
Diagnosing Process Trajectories
Under Partially Known Behavior

Gerhard Friedrich1, Wolfgang Mayer2, Markus Stumptner2

1 Alpen-Adria Universität, Klagenfurt, Austria
gerhard.friedrich@uni-klu.ac.at

2 University of South Australia, Adelaide, SA, 5095, Australia
mayer@cs.unisa.edu.au

mst@cs.unisa.edu.au

ABSTRACT

Diagnosis of process executions is an important
task in many application domains, especially in
the area of workflow management systems and
orchestrated Web Services. If executions fail be-
cause activities of the process do not behave as
intended, recovery procedures re-execute some ac-
tivities to recover from the failure. We present a
diagnosis method for identifying incorrect activ-
ities in process executions. Our method is novel
both in that it does not require exact behavioral
models for the activities and that its accuracy im-
proves upon dependency-based methods. Obser-
vations obtained from partial executions and re-
executions of a process are exploited. We formally
characterize the diagnosis problem and develop a
symbolic encoding that can be solved using con-
straint logic programming techniques. Our evalu-
ation demonstrates that the framework yields su-
perior accuracy to dependency-based methods on
realistically-sized examples.

1 INTRODUCTION

The spread of orchestrated Web Services increased the
importance of diagnosing errors in process executions.
Orchestrated Web Services define a process where indi-
vidual activities are implemented by Web Services. If
individual activities fail during execution, repair must
be carried out (Friedrich et al., 2010). To provide com-
plete and correct methods for repair, a complete and
correct diagnosis method is of central importance. The
goal of this paper is to infer minimal (irreducible) di-
agnoses in terms of activity executions from observed
execution traces.

While powerful techniques based on discrete event
systems have been developed for process diagnosis
(Pencolé and Cordier, 2005), virtually all correct and
complete diagnosis methods introduced so far assume
that a detailed model of the activities’ behavior is avail-
able while some of the processes’ transitions and vari-
ables are unobservable. Unfortunately, this assumption
does not hold in the Web Service process and work-
flow context. In this domain, the correct control flow is
specified but precise models of individual services and
activity behaviors are usually unavailable. Fortunately,
the sequence of activity executions can be obtained
from the execution engine. However, in case of failures

(i.e., if exceptions are triggered), a repair-enabled execu-
tion engine needs the ability to execute and re-execute
activities in order to achieve a successful process exe-
cution despite the fault. This increases the difficulty of
the task, since repair executions (re-executions) do not
necessarily follow the defined control flow.

To solve the problem of partial knowledge, earlier
work has used dependency tracing (Wotawa, 2002; Yan
et al., 2009; Ardissono et al., 2005). As we will show
in our example, such methods cannot always correctly
compute the set of minimal diagnoses because they do
not fully capture the semantics of the employed control
elements. Also, to the best of our knowledge no current
diagnostic approach can deal with (re-)executions of
activities, nor deal with partially known behaviors. We
present an approach to isolate minimal sets of faulty
activity executions based on the structure of a given
process while assuming that the behavioral descriptions
of individual activities may not be given fully. Rather,
partial models of activities are gathered from observed
execution traces.

Following consistency-based diagnosis (Reiter,
1987), a diagnosis specifies the set of observed activ-
ity executions that are assumed to be correct. These
assumed-correct activity behaviors must be part of
“guaranteed safe” behavioral models for the activities
of a process definition s.t. (i) no exceptions will be trig-
gered for all possible process executions and (ii) spec-
ified activity behavior constraints are fulfilled. Such
behavior constraints express partial knowledge about
activity behaviors. If such a process behavior cannot
exist, then some activity behaviors must be incorrect.
The lack of precise knowledge about activity behav-
iors creates the necessity to reason about all possibly
correct behaviors of activities. We tackle this problem
by introducing sets of possible behavior descriptions
and the propagation of symbolic constants representing
specific but unknown values that may be created during
execution of the process.

We develop a correct and complete diagnosis method
for a sequence of activity (re-)executions. We introduce
basic concepts and an example in Sec. 2 and present
the process model in Sec. 3. In Sec. 4 we provide the
diagnosis concepts for process (re-)executions. Sec. 5
introduces the diagnosis method based on symbolic
values. Its implementation and evaluation are discussed
in Sec. 6.

1



21st International Workshop on Principles of Diagnosis

2 EXAMPLE
We use the example depicted in Figure 1 to introduce
core concepts of our approach. The upper part of this
figure shows the process definition, the lower part de-
picts the executions of activities.

