralized approach scales poorly, because as the
number of faults and measurements increases, the pos-
sible number of event traces increases as well.

To address the problems of centralized diagnosis,
we apply the distributed diagnoser design methodol-
ogy presented in (Roychoudhury et al., 2009) to the
formal event-based framework developed in (Daigle et
al., 2009). The distributed diagnoser design approach
of (Roychoudhury et al., 2009) is based on global di-
agnosability analysis, where the local diagnosers are
designed to provide globally correct diagnosis results,
without a centralized coordinator, and by communicat-
ing a minimal number of measurements among them-
selves. The approach does not incorporate measure-
ment orderings, but the addition of measurement or-
derings improves diagnosability, allowing the local di-
agnosers to be more efficient.

This paper presents, using a multi-tank system as a
case study, how a global event-based diagnoser may
be decomposed into several independent local event-
based diagnosers, each of which leverages measure-
ment orderings for diagnosis. We develop an algorithm
for designing distributed diagnosers based on the ideas
of (Roychoudhury et al., 2009), but which uses mea-
surement orderings to guide the diagnoser design pro-
cess. Distributed diagnoser design results demonstrate
the reduction in diagnoser size that may be obtained
using this approach, resulting in, for each subsystem,
a small, compact local diagnoser capable of provid-
ing globally correct diagnoses of local faults. Results
demonstrate the improved scalability of the distributed
approach over a centralized approach.

The paper is organized as follows. Section 2 for-
mulates the system model. Section 3 reviews quali-
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Figure 1: Tank system schematic.

tative fault isolation and event-based fault modeling,
and defines diagnosability in the event-based frame-
work. Section 4 describes the distributed diagnoser
design problem. Section 5 discusses the global and lo-
cal diagnoser construction, and Section 6 demonstrates
the approach in simulation, and provides scalability re-
sults. Section 7 concludes the paper.

2 MODEL FORMULATION
We consider the problem of single fault diagnosis in
continuous systems. We assume the system, S, is de-
scribed by

ẋ(t) = f(x(t),θ(t),u(t)) + v(t)
y(t) = h(x(t),θ(t),u(t)) + n(t),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ

is the parameter vector, u(t) ∈ Rnu is the input vec-
tor, v(t) ∈ Rnv is the process noise vector, assumed
to be zero-mean Gaussian, f is the state equation,
y(t) ∈ Rny is the output vector, n(t) ∈ Rnn is the
measurement noise vector, assumed to be zero-mean
Gaussian, and h is the output equation. The dimen-
sion of a vector a is denoted by na.

We denote a measurement as m, which is a time-
varying signal of y(t) obtained from an associated sen-
sor. A measurement set is denoted as M .

We consider single, abrupt, parametric faults, where
faults are modeled as unexpected step changes in sys-
tem parameter values. We name faults by the asso-
ciated parameter and the direction of change, i.e., θ+
denotes a fault defined as an increase in the value of
parameter θ, and θ− denotes a fault defined as a de-
crease in the parameter value. We denote a fault as f
and a set of faults as F .

Throughout the paper, we will use a multi-tank sys-
tem as a running example. The tanks are connected
serially as shown in Fig. 1, and we will consider a vari-
able number of tanks. For tank i, ui denotes the input
flow, Ci denotes the capacitance, and Ri denotes the
drain pipe resistance. For tanks i and j, Rij denotes
the resistance of the connecting pipe. For an n-tank
system, the pressure of tank i = 1 is described by

ṗi =
1
Ci

(
ui −

1
Ri

(pi)−
1

Ri,i+1
(pi − pi+1)

)
,

of tanks i = 2, . . . , n− 1 by

ṗi =
1
Ci

(
ui +

1
Ri−1,i

(pi−1 − pi)

− 1
Ri

(pi)−
1

Ri,i+1
(pi − pi+1)

)
,

and of tank i = n by

ṗi =
1
Ci

(
ui −

1
Ri

(pi)−
1

Ri−1,i
(pi−1 − pi)

)
.

The complete fault set consists of {C−i , C+
i , R

−
i , R

+
i :

i = 1, . . . , n} ∪ {R−i,i+1, R
+
i,i+1 : i = 1, . . . , n − 1}.

