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ABSTRACT

This article deals with structural analysis, which
is a simple but efficient method in the field of
Fault Detection and Isolation (FDI), to determine
systems properties, such as observability, fault
detectability or diagnosability. Moreover, it al-
lows to determine subsets of the model equa-
tions which may or may not yield fault indica-
tors, namely residuals. Because some residuals
are obtained by inverting parts of the model, the
notion of constraint invertibility is used to assess
the possibility of building a residual. Invertibili-
ties are often considered a posteriori, after that the
structural analysis has been performed, in order
to keep the computable residuals. Taking into ac-
count these invertibility constraints in all steps of
the structural method would allow, firstly, to pro-
vide directly computable residuals, and secondly,
to reduce the complexity of structural analysis al-
gorithms. Two types of non-invertibilities may be
distinguished: those which are defined according
to the nature of the functions, and those which are
due to the structure of the model. Two algorithms
are proposed for determining the latter ones. Inte-
gration of the two kinds of invertibilities from the
first step of the structural analysis is the objective
of this paper.

1 INTRODUCTION

Structural analysis is an efficient and well-known
method to analyze systems monitorability and to
search for fault indicators, also called residuals, which
are used for Fault Detection and Isolation (FDI). A
residual is a function of known variables (measures
and inputs, called observations in the following) that is
computed on-line to test the consistency of these vari-
ables with the model of the system. An inconsistency
between the model and the observations informs on the
appearance of a fault and on its localization. Differ-
ent formalizations of structural models can be found
in the litterature. In this paper, the structural model
is a bipartite graph that represents the links between

functions (or constraints) and variables (known or un-
known). This bipartite graph represents the structure
of the model, that is to say the way the physical vari-
ables of the model are interconnected (or constrained)
by the model relations. The model relations can be
non-linear, qualitative, or described by a lookup table.
No precise knowledge, neither on the type of the rela-
tions, nor on the values of the parameters, is required
to build the bipartite graph. A structural analysis can
thus be performed at the early stages of the design of
a diagnosis system, to provide structural properties of
the model as for instance observability, controllabil-
ity, fault detectability and isolability. It may also help
the designer in identifying potential residual genera-
tors ((Maquin et al., 1997)) and locations of sensors
with the objective to enhance the system monitora-
bility ( (Frisk and Krysander, 2007), (Conrardet al.,
2009), (Rosichet al., 2007), (Carpentieret al., 1997)).

Classically, a structural analysis involves the follow-
ing steps ((Svärd and Wassén, 2006)):

1. consider a behavioral model of the system to
monitor, the parameters of which may not nec-
essarily be identified;

2. extract a structural model, in the form of a bipar-
tite graph;

3. perform the Dulmage-Mendelsohn decomposi-
tion ((Dulmage and Mendelsohn, 1958)) of the
graph, in order to determine the monitorable sub-
system, on which it is possible to generate resid-
uals;

4. search for potential residual generators, in an ex-
haustive way ((Dustegoret al., 2004), (Krysander
et al., 2008), (Travé-Massuyèset al., 2006),
(Pulido and Gonzalez, 2004), (Armengolet al.,
2009)). Indeed, a structural analysis allows to
determine sets of constraints from which a resid-
ual can – but not necessarily will – be derived.
Residual generators correspond to a subgraph of
the structural model, called ARR structure (ARR
: Analytical Redundancy Relation) or MSO sets
(MSO: Minimal structurally overdetermined –
see section 2.3);
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5. select the implementable or realizable residual
generators, that is to say discard those for which
a residual cannot be practically generated. There
are many methods for generating residuals. The
particular method we discuss in this article is
the method where a computation sequence of un-
known variables is determined by following paths
on the bipartite graph. For this method, a residual
cannot be generated when there are non-invertible
constraints that should be inverted when follow-
ing the computation sequence.