The process definition includes processing activi-
ties (e.g. SAMPLE) connected by a control-flow using
XOR-splits (i.e. X1) and OR-joins (i.e. J1 and J2) as
control activities. Activities read input variables and
store their results in output variables. Process execu-
tions are started by the execution of activity START
which provides the process inputs. A process execu-
tion is finished by the execution of END. The outputs
of a process are the inputs of activity END. In our ex-
ample the input to the process is a specification of a
test sample (variable SPEC ) which is used by activ-
ity SAMPLE to generate a sample placed at S. S is
inspected by SEC1 and SEC2. Depending on the out-
comes of SEC1 and SEC2, activity REM is eventually
executed to remove some parts of the sample. Before
ending the process a guard examines the sample for a
final quality control. This guard can decide that the
process failed by assigning nil to the control variable
E thus stopping the execution.

Assume that the process was executed as shown in
Fig. 1. Time points mark the end of an executed activ-
ity. The completion of activity executions are observed.
GUARD raises an exception by assigning nil to E at
time t8. We assume that only the processing activities
SAMPLE, SEC1, SEC2, REM could be faulty. Given
the flow of execution, activity executions SAMPLEt1
and SEC2t4 are the only ones that could have failed.
〈SAMPLEt1, SEC2t4〉 is the only minimal conflict so
far; a correctness assumption of SEC1t2 is not needed
to predict that the guard will fail. Both branches of the
first occurrence of X1 in the process will lead to an exe-
cution of GUARD that fails if SAMPLEt1 and SEC2t4
are assumed to be correct. Diagnosis methods based on
tracing dependencies (Wotawa, 2002) would not exon-
erate SEC1t2 since the computation of E depends on
the output of SEC1t2.

Let us assume that a failure of SAMPLEt1 is unlikely,
so [SEC2t4] is the only leading diagnosis. In this case,
it follows, that SEC2 must output to R2 a value such
that the second occurrence of X1 takes the upper branch.
REM has to be executed to avoid the exception.

Let us assume a repair reasoner (Friedrich et al.,
2010) decides to execute REM and GUARD after
the execution of GUARD at t8, but the execution
of GUARDt10 generates another exception. It fol-
lows that 〈SAMPLEt1, REMt9〉 is a further minimal
conflict. Whatever branch is taken in the process,
assuming executions SAMPLEt1, REMt9 as correct
leads to an exception raised by GUARD. Consequently,
[SAMPLEt1] is the only single fault diagnosis. So the
repair reasoner decides to execute SAMPLE again at
t11. If we assume that the second execution of SAM-
PLE (at t11) outputs the same value as the execution of
SAMPLE at t1, then the diagnosis [SAMPLEt1] has to
be extended to [SAMPLEt1, SAMPLEt11].

Consequently, there are two minimal diagnoses
[SAMPLEt1, SAMPLEt11] and [SEC2t4, REMt9]. If
the first diagnosis is very unlikely (since we know that
the probability for SAMPLE to fail twice is an order of
magnitude lower than the second diagnosis) then the re-
pair reasoner decides to execute REM again which now

provides a different value than REMt9. Next GUARD
is executed which returns t (true). At this point we
can conclude that the value provided by REMt12 corre-
sponds to a value where the process is executed for the
input provided by STARTt0 and all activities worked
correctly. Consequently, the faulty execution of the
process is repaired.

In such a diagnosis/repair scenario two challenges
must be addressed. (1) The execution follows the con-
trol path of the process definition until an exception is
raised. At this point a repair reasoner takes over control
and (re-)executes activities in an order that may differ
from the one specified in the process definition. Note,
if an activity can be re-executed is decided by the repair
reasoner.

(2) It cannot be assumed that a complete definition
of the behavior of the activities is available. In many
cases only the structural description of the process and
the execution trace is provided.

To deal with partially known behavior we present
a process model that allows to define sets of possible
activity behaviors.

3 PROCESS MODEL

In our model, a process consists of activities that are
connected by shared variables. To obtain a model that
is suitable for simulation and diagnosis, the semantics
of each activity and the control and data flow between
activities must be captured. We follow the proposal
of (Nica et al., 2008) and represent the semantics of
the process as constraints over the process variables.
Different from previous models, our approach explic-
itly captures alternative possible process behaviors in a
single model. Our notation is based on Reiter’s logic
formalism (Reiter, 1987), but the underlying ideas ap-
ply to other formalisms, such as transition systems. We
first describe the flow-related modeling aspects:

Definition 1 (Process) A process P = 〈A,V, I,O〉
consists of a set of literals A = {A1, . . . , An} rep-
resenting activities. Occurrences of each activity are
defined over a set of process variables V. I ⊂ V and
O ⊆ V represent the input and output variables of P ,
respectively.