The complete measurement set is defined as {qi : i =
1, . . . , n}, where qi describes the output flow of tank
i, i.e.,

qi =
1
Ri

(pi).

3 QUALITATIVE EVENT-BASED DIAGNOSIS
FRAMEWORK

We develop an event-based, qualitative diagnosis
framework. Faults are viewed as unobservable events,
manifesting as persistent abrupt changes in system pa-
rameter values. These faults cause transients in the
system behavior, causing deviations in observed mea-
surement values from nominal measurement values.
In this section, we first review the theoretical frame-
work for qualitative fault isolation, followed by a for-
mal framework for event-based fault modeling.

3.1 Qualitative Fault Isolation
Measurement deviations from nominal values caused
by faults are abstracted using qualitative +, -, and
0 values to form fault signatures (Mosterman and
Biswas, 1999). Fault signatures represent these devi-
ations as the immediate change in magnitude and the
first nonzero derivative change.
Definition 1 (Fault Signature). A fault signature for a
fault f and measurement m is the qualitative magni-
tude and slope change in m caused by the occurrence
of f , and is denoted by σf,m ∈ Σf,m.

In general, ambiguities may exist in the fault signa-
tures, so σf,m may not be unique. A fault signature is
written as s1s2, where s1 is the qualitative magnitude
change and s2 is the qualitative slope change, e.g., +-.

We also capture the temporal order of measure-
ment deviations, termed relative measurement order-
ings (Daigle et al., 2007b), based on the intuition that
fault effects will manifest in some parts of the system
before others. Measurement orderings are based on
analysis of the transfer functions from faults to mea-
surements (Daigle et al., 2007b).
Definition 2 (Relative Measurement Ordering). If
fault f manifests in measurement mi before measure-
ment mj , then we define a relative measurement or-
dering between mi and mj for fault f , denoted by
mi ≺f mj . We denote the set of all measurement
orderings for f as Ωf,M .

The fault signatures and measurement orderings can
be computed automatically from a system model. One
method is to use a temporal causal graph (TCG) repre-
sentation that is derived from the system model, along
with a forward propagation algorithm to predict quali-
tative effects of faults on measurements and their pos-
sible sequences of deviations (Daigle, 2008).

The fault signatures and measurement orderings for
a three-tank system with F = {C−1 ,C−2 ,C−3 ,R+

1 ,R+
2 ,
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Table 1: Fault Signatures and Relative Measurement
Orderings for the Three-tank System

Fault q1 q2 q3 Measurement Orderings
C−1 +- 0+ 0+ q1 ≺ q2, q1 ≺ q3, q2 ≺ q3
C−2 0+ +- 0+ q2 ≺ q1, q2 ≺ q3
C−3 0+ 0+ +- q2 ≺ q1, q3 ≺ q1, q3 ≺ q2
R+

1 -+ 0+ 0+ q1 ≺ q2, q1 ≺ q3, q2 ≺ q3
R+

2 0+ -+ 0+ q2 ≺ q1, q2 ≺ q3
R+

3 0+ 0+ -+ q2 ≺ q1, q3 ≺ q1, q3 ≺ q2
R+

12 0+ 0- 0- q2 ≺ q3
R+

23 0+ 0+ 0- q2 ≺ q1

R+
3 ,R+

12,R+
23} and M = {q1, q2, q3} are shown in Ta-

ble 1. For example, a decrease in the capacitance of
tank 1, denoted by C−1 , causes a discontinuous in-
crease in the tank 1 output flow, q1, followed by a
smooth decrease, denoted by the signature +-. This
is followed by smooth increases in q2 and then q3. The
tanks provide natural delays of the propagation of fault
effects, which manifest in the computed orderings.

3.2 Event-based Fault Modeling
Fault signatures combined with relative measurement
orderings provide event-based information for diagno-
sis. For a given fault, the combination of all fault sig-
natures and measurement orderings yields all the pos-
sible ways a fault can manifest in the measurements.
We denote each of these possibilities as a fault trace.
Definition 3 (Fault Trace). A fault trace for a fault f
over measurements M , denoted by λf,M , is a string of
length≤ |M | that includes, for every m ∈M that will
deviate due to f , a fault signature σf,m, such that the
sequence of fault signatures satisfies Ωf,M .