Motivations. Industrial models we consider in this
collaborative work between PSA-Peugeot Citroën and
LAGIS Laboratory, are MATLAB/SIMULINK sim-
ulation models composed of thousands of relations,
among which lookup tables, cartographies, logical
or conditional relations. . . Difficulties arising from
analysing such models concern in the first place the
complexity of algorithms performing the exhaustive
search of potential residual generators. Current algo-
rithms, though very efficient, cannot deal with certain
models. Model simplifications can be a solution to
this. To guide the search could be another one. A
third possibility is to integrate feasability criterions for
residuals generation. We discuss the third possibility
in this article, keeping in mind that for the most com-
plex models, a solution would combine many ideas.
Therefore, our objective is to take into account and to
integrate, in efficient algorithms, non-invertibilities,at
the first stages of the method. This should allow us to
significantly reduce the number of potential residuals.
The same perspective is shared in(Travé-Massuyès
et al., 2006), and in some of our previous work ((de
Flaugergueset al., 2009), which defined a DM-like
decomposition, and of which this article is a contin-
uation).
In order to take into account invertibilities, not a pos-
teriori but at each step of the analysis, it is necessary
to define them initially in the model structure. There
are two types of non-invertibilities: those which are
defined according to the nature of the functions, and
those which are due to the structure of the model. This
paper studies two particular cases of non-invertibilities
related to the structure of the model, and provides two
algorithms to indicate these non-invertibilities in the
initial structural model:

• the first algorithm deals with differential-
algebraic loops, for which integral causality is
mandatory;

• the second one deals with algebraic loops, which
can be detected and therefore avoided by a spe-
cific orientation of the graph.

These two kinds of non-invertibilities are thus not
due to the mathematical form, or the nature of the
constraints, but result from the structure of the system.

The rest of the paper is structured as follows. Sec-
tion 2 recalls briefly the main concepts of structural
analysis. The notion of constraint invertibility is
discussed in section 3. An algorithm for defining
the causality of dynamical relations, and another for
avoiding algebraic loops are proposed in section 4. An

academical example is presented in section 5 and illus-
trates the method.

2 STRUCTURAL ANALYSIS FOR FAULT
DETECTION AND ISOLATION

2.1 Bipartite Graph
Consider a behavioral model of a physical system:

{

c1(x1, . . . , xm, z1, . . . , zk) = 0
. . .
cn(x1, . . . , xm, z1, . . . , zk) = 0

(1)

The model relations{ci}i=1...n are called con-
straints: they link the variables, which may be known
({zi}i=1...k) or unknown ({xi}i=1...m). These con-
straints may be dynamic or static, expressed analyti-
cally or numerically. . .
The structural model of this behavioral model is de-
fined by the graphG = (C, V = X ∪ Z,Γ), where:

• C is a set of vertices, representing the set of con-
straints{ci}i=1...n;

• V is a set of vertices, representing the set of vari-
ables{vi}i=1...m+k. V is the union of:

– X , the set of vertices representing unknown
variables,{xi}i=1...m,

– Z, the set of vertices representing known
variables,{zi}i=1...k,

• Γ = {(ci, vj)|vj appears inci} is the set of
edges.

The incidence matrix of the graphG, notedS, is a
boolean matrix, the rows of which correspond toC,
and the column of which correspond toV . It is defined
as follows:

S = {sij |sij = 1 if (ci, vj) ∈ Γ, 0 otherwise}. (2)

In the following, it is considered that the vertices ofZ
have been deleted in the structural graph, so that only
the constraints and unknown variables remain.

2.2 Canonical Decomposition
The Dulmage-Mendelsohn algorithm decomposes the
graph in three parts:

• S+ is the over-constrained, monitorable, part of
the system.

• S0 =
p
⋃

i=1

S0
i is the just-constrained, or observ-

able, part of the system.

• S− is the under-constrained part of the system.

2.3 MSO, ARR structure
Definition 1. A setM of equations is structurally
overdetermined ifM has more equations than un-
knowns.