Activities Ai may occur several times in the process
exploiting different process variables. Occurrence j of
activity Ai is denoted by Aij . Each occurrence j of
activityAi in P receives input values through some pro-
cess variables and outputs values to some process vari-
ables. The vector of process variables serving as input
(output) forAij is denoted by Ĩij (Õij ). A process has a
distinguished START activity with no predecessors and
an END activity with no successors. Processes conform
to the Static Single Assignment (SSA) form (Cytron
and others, 1991), where each variable is defined by
exactly one activity. This is accomplished by creating
new indexed “versions” of variables and by introducing
so called φ-activities that are placed at control flow join
points. The SSA form of our example process is shown
(in pseudo-code syntax) in Figure 1. The input variables
taken by a process are defined by the START activity,
and the output variables are inputs to the END activity.
The structure of P is expressed as the conjunction of

2



21st International Workshop on Principles of Diagnosis

SEC1

SEC2

SAMPLE

REM

GUARD END

X1

X1

R1

R2

S

SAMPLE SEC1 X1 SEC2 X1 GUARD REM GUARD SAMPLE GUARDREM

nil nil true

t0 t1 t2 t3 t4 t5 t7 t8 t9 t10 t11 t12t6

J1

J2

no

no

Time

START

SPEC

START

t13

EC1 C2 C3

C4

C5

C6

C7

C8

C10

C11

C9 SPEC ← start()
S1 ← sample(SPEC )
R1 ← sec1(S1)
if x1(R1) :

R2 ← sec2(S1)
if x1(R2) :

S2 ← rem(S1)

S3 ← φ(S1, S2)

S4 ← φ(S1, S3)
guard(S4)
end(S4)

Figure 1: Example process (top left), its SSA form (right), and a sequence of activity executions (bottom)

all its activity occurrences

P (V) =
∧
Aij (Ĩij , Õij ),

Aij ∈ A; Ĩij , Õij ⊆ V; i ∈ [1, n]

that defines the control and data flow of the process.
We use upper case letters to denote variables in first-
order logical sentences. We write P (Ĩ , X̃, Õ) to denote
the conjunction P (V) where the process receives in-
put values assigned to Ĩ , assigns output values to Õ,
and assigns values to process-internal variables in X̃ .
Symbol Ai denotes a relation that governs the allowed
value combinations admitted by the correct behavior of
all occurrences of activity Ai. This is called the behav-
ior relation and will be defined below. Hence, value
assignments to all process variables Ĩ , X̃, Õ which sat-
isfy the relations of the activities Ai in the conjunc-
tion P (Ĩ , X̃, Õ) correspond to the allowed execution(s)
where P receives input values Ĩ and produces output
values Õ. A value assignment that satisfies all relations
Ai in P (Ĩ , X̃, Õ) is an execution of the process. For
simplicity of presentation, we assume that END has
only a single control input variable E that indicates suc-
cess or failure of a process execution. The SSA form of
the example process is represented as the conjunction
P (SPEC , R1, R2, S1, . . . , S4, C1, C2, . . . , E) =
start(C1,SPEC ) ∧ sample(C1,SPEC , C2, S1) ∧
sec1(C2, S1, C3, R1) ∧ x1(C3, R1, C4, C5) ∧
sec2(C4, S1, C6, R2) ∧ x1(C6, R2, C7, C8) ∧

rem(C7, S1, C9, S2) ∧ φ(C8, C9, C10) ∧ φ(S1, S2, S3) ∧
φ(C5, C10, C11) ∧ φ(S1, S3, S4) ∧ guard(C11, S4, E) ∧

end(E,S4)

where the variables Ci and E model the control
flow and the remaining variables model the data flow.
Control- and data flow joins are uniformly represented
as φ-activities.

From here on we define the relation describing the be-
havior of an activity over a set of activity variables. We
focus on the possible relationships between input and
output values of an activity and do not rely on detailed
knowledge about the internal structure or implementa-
tion of an activity. Since an activity may occur several
times in P , the activity variables (·) may be bound to
different process variables (̃·) as shown in the example
for X1. That is, the activity variables in the definition of
the behavior relation serve as a placeholder for process
variables.