Note that the definition implies that fault traces are
of maximal length, i.e., a fault trace includes devia-
tions for all measurements affected by the fault. We
group the set of all fault traces into a fault language.
The fault model, defined by a finite automaton, con-
cisely represents the fault language of a fault.
Definition 4 (Fault Language). The fault language of
a fault f ∈ F with measurement set M , denoted by
Lf,M , is the set of all fault traces for f over measure-
ments M .
Definition 5 (Fault Model). The fault model for a fault
f ∈ F with measurement set M , is the finite au-
tomaton that accepts exactly the language Lf,M , and
is given by Lf,M = (S, s0,Σ, δ, A) where S is a set of
states, s0 ∈ S is an initial state, Σ is a set of events,
δ : S × Σ → S is a transition function, and A ⊆ S is
a set of accepting states.

The finite automata representation allows for the
composition of the fault signatures and relative mea-
surement orderings into fault models. The possi-
ble fault signatures and measurement orderings can
be composed automatically to form the fault models
based on the synchronization operation (Daigle et al.,
2009).

Selected fault models for a three-tank system are
shown in Fig. 2. For example, as seen in LC−

2
, the
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Figure 2: Fault models for some faults of the three-
tank system, where M = {q1, q2, q3}.

fault C−2 may manifest as the fault traces q+−2 q0+1 q0+3

and q+−2 q0+3 q0+1 , as implied by the fault signatures and
measurement orderings.

3.3 Diagnosability
With the formal fault isolation framework defined, we
may now establish the notions of distinguishability and
diagnosability in this framework. Using these defini-
tions, we can then formally define the distributed di-
agnoser design problem. Distinguishability between
faults is characterized as follows.
Definition 6 (Distinguishability). With measurements
M , a fault fi is distinguishable from a fault fj , denoted
by fi �M fj , if fi always eventually produces effects
on the measurements that fj cannot.

Under our framework, one fault will be distinguish-
able from another fault if it cannot produce a fault trace
that is a prefix (denoted by v) of a trace that can be
produced by the other fault1. If this is not the case,
then when that trace manifests, the first fault cannot be
distinguished from the second.

We define a system in our framework as follows.
Definition 7 (System). A system S is tuple
(F,M,LF,M ), where F = {f1, f2, . . . , fn} is a
set of faults, M is a set of measurements, and
LF,M = {Lf1,M , Lf2,M , . . . , Lfn,M} is the set of
fault languages.

If a system is diagnosable, then we can make guar-
antees about the unique isolation of every fault in the
system.
Definition 8 (Diagnosability). A system S =
(F,M,LF,M ) is diagnosable if (∀fi, fj ∈ F )fi 6=
fj =⇒ fi �M fj .

If S is diagnosable, then every pair of faults is dis-
tinguishable using the measurements in M . So, each
fault trace we observe can be linked to exactly one
fault, meaning that we can uniquely isolate all faults
of interest. If S is not diagnosable, then ambiguities

1A fault trace λi is a prefix of fault trace λj if there is
some (possibly empty) sequence of events λk that can extend
λi such that λiλk = λj .
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will remain after fault isolation, i.e., after all possible
measurement deviations have been observed.

4 DISTRIBUTED DIAGNOSER DESIGN
Given a system that is diagnosable2, our objective is to
decompose the overall diagnosis task into smaller sub-
tasks performed by local diagnosers with the following
properties: (i) all single faults of interest in the system
can be diagnosed, and (ii) the local diagnosis results
are globally correct. These two properties eliminate
the need for a centralized coordinator.

The system S is split into n subsystems, where each
fault is assigned to exactly one subsystem, and each
subsystem gets a subset of the complete measurement
set. The subsystem definitions are provided by the user
as input.
Assumption 1. S = (F,M,LF,M ) is split into S1,
S2, . . ., Sn, where Si = (Fi,Mi, LFi,Mi), such that
(i) F = F1 ∪ F2 ∪ . . . ∪ Fn, (ii) ∀i 6= j ∈ [1, n],
Fi ∩ Fj = ∅, and (iii) ∀i Mi ⊆M .