Definition 2. A structurally overdetermined setM is a
proper structurally overdetermined (PSO) set ifM =
M+.

Definition 3. A structurally overdetermined set is a
minimal structurally overdetermined (MSO) set if no
proper subset is a structurally overdetermined set.
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A MSO set M verifies M+ = M and |M | −
|varX(M)| = 1 (varX(M) represents the set of un-
known variables appearing in the relations of the set
M , and|x| represents the cardinal ofx). Such a set is
also called an ARR structure. The term ‘Possible Con-
flict’ is also used in(Pulido and Gonzalez, 2004).
MSO sets are over-constrained subsystems and are
thus used to generate residuals. Different MSO-based
approaches for residual generation may be found in the
litterature. The following list provides some of them,
yet note that it is not exhaustive. Note also that two
methods may result in the same solution:

• Loop-less MSO sets, which are returned by the
‘Ranking Algorithm’ described in(Blankeet al.,
2006), may be used to provide a computation se-
quence which can be followed to generate Ana-
lytical Redundancy Relations;

• MSO sets corresponding to a state-space form
(3) are considered in(Svärd and Wassén, 2006),
where residuals are generated either in simula-
tion (open-loop), or by using observer techniques
(closed-loop). We will mention here works de-
tailed in (Åslund and Frisk, 2006), for systems
under the following generic form (3);

{

ẋ = f(x, z)
0 = h(x, z)

(3)

• Generation of residuals by simulation is per-
formed in(Pulido and Gonzalez, 2004). (Pulido
et al., 2008) deals with initial condition prob-
lems by designing an initial condition observer,
placed upstream from simulated residual genera-
tors. (Calderón-Espinozaet al., 2007) considers
limited initial conditions and interval techniques;

• Elimination methods have been proposed in
(Guernezet al., 1997), (Frisk, 2000), for al-
gebraic systems. When theMSO is not al-
gebraic, differentiating equations ((Krysander,
2006)) may be a solution to derive an algebraic
system.

Anyway, it is possible, to help residual generation,
to determine an rearrangement of the equations of the
MSO set which eases the residual generator design.
This is done by using matchings over the structural
model of the MSO set.

2.4 Matching

The following definitions can be found in(Blankeet
al., 2006).

Definition 4 (Matching). A matching is a set of non-
adjacent edges, i.e. without a common vertex. The
graph being bipartite, a matching corresponds to a set
of couples (constraint, variable).

Definition 5 (Maximal matching). A maximal match-
ing is a maximal-sized matching.

Definition 6 (Complete matching). A complete match-
ing on a set of verticesV is a matching such that all
vertices ofV are covered, that is to say that all vertices
in V are matched.

Choosing a complete matching on unknown vari-
ables of theMSO setM allows to rearrange the equa-
tions ofM and yields a rewriting of the equations in
M . This rewriting will be useful to design the residual
generator. Matchingxj to ci(xj , xk 6=j) is interpreted
in the following way: xj is deduced fromci, all re-
maining variablesxk being supposed known. The only
equation inM which hasn’t been matched is said to
be redundant, and acts as a consistency test. A resid-
ual may thus be generated. Graphically, a matching
induces an orientation of the graph associated to the
MSO set:

• if the edge(ci, xj) belongs to the chosen match-
ing set, it is directed fromci to xj ;

• otherwise, the edge is directed fromxj to ci.

The directed graph of theMSO takes known variables
(measured and control variables) as inputs and pro-
vides a residual as output. This orientation may induce
loops, which are strong connected components (SCC),
the size of which is greater than1 ((Dustegoret al.,
2004)): a loop represents a system of equations which
must be solved as a whole. Loops are not necessarily
solvable, as it will be discussed in susbsections 3.2 and
3.3.
All matchings cannot lead to a residual, because the
encountered SCC have to be solvable. This matter is
obviously linked with non-invertibilities and causality
constraints, and is discussed in the following section
(3).