Definition 2 (Behavior Relation) Let A be an activ-
ity with activity variables U1, . . . , Ut where the input
variables are I = 〈U1, . . . , Us〉 and the output vari-
ables are O = 〈Us+1, . . . , Ut〉, and let DUk

denote the
value domain of variable Uk. The allowed behavior of
activity A is given as a relation over the allowed input
and output values: A(I,O) ⊆ DU1 × · · · × DUs ×
DUs+1

× · · · ×DUt
.

We require that A is total, that is, A(v̂, O) includes at
least one tuple for each v̂ ∈ DU1

× · · · × DUs
. We

describe the behavior relation of A extensionally by
a set of literals. Value domains correspond to types
and can appear in multiple behavior descriptions. For
example, the domain of the data output of SAMPLE
is the domain of the processing input of SEC1. We
require processes to be well typed such that an activity
is defined on all values that could be produced by its
predecessors. Without loss of generality we assume that
any two domains are either equal or mutually disjoint.
Definition 3 (Process Behavior) A process behavior
BP for a process P is a vector of activity behavior re-
lations

〈
A1(I1, O1), . . . , An(In, On)

〉
. Ii, Oi denote

vectors of activity variables.
To accurately model the flow of control in a process
execution, we assume that each domain DUk

contains a
distinguished symbol nil that represents “no value” and
that is different from any value produced by any execu-
tion of an activity. The control flow between activities
is expressed as a shared variable connecting each pre-
decessor activity to its successor(s). Control activities
AND-split, AND-join, and OR-join are defined as usual
where control input and output variables have the binary
domain {t,nil}. For processing activities (those which
process inputs and pass the control flow), guards, and
XOR-splits, we amend the relation A(I,O) to include
all tuples 〈v̂,nil , . . . ,nil〉 where an input value in v̂ is
nil and all other input variables are bound to values of
their domain. For φ-activities the output is nil iff both
inputs are nil . We refer to these sets of tuples as the
nil -description. This model derived from SSA form
ensures that an activity produces non-nil outputs only
if it is activated with non-nil inputs along the control
flow path and produces nil otherwise. As a result, the
control and data flow in any process execution are cap-
tured correctly. Furthermore, the model ensures that
the END activity receives a non-nil control input iff
the process runs to completion and does not raise an
exception.

3



21st International Workshop on Principles of Diagnosis

Let us now investigate the case where the behavior
of an activity A is partially unknown. This situation
may arise if we must predict the execution of a process
on partial input or in the presence of fault assumptions.
For example, the outputs of X1 cannot be predicted
precisely without knowing the values supplied by SEC1
and SEC2. However, even if the behavior of SEC1
is not known, it is still possible to conclude that any
execution of SEC1 will result in an assignment for R1
and the activation of X1. Let the hypothetical value
of the assignment to R1 be r. Then it is known that
X1 will activate either the upper or the lower branch.
Consequently, the behavior relation of X1 will contain
either x1(t, r, t,nil) or x1(t, r,nil , t) where the behav-
ior of an XOR-split activity is expressed by the relation
x1(C,W, Y,N) defined over control variables C, Y ,
N and decision input W . Since XOR-splits exhibit
deterministic behavior (for given inputs) the behavior
relation could not contain both tuples. To capture this
form of incomplete knowledge, a model must be able
to express a set of possible behavior relations where
each relation reflects a different possible behavior if
complete information was available.

We generalize our model of an activity from a sin-
gle relation to a set of relations in order to model
the behaviors that may arise if the behavior relation
is not known completely. The possible behaviors
of an activity A are expressed by a set of relations
A(I,O) =

{
A1(I,O), . . . , Az(I,O)

}
, where each

Ak(I,O) represents a behavior relation as defined pre-
viously.

E.g., the two possible behaviors of an XOR-split
activity x1(C,W, Y,N) with its decision input fixed to
W = x (where x may be nil ) are

{x1(nil , x,nil ,nil), x1(t,nil ,nil ,nil), x1(t, x, t,nil)}
{x1(nil , x,nil , nil), x1(t,nil ,nil ,nil), x1(t, x,nil , t)} .