Subsystems may be locally diagnosable. A locally
diagnosable subsystem is one in which its own faults
can be uniquely isolated using its own measurements.
Definition 9 (Local Diagnosability). A subsystem
Si = (Fi,Mi, LFi,Mi

) is locally diagnosable if (∀fi ∈
Fi, fj ∈ Fi) fi 6= fj =⇒ fi �Mi

fj . We say two
faults fi ∈ Fi and fj ∈ Fi are locally distinguishable
if fi �Mi

fj .
Local diagnosability is not sufficient for local di-

agnosers to achieve globally correct diagnoses. The
problem is that for Si, there may be some fi ∈ Fi and
for Sj , some fj ∈ Fj , such that fj produces the same
effects onMi as fi does. The result is that, if fj occurs
local diagnoser i will say that fi has occurred. In gen-
eral, we may have faults in a subsystem that are distin-
guishable from faults local to the subsystem, but which
may not be distinguishable from faults outside the sub-
system. For the local diagnosers to achieve globally
correct local diagnoses, the subsystems must satisfy a
notion of global diagnosability.
Definition 10 (Global Diagnosability). A subsystem
Si = (Fi,Mi, LFi,Mi) belonging to system S =
(F,M,LF,M ) is globally diagnosable if (∀fi ∈
Fi, fj ∈ F )fi 6= fj =⇒ fi �Mi

fj . We say two
faults fi ∈ Fi and fj ∈ F are globally distinguishable
if fi �Mi

fj .
That is, a subsystem Si is globally diagnosable if

all the faults Fi are distinguishable from every other
fault f ∈ F using only the measurements in Mi. If the
subsystems can be structured such that each subsystem
Si is globally diagnosable, then each local diagnoser
can independently generate local diagnoses which are
globally correct.

For example, consider the three-tank system defined
earlier, with F = {C−1 ,C−2 ,C−3 ,R+

1 ,R+
2 ,R+

3 ,R+
12,

2If the system S is not diagnosable, we can define aggre-
gate faults, where an aggregate fault is a set of faults that are
indistinguishable from each other. The diagnosis methodol-
ogy can be applied to the modified fault set that includes the
aggregate faults (Roychoudhury et al., 2009).

R+
23} and M = {q1, q2, q3}. Let us define a subsys-

tem for each tank, where for i = 1, . . . , n − 1, Si is
defined by Fi = {C−i , R+

i , R
+
i,i+1} and Mi = {qi},

and for i = n, Si is defined by Fi = {C−i , R+
i } and

Mi = {qi}. Consider tank 1. If 0+ is observed for
q1, then that may be the result of local fault R+

12 or any
of the nonlocal faults (see Table 1). Clearly, S1 is not
globally diagnosable. Note that it is locally diagnos-
able, as the three local faults each produce a different
effect on the sole measurement of the subsystem, q1.

Different design problems may be defined which de-
termine partitions of the fault set F and/or the assign-
ment of measurements to subsystems (Roychoudhury
et al., 2009). In each case, the end result must be a set
of globally diagnosable subsystems. In this paper, we
focus on the problem where S is already partitioned
into subsystems, but each Si may not be globally di-
agnosable. We define the distributed diagnoser design
problem as determining, for each Si, the minimal num-
ber of measurements to pull in from other subsystems
to achieve global diagnosability. Formally, the prob-
lem can be defined as follows.
Problem (Partitioned System Diagnoser Design).
Given n subsystems, where Si = (Fi,Mi, LFi,Mi

),
construct, for each subsystem, a measurement set
Mi

+ ⊆ M such that (i) M+
i − Mi is minimal, and

(ii) S ′i = (Fi,M
+
i , LFi,M

+
i

) is globally diagnosable.