3 NON-INVERTIBILITIES AND
SOLVABILITY OF SCC

The three following subsections present a state of the
art on the solvability of SCC. Hypotheses made by the
authors will be, as much as possible, stated.

3.1 SCC of size1
For a SCC of size1, non-invertibility considerations
are generally used to evaluate its solvability.

Definition 7. Let a constraintci(..., xj , ...) = 0, if xj

can be uniquely determined usingci – other variables
of ci being known – thenci is said to be invertible with
respect toxj . In the incidence matrix,si,j = 1 is noted
if the edge is invertible,si,j = −1 otherwise.

Classical non invertible contraints are tables, maps,
non-linear functions, hysteresis, some logical func-
tions, conditional functions, or functions modelling
logical sensors, such as detectors. Consequently, the
notion of non-invertibility allows to discard residual
generators implying the inversion of such relations.

3.2 Solvability of differential algebraic SCC of
sizen > 1

Works dealing with the structural solvability of differ-
ential algebraic loops, in a numerical resolution con-
text, have been published. In(Pulidoet al., 2008), it is
stated that:

• integral causality is compulsory in loops;

• differential loops are not loops but spirals, be-
cause they involve different temporal indices
((Dressler and Freitag, 1994)).
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Setting integral causality comes down to writing a
semi-explicit form of the differential algebraic equa-
tion (DAE). Implicit forms of a differential-algebraic
equation are barely considered in the automatic con-
trol litterature (should one decide to use FDI tools
after the structural analysis), or by numerical solv-
ing tools (should one decide to simulate the residuals,
open-loop). In the contrary, semi-explicit and explicit
forms are well-documented (indeed, state-space forms
are derivated from an explicit form).
As far as semi-explicit forms are concerned, two fam-
ilies of methods for their numerical computation ex-
ist: ‘direct’ methods and ‘ODE’ methods ((Shampine
et al., 1999)). ‘ODE’ methods consist in transforming
the implicit equation in an ordinary differential equa-
tion. In (Svärd and Nyberg, 2008), the reader should
find explanations on:
• implicit and semi-explicit forms of differential al-

gebraic equations;
• the differential index of a semi-explicit DAE,

which indicates the difficulty of the resolution;
• solvability conditions by an ‘ODE’ method, that

is to say:
– possibility of writing a semi-explicit form;
– possibility of solving the algebraic part, and

thus write an ordinary differential equation;
– initial condition consistency.

These criteria are stated in a simulation context, but
one should note that the scope exceeds numerical reso-
lution: indeed, a state-space form is obtained, and clas-
sic automatic techniques can be applied afterwards. In
that case, structural analysis is used as a pre-analysis
of the system and can be complemented with FDI tech-
niques.
On a side note, we will also mention here links be-
tween well-posedness and the solvability of differen-
tial equations ((Vidyasagar, 1980) for instance).
The criterion we will use for assessing the solvability
of differential loops is that, when removing differen-
tial constraints, the resulting graph must be loop-less.
Invertibilities are then considered in the (loop-less) re-
maining graph. Such loops are structurally equivalent
to ODEs. This criterion is strongly suggested by the
aforementionned references; it is also more restrictive
(DAEs may not verify this criterion and still easily be
solved), but, in the other hand, is structural in nature.
More formally:
Criterion 1. Let a DAE with algebraic constraintsCa

and differential constraintsCd, linking variablesẋd,
xd, andxa. Here,xa are algebraic variables, that is to
say that their derivatives do not appear in the loop.xd

and ẋd are differentiated variables. LetGa the graph
obtained by removingCd andxd: this corresponds to
setting integral causality.Ga is therefore defined by
constraintsCa restricted to variablesẋd ∪ xa). The
solvability of such DAE can be assessed if:

1. Ga is loop-less;
2. the complete matching inGa only uses invertible

edges.
Indeed, let an implicit DAEF (ẋd, xd, xa, z) = 0,

if the above criterion is verified, then it is possible to
rewriteF asẋd = f(xd, z), xa = g(xd, z).