More generally, if the value of variable W is not
known, AX1(IX1, OX1) comprises all sets

{{x1(t,nil ,nil ,nil)∪⋃
x∈DW

{x1(nil , x,nil , nil), x1(t, x, Y,N)}} |

〈Y,N〉= 〈t,nil〉 or 〈Y,N〉= 〈nil , t〉}

The behavior of the entire process P is determined
as a combination of specific behaviors, one each from
Ai(Ii, Oi) for all activities Ai in P . By constructing
the set of possible selections we define the set of all
possible process behaviors.
Definition 4 (Possible Process Behaviors) The set of
all possible behaviors of P is given as

BP =
{〈
Ak1

1 , . . . , A
kn
n

〉
| Aki

i ∈ Ai(Ii, Oi)
}
.

An element BP ∈ BP is a possible process behavior.
Assume an execution of P results in the following ob-
served execution behavior of activities Obs:

{start(t, spec1), sample(t, spec1, t, s1), sec1(t, s1, t, r11),
x1(t, r11, t,nil), sec2(t, s1, t, r21), x1(t, r21,nil , t), . . . ,
guard(t, s1,nil), rem(t, s1, t, s2), guard(t, s2,nil),

sample(t, spec1, t, s1), rem(t, s1, t, s3), guard(t, s3, t)}.

The same I/Os are observed for the executions of
SAMPLE, while REM produces different outputs for
the same input.

In absence of further information, the observed
execution behaviors in Obs together with the nil -
description comprise the behavior relations. Behav-
ior relations of φ-activities and END are also included.
Assume that REM may behave non-deterministically
for some inputs, and that for the input value r21 the
behavior of the XOR is unknown; that is, no behavior
matching x1(t, r21, , ) has been observed. Then there
are two possible process behaviors BU

P and BL
P for P :

in BU
P , the second occurrence of X1 in P activates

the upper branch on input r21, while in BL
P the lower

branch is taken.
A given process behavior BP ∈ BP determines the

set of possible executions of P . We abstract from
the concrete execution(s) implied by a given BP and
project the process behavior on its output values:
Definition 5 (Reachable assignment) Let BP be a
behavior of a process P = 〈A,V, I,O〉. An assign-
ment of value w to output variable Q̃ ∈ O is reachable
under BP iff some execution admitted by P (Ĩ , X̃, Õ)

satisfies Q̃ = w. We write
BP |= ∃Ĩ X̃ Õ : P (Ĩ , X̃, Õ) ∧ Q̃ = w.

For the scenario described above it holds that
in both possible process behaviors (BU

P and BL
P )

E = nil is a reachable assignment: BL
P |=

P (SPEC , R1, R2, S1, . . . , S4, C1, C2, . . . , E) ∧ E =
nil (the variables of P are existentially quantified).
That is because the guard signals an exception both
for s1 and s2. Assignments S4 = s2 and S4 = s3 are
both reachable in BU

P .
If BU

P determines the execution, E = nil , because
the guard signals an exception if S4 = s2 is reached.
If BU

P is changed to B′U
P by removing rem(t, s1, t, s2)

from the behavior relation of REM, E = nil is no
longer reachable in B′U

P but is still reachable in BL
P .

The process behavior B′U
P specifies a process where

–regardless of the concrete execution– no exception will
be raised, whereas BL

P admits an execution that fails.
Consequently, if we assume that SEC2t4 produces a
different value than the observed value r21 and on this
value the upper path of the second occurrence of X1
is taken, and REM produces a different value than s1
or s2 then we are guaranteed a process behavior which
rules out exceptions.

4 DIAGNOSIS MODEL
In “black box” application domains such as Web Ser-
vices the complete behavior relation Ai(Ii, Oi) is un-
known. However, we can exploit the available knowl-
edge which on one hand specifies the I/O tuples that
must be contained in a behavior relation and on the
other hand describes which I/O tuples are forbidden.
For each activity Ai a behavior relation Ai(Ii, Oi) is
defined to include the nil -description, all observations
gathered from executions of activities, and possibly
other known concrete I/O behaviors. This set of pre-
defined behaviors is denoted by Pre. Some domains
of the variables of Ai may be known, e.g., control vari-
ables, while others are only partially known (e.g. the

4



21st International Workshop on Principles of Diagnosis

output of SAMPLE). If we observe a value v of a
variable O whose domain is only partially known, and
v is not contained in this domain, we extend the domain
with a new symbol representing v.