This problem is a variation of the measurement se-
lection problem, which is an instance of the set cover-
ing problem, known to be NP-complete (Narasimhan
et al., 1998). Our goal, while designing the local di-
agnosers, is to minimize the sharing of measurements
across subsystems in order to limit the size of the local
diagnosers and their communication requirements. We
simplify the measurement search using measurement
orderings as a guide, based on the intuition that mea-
surements that deviate before others are more help-
ful. Further, these measurements provide the fastest
diagnosis. To do this, for each fault that is not glob-
ally distinguishable, we determine the measurements
that deviate first by looking at the measurement order-
ings, and this set of measurements over all the glob-
ally indistinguishable faults forms the current work-
ing measurement set, i.e., measurements with which
we try to resolve global diagnosability. This heuris-
tic simplifies the search process, but the algorithm is
still exponential in the general case, where O(2|M |)
measurement sets must be considered for a single sub-
system. The heuristic reduces the number of measure-
ments to consider at each iteration, so only O(2|M

+
i |)

combinations end up being considered, where typi-
cally, |M+

i | � |M |. The introduction of the heuris-
tic trades off optimality of the diagnoser design for al-
gorithm efficiency. Additional heuristics may also be
used, e.g., the subsystem distance heuristic presented
in (Roychoudhury et al., 2009).

The distributed diagnoser design procedure is given
as Algorithm 1. For a diagnosable system S, for each
Si, we first determine, using diagnosability analysis,
the set of faults F ∗i ⊆ Fi which are not globally dis-
tinguishable usingMi. At each iteration, for each fault
that is not globally distinguishable using the current
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Algorithm 1 Distributed Diagnoser Design
Input: S = {Si = (Fi,Mi, LFi,Mi) : i = 1, . . . , n}
for all Si ∈ S do
F ∗i ← {f∗i : fi ∼Mi fj for f∗i ∈ Fi, fj ∈ F, and
f∗i 6= fj}
M+

i ←Mi

while F ∗i 6= ∅ do
for all f∗i ∈ F ∗i do
Mf∗i

← {m : ∃m′, (m′ ≺ m) /∈ Ω
f∗i ,M−M+

i
}

end for
identify minimal M∗i ⊆

⋃
f∗i ∈F∗i

Mf∗i
such that

M+
i ∪M

∗
i isolates maximal F ′i ⊆ F ∗i

M+
i ←M+

i ∪M
∗
i

F ∗i ← F ∗i − F ′i
end while
construct D

Fi,M
+
i

end for

measurement set, M+
i , we compute the set of mea-

surements out of M −M+
i that may deviate first for

the fault, as Mf∗i
. We then find the minimal set of

measurements to add to M+
i from the set of measure-

ments found in this way over all f∗i that resolves the
most globally indistinguishable faults, and add these to
M+

i . The process repeats until Si is globally diagnos-
able, resulting in the local diagnoser DFi,M

+
i

, whose
construction is described in the next section.

It is easy to see that Algorithm 1 always succeeds
in making Si globally diagnosable, because (i) S is
diagnosable, so global diagnosability for Si can be
achieved (at worst by setting M+

i = M ), and (ii) the
algorithm continually adds measurements to M+

i un-
til Si is globally diagnosable (and in the worst case all
measurements are considered).

We apply this algorithm to the n-tank system, where
for i = 1, . . . , n − 1, Si is defined by Fi =
{C−i , R+

i , R
+
i,i+1} and Mi = {qi}, and for i = n,

Si is defined by Fi = {C−i , R+
i } and Mi = {qi}.

For tank 1, R+
12 is not globally distinguishable. From

the measurement orderings, q2 will deviate before q3,
so M∗1 = {q2}. This measurement alone is sufficient
to add to M+

1 to obtain global diagnosability, so no
further iteration is necessary. For tank 2, R+

23 is not
globally distinguishable, and both q1 or q3 belong to
M∗2 . Measurement q3 alone is sufficient to achieve
global diagnosability. For tank 3, the subsystem is
already globally diagnosable. The new measurement
sets are therefore M+

1 = {q1, q2}, M+
2 = {q2, q3},

and M+
3 = {q3}.