3.3 Solvability of algebraic SCC of sizen > 1

A structural solvability condition for algebraic loops
does not exist, therefore, studying these loops must
be done on a case by case basis. However,(Rosich
et al., 2009) considers that only linear algebraic loops
are structurally solvable, and, to that end, introduces
a symboll in the incidence matrix, pointing linear de-
pendencies. In the same vein, another interesting ref-
erence is(Murota, 1987)’s Combinatorial Canonical
Form decomposition. As far as we are concerned, we
consider in this article that algebraic loops are not solv-
able.

4 ALGORITHMS TO DEFINE
NON-INVERTIBILITIES

4.1 Objectives
The general scope of this paper is the integration of
non-invertibilities in the various stages of structural
analysis, in order to reduce complexity of the al-
gorithms. This work echoes some of our previous
works, previously mentionned. We will focus here on
the definition of the (non) invertibility constraints in
the structural graph. As previously explained, non-
invertibilities may be intrinsic to the constraints (and
may be indicated directly on the structural model), but
may also result from the structure of the system. In this
section, two algorithms are presented to define some
non-invertibilities relatively to the structure. These
two algorithms are not based on the same hypotheses,
so it is not always possible to use both, but they share
the same principles.

1. the first algorithm makes the assumption of a
mixed-causality approach ((Svärd and Nyberg,
2008)), therefore no causality is a priori pref-
ered. The purpose of this algorithm is to deter-
mine which differential constraints will always
appear in a loop, and therefore, set them in in-
tegral causality;

2. for the second algorithm, we must first note that
the inversion of an algebraic constraint may al-
ways lead to an algebraic loop. In this case, for-
bidding the inversion will constrain the graph and
will imply that the loop will not be taken. How-
ever algebraic loops are difficult to identify when
they appear in a DAE. That’s why this second al-
gorithm makes the assumption of a full integral
causality approach, in which case algebraic loops
can be identified. To sum up, the output of this al-
gorithm is the definition of non-invertibility con-
straints so that the graph orientation does not lead
to algebraic loops.

4.2 Introduction examples
The example in figure 1 illustrates the first algorithm,
whereas the example in figure 2 illustrates the sec-
ond algorithm. In the first example, we will draw the
reader’s attention on the following items:

• an analytical redundancy relation may be derived
by solving the algebraic loop made ofC1 andC2

, then by usingI as a redundant constraint, to test
the consistency. In that case,I is not used in a
matching;
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• matchingI to ẋ imply thatx is matched toC1 or
C2. In either case, a differential loop containing
I is implied by the matching.

Since the invertibility of redundant constraints has no
relevance in our criterions (non-invertibilities are used
when building a matching, not when testing the consis-
tency), we will always assume that it is not possible to
take the integrator in differential causalityin a match-
ing, for it will always appear in a loop, and say that
I is not invertible with respect tȯx. The reason, on
which our algorithms are based and which we will de-
velop further in the following, is that it is not possible
to ‘reach’x without using the integrator anḋx. If it
were possible to ‘reach’x without using the integrator
andẋ, then derivatingx to computeẋ would be pos-
sible, i.e. it would be possible to matchI to ẋ, which
would correspond to aSCC of size1.

Figure 1: Non-invertible differential loop

The second example shows that if one try to match
C2 to x1, then one must matchx2 toC3, which creates
an algebraic loop. Our second algorithm’s purpose is
to indicate thatC2 is not invertible with respect tox1,
from the begining, to prevent matching them. Detec-
tion of the algebraic loop is done in the same way, by
testing if it is possible to ‘reach’x2 without usingC2

andx1. If it were possible, then invertingC2 to com-
putex1 would be possible and would correspond to a
SCC of size1.