Additional requirements constraints Rei determine
whether the behavior of an activityAi must be determin-
istic. Rei is a constraint expression over the variables
in Ai(Ii, Oi) specifying which value combinations for
activity variables Ii, Oi are allowed in the behavior re-
lation. For our purposes it is sufficient if Rei refers to
known domain values of Ii, Oi. These constraints are
local to an activity and do not depend on the behavior
of any other activity. The set of requirements for all ac-
tivities is denoted by Re. The requirement that activity
behaviors must be totally defined is part of Rei.
Definition 6 (Diagnosis Problem) A diagnosis prob-
lem DP = 〈P,Obs,Pre,Re〉 consists of a process
P , a set of I/O behaviors Obs observed from exe-
cutions, a set of predefined behaviors Pre, and a
set of requirements Re. Let P = 〈A,V, ∅, {E}〉
with activities A = {A1, . . . , An}. Let Obs =
{ob1(v̂1, ŵ1), . . . , obq(v̂q, ŵq)} be the set of ob-
served I/O behaviors of activity executions, where
obj(v̂j , ŵj) ∈ Obs is the observed execution of an ac-
tivity occurrence Aij . The set of all observed execution
behaviors of an activity Ai is denoted by obi. obi ⊆
Ai(Ii, Oi), Ai(Ii, Oi) ∈ Pre for i ∈ {1, . . . , n}. Pro-
cess variable E indicates success or failure of any
execution of P .

Note that without loss of generality, the definition
limits P to a single output and does not mention pro-
cess inputs: the inputs that were observed in executions
are modeled as outputs of the START activity. Further-
more, the decisions that establish if a process execution
is successful (typically referred to as an “oracle”) are
explicitly encoded in the guard activities of the process.
Note that we do not require that the criteria are com-
pletely known and formalized. Rather, the behavior of
guard activities is also determined by observations in
Obs. Our model implies that if a guard activity deter-
mines that its input values violate a process constraint,
a vector containing nil values will be assigned to its
output variables. By the definition of the SSA form
and the behavioral relations, nil will be propagated to
the END activity by the subsequent activities. Hence,
it is sufficient to verify that the END activity does not
receive a nil value to verify that the process execution
complies with all guards.

For example, the behavior PreX1
of x1(C,W, Y,N) is given by the set
{x1(t,nil ,nil ,nil), x1(nil , X,nil ,nil) | X ∈ DW }∪
Obs where Obs contains the observations
{x1(t, r11, t,nil), x1(t, r21,nil , t)}. The require-
ments ReX1 for the XOR behavior are given by the
following sentence:

x1(C,W, Y,N)⇒
[(C = nil ∨W = nil)⇔ Y = nil ∧N = nil ]
∨ [(C 6= nil ∧W 6= nil)⇔ Y 6= N ]

In addition ReX1 includes the property that X1 must
be deterministic and totally defined.

If a failure occurred (indicated by a guard raising
an exception) either during process execution or repair
planner guided re-execution, some activity executions

must have produced incorrect values. In other words,
specific activity behaviors in the process are faulty, and
the behavior definition must be restricted so that the
incorrect I/O behaviors cannot occur. Conversely, be-
haviors do not need to be removed if their execution
cannot result in a failure.

Let BP be a process behavior. For a set of tuples
∆, BP \ ∆ is the process behavior where from each
behavior relation in BP the tuples of ∆ are removed.
Definition 7 (Diagnosis) Let DP =
〈P,Obs,Pre,Re〉 be a diagnosis problem with
P = 〈A,V, ∅, {E}〉. A subset ∆ ⊆ Obs of activity
executions is a diagnosis for DP iff there exists a
process behavior BP such that

1. Each A′
i(Ii, Oi) ∈ BP is a superset of

Ai(Ii, Oi) \∆ for Ai(Ii, Oi) ∈ Pre

2. Each A′
i(Ii, Oi) ∈ BP is consistent with Rei ∈

Re

3. BP 6|= ∃X̃ E : P (∅, X̃, E) ∧ E = nil .

∆ is minimal if no ∆′ ⊂ ∆ is a diagnosis for DP .
The first condition expresses the key concern that the
executions should be consistent with existing non-faulty
activity behaviors, but omit the faulty behavior tuples.
The second condition formalizes the expectation that
activity executions must also satisfy general known
requirements like totally defined. The third condition
states that the diagnosed and repaired execution must be
error free; that is, no execution must imply the failing
of a guard.

Hence, a diagnosis ∆ rules out certain observed be-
haviors of activities, such that no process execution
conforming to the remaining assumed-correct behavior
relations in BP can lead to a failure. We say ∆ is ac-
cepted as a diagnosis iff there exists a correct process
behavior BP that extends Pre \∆. A minimal diagno-
sis preserves as much as possible the observed behavior.
If the same behavior of an activity is observed multi-
ple times in an execution (e.g. sample(t, spec1, t, s1))
then either all of these executions must be correct or
all must be faulty. This assumption introduces depen-
dencies between activity executions and may affect
the diagnosis probability. Devising suitable probability
models is beyond the scope of this paper.