5 DIAGNOSER IMPLEMENTATION

In this section we describe the construction of the
event-based diagnosers. The goal of the event-based
diagnoser is, given a sequence of measurement devi-
ation events, to determine which faults are consistent
with the observed sequence. We define formally a di-
agnosis and a diagnoser in our framework (Daigle et
al., 2009).

q0+
3

q+−
2

q0+
1

q0+
3 q0+

1

{C−2 }

{C−2 }

∅

{C−2 }

{C−2 }

(a) D{C−2 },M

q0+
3

q−+
2

q0+
1

q0+
3 q0+

1

{R+
2 }

{R+
2 }

∅

{R+
2 }

{R+
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(b) D{R+
2 },M

q0+
2

q0−
3

q0+
1

q0−
3
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q0−
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∅
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{R+
23}

(c) D{R+
23},M

Figure 3: Diagnosers for some individual faults of the
three-tank system, where M = {q1, q2, q3}.

Definition 11 (Diagnosis). A diagnosis d ⊆ F is a set
of faults, each of which is consistent with the observa-
tions.
Definition 12 (Diagnoser). A diagnoser for a fault
set F and measurement set M is a tuple DF,M =
(S, s0,Σ, δ, A,D, Y ) where S is a set of states, s0 ∈ S
is an initial state, Σ is a set of events, δ : S × Σ → S
is a transition function, A ⊆ S is a set of accepting
states, D ⊆ 2F is a set of diagnoses, and Y : S → D
is a diagnosis map.

A diagnoser is a finite automaton extended by a set
of diagnoses and a diagnosis map. It takes events as in-
puts, which, as with fault models, correspond to mea-
surement deviations. From the current state, a mea-
surement deviation event causes a transition to a new
state. The diagnosis for that new state represents the
set of faults that are consistent with the sequence of
events seen up to the current point in time.

Accepting states correspond to a fault isolation re-
sult. We say that a diagnoser isolates a fault if it ac-
cepts all possible valid traces for the fault and the ac-
cepting states map to diagnoses containing the fault.
Definition 13 (Isolation). A diagnoser DF,M isolates
fault f ∈ F if DF,M accepts all λf,M ∈ Lf,M and for
each s ∈ A that accepts some λf,M , f ∈ Y (s).

Unique isolation corresponds to system diagnosabil-
ity. We say that a diagnoser uniquely isolates a fault if
each accepting state maps to the single fault.
Definition 14 (Unique Isolation). A diagnoser DF,M
uniquely isolates fault f ∈ F if DF,M accepts all
λf,M ∈ Lf,M and for each s ∈ A that accepts some
λf,M , {f} = Y (s).

We would like to systematically construct a diag-
noser for a system S that isolates all f ∈ F , and show
that if S is diagnosable, then this diagnoser uniquely
isolates all f ∈ F . This procedure has been developed
in previous work (Daigle et al., 2009). Here, we briefly
review the main points.

First, we construct a diagnoser, for each fault f , that
isolates f , i.e., D{f},M . These are shown in Fig. 3 for
some of the faults of the three-tank system. They are
constructed directly from the fault models Lf,M , cf.
Fig. 2. Because the fault model Lf,M accepts the fault
language Lf,M , it is easy to show that this diagnoser
isolates f .
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Figure 4: Three-tank system centralized diagnoser for F = {C−1 , C−2 , C−3 , R+
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Figure 5: Local diagnosers for the three-tank system for F1 = {C−1 , R+
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3 } and M3 = {q3}.

A composition operator is then defined that com-
poses two diagnosers, such that if each diagnoser iso-
lates its own set of faults, the composed diagnoser will
isolate the combined set of faults. We may then com-
pose the individual diagnosers into a global diagnoser
DF,M that isolates the complete set F . We have shown
that the system defined by F and M is diagnosable
if and only if the diagnoser constructed in this way
uniquely isolates all faults in F (Daigle et al., 2009).

The resulting global diagnoser for the three-tank
system described in the earlier sections is given in
Fig. 4. It is clear from this figure that the system is
diagnosable, as each accepting state has a unique diag-
nosis. In this case, a unique diagnosis is even known
after only a single measurement deviation. The re-
sulting diagnoser may be pruned to reduce diagnoser
size by removing states and transitions occurring after
a unique diagnosis is known (Daigle, 2008).