Figure 2: Structural model holding an algebraic loop

Since we have considered that algebraic loops are
not solvable and have given a criterion of solvabil-
ity for DAEs accordingly, our notion of reachability
should ideally be that there exist a path without alge-
braic loops, such that SCC of size1 are invertible, and
such that DAEs verify criterion 1. For practical pur-
poses, our notion of reachability ofx is less evolved,
but it includes our ideal notion: it means that there is a
directed path, consistent with non-invertibilities, lead-
ing tox. We will see that because of this, we are only
able to provide sufficient conditions in lemmas 2 and
3.

4.3 Definitions
Definition 8 (Just-constrained subgraph). A subgraph
(M , X , Γ) is just-constrained if

1. |M | = |X |;

2. the set of relationsM verifyM0 = M .

Definition 9 (Directable just-constrained subgraph).
A directable just-constrained subgraph is a just-
constrained subgraph which has a complete matching
using only invertible edges.

Definition 10 (Reachable variable). A variablex is
said to bereachableif there exists a directable just-
constrained subgraph (M , X , Γ) containingx, i.e.
x ∈ X .

To assess the reachability of a variable, we use
the algorithm described in(de Flaugergueset al.,
2009), which is an alternative canonical decomposi-
tion (S+

mod, S
0
mod, S

−
mod), taking invertibilities into ac-

count.

Lemma 1. An unknown variable is reachable if it ap-
pears inS+

mod or S0
mod.

4.4 Defining the causality

In this section, no hypothesis is made a priori on
the orientation of differential constraints and it
is assumed that the two orientations are possible
(mixed-causality). The only restriction is that integral
causality is compulsory inside loops. The key idea for
identifying differential constraints which will always
appear in a loop is the reachability of variables.
The following lemma may be used to determine
whether a differential constraint can appear in differ-
ential causality in a strongly connected component of
size1, in which case differential causality is allowed.
If not, differential causality is forbidden. More over,
lemma 2 is an implication: as pointed before, it
provides a sufficient but not necessary condition to
forbid differential causality.

Lemma 2. A dynamical constraintI linking an in-
tegrated variablexi and a derivated variablexd:
I(xi, xd) cannot be taken in differential causality, in a
matching, ifxi is not reachable on the bipartite graph,
when the initial graph is modified as follows:

• RemoveI;

• Place non-invertibilities on every edge linked to
xd: on the incidence matrixS, the columnxd is
set to−1: S(:, xd) = −|S(:, xd)|.

Proof. If it is not possible to reachxi while xd is not
reachable, and without usingI, then it is not possible
to useI to calculatexd. Two cases are possible: either
non-invertibilities prevent to reachxi; or xd and/orI
are needed to computexi. In either case,I cannot be
in a loopless path in a matching, and the causality will
always be integral in a matching.

The algorithm tests the reachability of derivated
variables one after the other; it must be noted that
placing an integral causality may imply that a variable
which has precedently been evaluated as reachable is
no longer reachable. It is therefore necessary to reeval-
uate the reachability of derivated variables as long as
there is no more modification.
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Algorithm 1 Defining causalities
1: Identify the set of differential constraintsI on the

graphS
2: InitializeMODIF = 1
3: while MODIF == 1 do
4: MODIF = 0
5: for all Ik ∈ I for which differential causality is

alloweddo
6: Identify Ik ’s integrated variablexi and

derivated onexd

7: if Ik doesn’t verify lemma 2then
8: Ik is not invertible with respect toxd:

modifyS
9: MODIF = 1

10: end if
11: end for
12: end while
13: ReturnS

4.5 Avoiding algebraic loops
In this section, we assume that afull integral causal-
ity approach is adopted. In order to detect algebraic
loops, differential constraints are removed so that only
algebraic constraints remain.