As examples, consider the following diagnosis sce-
narios assuming that the process was executed until
the first execution of the guard returns a failure. All
the behavior relations of the activities contain just the
observed I/O behaviors and the nil -description. Re
contains the usual restrictions on the allowed behav-
ior of processing activities and control activities. If
∆ = ∅ then E = nil is reachable, so ∆ = ∅ is
not a diagnosis. If ∆ = {sample(t, spec1, t, s1)}
then we can construct behavior relations for all ac-
tivities such that Pre \ ∆ is extended and the pro-
cess behavior is correct. For example, the execution
of SAMPLE generates a new value for which we can
assume that the guard does not signal a failure. How-
ever, if ∆ = {sec1(t, s1, t, r11)} then it is not possible
to generate a correct process behavior by extending
Pre \∆. Whatever value SEC1 generates, either the
upper branch or the lower branch of the first occurrence
of X1 in P is taken. In both cases, s1 will be assigned
to S4 and therefore the guard will output nil (as in the

5



21st International Workshop on Principles of Diagnosis

original execution). Thus, ∆ = {sec1(t, s1, t, r11)} is
not a diagnosis, as it does not prevent the exception.

In the following presentation we will assume that P
is acyclic. This does not limit the representation of ob-
served execution traces (traces are usually represented
as partially ordered set of activities). Loops must be
taken into account when projecting unseen behavior for-
ward through the process, using common techniques to
determine a sufficient number of unfoldings that cover
all possible looping behaviors (Kroening and Strich-
man, 2003).

5 SYMBOLIC REPRESENTATION
To verify if ∆ is a diagnosis, behavior relations
A′

i(Ii, Oi) of activities Ai ∈ A must be found that
include the tuples of Ai(Ii, Oi) \ ∆, are consistent
with Rei, and no guard fails, i.e. E = nil cannot be
reached. If no such set of behavior relations exist then
∆ is not a diagnosis. Consequently, all possible behav-
ior relations of Ai have to be explored. If all domains
of I/O variables of Ai are known we can enumerate all
behaviors which are superset ofAi(Ii, Oi)\∆ and con-
sistent withRei. However, if domains are only partially
known then we have to deal with unknown values.

We adopt the principle of symbolic execution (King,
1976) from program analysis to deal with unknown
behaviors. In symbolic execution, unknown values
of input and output variables of program statements
are represented as symbols. Every occurrence of an
activity Ai in the process P may produce a new, yet
unseen value for a variable whose domain is partially
unknown.

For an activity Ai and an output variable O of this
activity, we inject unique symbols s1, . . . , sp into the
domain DO, where p is the number of occurrences of
Ai in P . The domain DO may be used multiple times
by the same activity but also by other activities as a
domain for output variables.

For example, assume that activities SEC1 and SEC2
use the same domain D for their data output. From ob-
servations we know that {r11, r21} ⊂ D. Both SEC1
and SEC2 can produce symbolic values y1 and y2 that
represent yet unseen values in D. Since the symbolic
values are not constrained further, both activities may
output an arbitrarily chosen value —the same value or
different values— in D. Hence the symbolic behavior
relation must consider the cases where both activity
executions result in the same symbolic value and where
the values differ.

In the following we construct every possible behavior
of activities given a diagnosis problem and a ∆ ⊆ Obs.

Let A be an activity with input variables I =
〈U1, . . . , Us〉 output variables O = 〈Us+1, . . . , Ut〉,
and let DUk

denote the domain of variable Uk. The
set of all input vectors of an activity is wI =
{〈w1, . . . , ws〉 |w1 ∈ DU1

, . . . , ws ∈ DUs
}. Likewise

the set of all output vectors of an activity is wO =
{〈ws+1, . . . , wt〉 |ws+1 ∈ DUs+1 , . . . , wt ∈ DUt}.

Based on the I/O vectors we can construct all possi-
ble behavior relations of activities. However, in such a
relation, for each input vector, at most p output vectors
need to be defined, since the activity can only occur p
times in P ; on each occurrence a different output vector
can be returned. If an activity is deterministic then just

one output vector is created for each possible input vec-
tor. Consequently, the set of possible behaviors for an
activity Ai is defined by behavior relations where for
each input vector p output behaviors are chosen. The
same output vector may be selected multiple times.