5.1 Local Diagnoser Implementation
The design of local diagnosers follows the same pro-
cedure as the global diagnoser, i.e., given Fi and Mi
for subsystem Si, we construct DFi,Mi

. The local di-
agnosers for the distributed diagnoser design example
from the previous section are given in Fig. 5. Note that
each local diagnoser except the third needs only two
measurements, whereas the global diagnoser needs all
three. As n increases, each local diagnoser still needs
at most two measurements, whereas the global diag-
noser needs all n measurements, significantly increas-
ing its size.

In terms of scalability, the distributed diagnosis
scheme clearly improves on the centralized diagnosis
approach. In the worst case, the size of a diagnoser

increases factorially with the number of measure-
ments (Daigle et al., 2009). Therefore, the fewer the
measurements associated with a diagnoser to achieve
local and global diagnosability, the smaller a diagnoser
will be. By creating local diagnosers such that each di-
agnoser uses only a limited number of measurements,
each local diagnoser can be significantly smaller than
the centralized diagnoser, and the combined size of all
local diagnosers can be smaller also.

The distributed diagnosis approach works as fol-
lows. Each local diagnoser starts in its initial state. A
measurement deviation event is received by all subsys-
tems that include that measurement in their measure-
ment set. If there is a matching event from the current
state, a local diagnoser will follow that path to the next
state, and remain active. If not, the local diagnoser will
block, and its diagnosis result will be ∅. The process
continues until a local diagnoser reaches an accept-
ing state. At this point, a globally correct diagnosis is
known, if each subsystem was designed to be globally
diagnosable. If so, no other local diagnoser may reach
an accepting state. Therefore, a globally correct diag-
nosis result is achieved without the use of a centralized
coordinator. If the subsystems are not globally diag-
nosable, then two or more local diagnosers may both
reach an accepting state and a coordinator is needed.
We may prove this result as follows.
Theorem 1. Given a distributed diagnoser design
where each subsystem Si is globally diagnosable, then
if some f ∈ F occurs, exactly one Di will uniquely
isolate it, and all remaining diagnosers will give ∅.

Proof. When f occurs it will produce some trace λ,
seen as λf,M1 , . . ., λf,Mn

, to each Di. Since F is par-
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titioned (Assumption 1), f belongs to exactly one Fi of
Di. Since Si is globally diagnosable, no other fi ∈ Fi
can produce a trace that is a prefix of λf,Mi , and since
Di is constructed correctly, it must capture λf,Mi

and
will uniquely isolate f . Any other Dj will observe the
trace λf,Mj , and, since Si is globally diagnosable, no
fault fj ∈ Fj could produce a trace that is a prefix of
that trace, so Dj will block, yielding ∅.

A globally correct diagnosis result may be declared
earlier if a local diagnoser has not yet reached an ac-
cepting state, but has a unique diagnosis, only if all
other local diagnosers have blocked. A globally cor-
rect diagnosis result may otherwise only be declared
when all measurements for a subsystem have deviated
(i.e., an accepting state is reached). These conditions
correspond directly to those outlined in (Roychoud-
hury et al., 2009) in the absence of the event-based
framework.

6 RESULTS
As an example to demonstrate online diagnosis in this
framework, consider a six-tank system, with R+

23 oc-
curring at time 10.0. The plots of q2 and q3 are shown
in Fig. 6. At time 10.3 a 0- is detected in q3, using the
symbol generation mechanism described in (Daigle et
al., 2010). Both the local diagnosers for S2 and S3 use
this measurement and compute this symbol. Partial di-
agnosers (with some faults omitted) for these subsys-
tems are shown in Fig. 7. The S2 diagnoser moves to a
state with R+

23 as the sole candidate, and the S3 diag-
noser moves to a state with R−34 as the sole candidate.
At time 10.4, a 0+ is detected in q2. The S2 diag-
noser moves to an accepting state with R+

23 as the sole
candidate. The S3 diagnoser does not use this mea-
surement so takes no action. Because the S2 diagnoser
reached an accepting state, a global diagnosis has been
achieved.