Lemma 3. An algebraic constraintC linking vari-
ablesx1, ,̇xp, matched toxm, will always imply an
algebraic loop if one of thexk, k 6= m, is not reach-
able on the bipartite graph, when the initial graph is
modified as follows:

• Replace every differential constraintI(xi, xd) by
a measurement function onxi. In other terms,
set the edge betweenxd andI to 0, and the edge
betweenxi andI to 1 (integral causality);

• RemoveC;

• Place of non-invertibilities on every edge linked
to xm: on the incidence matrixS, the columnxm

is set to−1: S(:, xm) = −|S(:, xm)|.

Proof. If it is not possible to reach one of thexk,
k 6= m, while xm is not reachable, and without us-
ing C, then it is not possible to useC to calculate
xm. Two cases are possible: either thexk are not
reachable due to invertibilities, orxm and/orC are
needed to computexm and matchingC to xm implies
a loop. This loop is algebraic since differential con-
straints have been removed (forced to integral causal-
ity).

The algorithm follows and is described in algo-
rithm 2.

In algorithm 2, every invertible edge is examined
at least once: the modified Dulmage-Mendelsohn de-
composition in(de Flaugergueset al., 2009) is run
each time, which has proved to be, empirically, for
our industrial examples, quite heavy, as far as com-
putational time is concerned. Therefore improvements
were attempted.

Improvements
Improvements can be done thanks to a pseudo-
‘Ranking Algorithm’, which identifies constraints
which will always appear in algebraic loops. Many

Algorithm 2 Avoiding algebraic loops v0
1: Replace differential constraintsIk on the graphS

by sensors on the integrated variable
2: InitializeMODIF = 1
3: while MODIF == 1 do
4: MODIF = 0
5: for all invertible edge (C,xm) do
6: if C andxm don’t verify lemma 3then
7: C is not invertible with respect toxm:

modifyS
8: MODIF = 1
9: end if

10: end for
11: end while
12: ReturnS

edges can thus be identified as non-invertible with a
low-cost algorithm.

Lemma 4. On the bipartite graph, modified by replac-
ing every differential constraintI : xi = I(xd) by a
measurement equation onxi (integral causality), the
set of constraints which will always appear in alge-
braic loops is given by the ‘Ranking’ algorithm.

Proof. The ‘Ranking’ algorithm not only finds loop-
less ARR structures, but also identifies the loop-less
part of the graph ((Blankeet al., 2006)).

Algorithm 3 summarizes the improved algorithm. It
proceeds in two steps:

1. lines1 to 14 correspond to the ‘Ranking’ algo-
rithm in (Blankeet al., 2006), which is slightly
rewritten for our need; these lines are justified by
lemma 4;

2. at line15, algorithm 2 is run to define invertibili-
ties on remaining invertible edges.

Algorithm 3 Avoiding algebraic loops
1: Identify the set of differential constraintsI in S.
2: Replace each differential constraintIk ∈ I by a

sensor-like constraintI ′k: I ′k(xi). NameS′ this
new matrix.

3: AL = {constraints inS′}
4: J = {constraints inS′ containing one unknown

variable only}
5: K = varX(J)
6: while J 6= φ do
7: AL = AL \ J
8: Modify S′ by setting rowsJ and columnsK to

0 (deletion of edges)
9: J = {constraints inS′ containing one unknown

variable only}
10: K = varX(J)
11: end while
12: J = {constraints inS′ which don’t contain any

variable}
13: AL = AL \ J
14: In S, set every link toAL to−1
15: S = Avoiding Algebraic Loops v0(S)
16: ReturnS
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Figure 3: Example

5 EXAMPLE

In the following example (figure 3), it is assumed that
a few functions are not invertible; they are represented
with an arrow indicating in which direction they must
be used. Thus,M1 is not invertible w.r.t.x1, andC3

is not invertible w.r.t. ẋ2. At first glance, there are
three MSO: one linkingu andy1, one linkingu and
y2, and the last linkingy1 andy2. We will show that
the subpart of the system betweenx1 andy2 must be
taken with integral causality, and that, therefore, it is
not possible to generate the residual linkingy1 andy2
simply by following paths on the graph, which is not
obvious from the beginning, since there is only one
non-invertibility defined on that subpart.