For the scalability analysis, we consider n-tank
systems where for i = 1, . . . , n − 1, Fi =
{C−i , C+

i , R
+
i , R

−
i , R

+
i,i+1, R

−
i,i+1} and for i = n,

Fi = {C−i , C+
i , R

+
i , R

−
i }. The diagnoser design al-

gorithm determines that for i = 1, . . . , n − 1, M+
i =

{qi, qi+1}, and for i = n, M+
i = {qi−1, qi}, i.e., each

subsystem pulls in a measurement from an adjacent
subsystem. The local diagnoser for i = 1, . . . , n− 1 is
always 13 states with 14 transitions for the non-pruned
version, and 11 states and 10 transitions for the pruned
version. For local diagnoser n, both the non-pruned
and pruned versions have 7 states and 6 transitions.

The scalability results of the approach as compared
to a centralized approach are shown in Table 2. For
both non-pruned and pruned diagnosers, we report the
number of states, |S|, and number of transitions, |δ|.
For the local diagnosers, we sum the number of states
over each diagnoser, Σ|Si|, and the number of transi-
tions, Σ|δi|. The sum of the local diagnoser sizes in-
crease linearly, whereas the size of the centralized di-
agnoser increases exponentially, demonstrating a clear
improvement in scalability. In the case of the pruned
diagnosers, the centralized diagnoser size increases
linearly as well, although its size is still larger than for
the local diagnosers. The linear increase of the pruned
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Figure 6: Six-tank predicted and observed flow out-
puts.
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Figure 7: Some partial local diagnosers for the six-tank
system

DF,M is not a general result, but arises here because of
the structure imposed by the measurement orderings.

7 CONCLUSIONS
We developed a formal framework for event-based
qualitative diagnosis of continuous systems. Global
and local diagnosers are automatically derived from
fault signatures and relative measurement orderings,
which, in turn, may be derived automatically from a
system model. This results in a distributed diagnosis
framework that eliminates the single point of failure
associated with centralized diagnosis frameworks or
distributed frameworks that require the use of a cen-
tralized coordinator, while the local diagnosers still
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Table 2: Scalability Results for the Multi-tank System
Not Pruned Pruned

Tanks |S| |δ| Σ|Si| Σ|δi| |S| |δ| Σ|Si| Σ|δi|
2 19 20 20 20 17 16 18 16

3 69 96 33 34 37 28 29 26

4 113 148 46 48 55 42 40 36

5 205 284 59 62 73 76 51 46

6 335 484 72 76 91 96 62 56

7 579 840 85 90 109 116 73 66

8 845 1264 98 104 127 136 84 76

9 1181 1812 111 118 145 156 95 86

10 1595 2500 124 132 163 176 106 96

obtain globally correct diagnoses. The approach may
be naturally applied to systems with clear subsystem
boundaries. The distributed approach also scales well
with an increase in the number of subsystems, particu-
larly in comparison to a centralized diagnoser.

The event-based framework presented here relates
to discrete-event diagnosis methods, e.g., (Sampath
et al., 1996; Zad et al., 2003), and also distributed
discrete-event diagnosis methods such as (Debouk et
al., 2000). Our approach may be viewed as an im-
plementation of Protocol 3 in (Debouk et al., 2000),
in which we solve the design problem to achieve the
conditions for a coordinator-free approach. In (Ri-
bot et al., 2008), local diagnosers are extended with
communicated events and additional sensors. We as-
sume a diagnosable system in which sensor selection
has been performed initially. The use of measure-
ment orderings is similar to (Meseguer et al., 2008;
Puig et al., 2005), where signatures are derived from
analytical redundancy relations, but do not utilize the
rich symbol framework for fault signatures used here.
In (Bayoudh et al., 2006), a similar approach is ap-
plied to hybrid systems, where the events are defined
as changes in ARR values due to mode changes.

In future work, we will be extending the approach
to multiple faults based on previous work in (Daigle
et al., 2007a), and to hybrid systems, based on results
presented in (Daigle et al., 2010). We will also in-
vestigate alternative distributed design algorithms and
design heuristics.
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