Our first algorithm will proceed as follows:

• the first integratorI1 is examined: its output is
reachable fromy2. Indeed, the subgraph between
y2 andx1 is directable. No modification is made;

• the second integratorI2 is examined: matching
I2 to ẋ2 is impossible, because this matching will
always induce a differential loop. This is identi-
fied by testing that it is not possible to reachx2

without usingI2 andẋ2. Consequently, integral
causality is compulsory;

• the first integrator is re-examined: due to non-
invertibilities onI2 andC3, its output cannot be
reached (̇x2 cannot be matched using an invert-
ible edge), therefore, it will always be used with
integral causality.

Since full integral causality is compulsory, the sec-
ond algorithm can be run: it will proceed as indicated
in table 1, and will detect the algebraic loop made of
constraintsC5 andC6. We have not indicated in table 1
the tests of obvious invertible edges, i.e.(C1, ẋ1),
(C2, ẋ2), (C3, x3), (C4, x4), (C5, x5), (C6, x6).

On this example, our algorithm will thus return that
constraints must be used in the way indicated by the ar-
rows on the figure 4. In the end, the definition of these
non-invertibilities let us see more clearly and more ob-
viously that it is not possible to generate the residual
linking y1 andy2 by following paths on the graph.

6 CONCLUSION

The objective of this paper is to analyze a structural
model and determine if there are equations in the
model that cannot be used to compute unknown vari-
ables, when generating residuals. When these equa-
tions are found, non-invertibilities are defined to pre-
vent them to be used. This paper eventually aims at in-

Table 1: Steps of the algorithm for defining non-
invertibilities on algebraic constraints

Invertibility tested Variable(s) to reach Y/N

(1st turn . . . )
C1 w.r.t. x1 ẋ1, w/ox1 & C1 N
C2 w.r.t. x1 x2 & ẋ2, w/ox1 & C2 N
C2 w.r.t. x2 x1 & ẋ2, w/ox2 & C2 N
C4 w.r.t. x3 x4, w/ox3 & C4 Y
C5 w.r.t. x4 x5, w/ox4 & C5 N
C6 w.r.t. x5 x4 & x6, w/ox5 & C6 Y
C6 w.r.t. x4 x5 & x6, w/ox4 & C6 N
M2 w.r.t. x6 x2, w/ox6 & M2 Y
M2 w.r.t. x2 x6, w/ox2 & M2 N
(2nd turn . . . )
C4 w.r.t. x3 x4, w/ox3 & C4 N
C6 w.r.t. x5 x4 & x6, w/ox5 & C6 Y
M2 w.r.t. x6 x2, w/ox6 & M2 Y
(3rd turn . . . )
C6 w.r.t. x5 x4 & x6, w/ox5 & C6 Y
M2 w.r.t. x6 x2, w/ox6 & M2 Y

Figure 4: Compulsory orientations returned

tegrating non-invertibility notions in a structural anal-
ysis – which the complexity of our models leads us to
– therefore it is important to well define invertibilities
in the first place. Focus has been put on defining in-
vertibilities regarding the structure of the system, that
is to say:

• differential constraints for which we can assure
that they will always appear in a loop are defined
with the integral causality;

• orientations of the graph which imply algebraic
loops are forbidden.

This second aspect may be a bit restrictive, but our
complex industrial models have led us to think that it
is needed to organize the MSO sets into a hierarchy,
and get intermediate or partial results, corresponding
to restrictive or intermediate hypotheses like this one.
Improvements could be done regarding this hypothe-
sis (that algebraic loops are forbidden), with a view to
allowing linear algebraic loops for instance.
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7



21st International Workshop on Principles of Diagnosis

REFERENCES
(Armengolet al., 2009) J. Armengol, A. Bregon,

T. Escobet, E. Gelso, M. Krysander, M. Nyberg,
X. Olive, B. Pulido, and L. Travé-Massuyès. Min-
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