A′
i(Ii, Oi) = {

⋃
w

I
∈w

I

{〈wI , w1〉 , . . . , 〈wI , wp〉}|

w1 ∈ wO, . . . , wp ∈ wO}

All the possible behavior descriptions in A′
i are ex-

tended by the set of tuples considered to be correct, i.e.
Ai(Ii, Oi) \∆ for Ai(Ii, Oi) ∈ Pre, and by the nil -
description. In addition, we eliminate all behavior de-
scriptions in A′

i that are inconsistent with requirements
Rei. We generate the possible behavior for all activities
which have variables with a partially unknown domain,
such as processing activities, guards, XOR-splits, and
φ-activities. The result is a set of possible process be-
haviors BP for a diagnosis problem and a ∆ ⊆ Obs.

For example, the domain DW of x1(C,W, Y,N) is
extended to contain all of {r11, r21, y1, y2} (and nil
as the only other value). Every possible behavior of
X1 includes the tuples in PreX1 (shown earlier) and
must be consistent with ReX1. That is, the behavior
on inputs {r11, r21,nil} is fixed, but there are four
different behaviors which differ just on the outputs
provided for inputs {y1, y2}:

{x1(t, y1, t,nil), x1(t, y2, t,nil)},
{x1(t, y1,nil , t), x1(t, y2, t,nil)},
{x1(t, y1, t,nil), x1(t, y2,nil , t)},
{x1(t, y1,nil , t), x1(t, y2,nil , t)}.

Based on the possible process behaviors BP for a
diagnosis problem DP and a diagnosis ∆ we can state
the following property which is exploited for the gener-
ation of diagnoses:
Property 1 Let DP = 〈P,Obs,Pre,Re〉 be a diag-
nosis problem with P = 〈A,V, ∅, {E}〉 and BP the
set of possible process behaviors generated for a subset
∆ ⊆ Obs as described above.

∆ is a diagnosis for diagnosis problem DP iff there
is a process behavior Bp ∈ BP s.t. Bp 6|= ∃X̃ E :

P (∅, X̃, E) ∧ E = nil .

Proof sketch: (⇐) : This is trivially fulfilled by the
construction of BP . All activity behaviors in BP are
supersets of Ai(Ii, Oi) \ ∆, are consistent with Rei,
and Bp does not trigger an exception.

(⇒) : If there exists a diagnosis ∆ for DP then
there exists a process behavior BP s.t. BP 6|= ∃X̃ E :

P (∅, X̃, E) ∧ E = nil . An instantiation of the vari-
ables in BP |= ∃X̃ E : P (∅, X̃, E) corresponds to a
process execution and defines behavior tuples for ac-
tivities Ai. Values not covered by observations are
replaced by a symbol. By construction, at least one
symbolic value is available for each occurrence of Ai.
The introduction of symbolic values cannot trigger an
exception, and all constraints in Rei remain satisfied,
since both cannot contain symbolic values. Thus, if a
constraint is fulfilled for an arbitrary unknown value
it is also fulfilled for a symbolic value. Ai remains to
be totally defined after the substitution. The tuples of

6



21st International Workshop on Principles of Diagnosis

all process executions where the unknown values are
replaced by symbolic values define behavior relations
which are included in some behavior relation generated
by our construction of BP . It follows that if there is a
process behavior BP for which Pre \ ∆ can be cor-
rectly extended, then there exists a process behavior
B′

P in the set of generated possible process behaviors
BP which is also a correct extension of Pre \∆. We
have constructed a decision method which correctly
and completely determines if a set ∆ ⊆ Obs is a diag-
nosis. 2

Given our example process, observations and the di-
agnosis candidate ∆ = ∅, all Ai(Ii, Oi) in the process
behaviors of the generated set BP contain their ob-
served execution behavior. Therefore, in each process
behavior of BP , E = nil is reachable. Consequently,
there is no B′

P which is a correct extension of Pre \∆.
Hence, ∆ = ∅ is not a diagnosis. However, if the
observed execution behavior sample(t, spec1, t, s1) is
removed, then only symbolic (unseen) output values re-
main to be assigned to S1. Therefore, we can construct
behaviors for REM , GUARD , and all other activities
such that the guard is not triggered for any execution.
Therefore, {sample(t, spec1, t, s1)} is indeed a valid
diagnosis.

6 DIAGNOSIS COMPUTATION AND
EVALUATION

Because all domains of the variables are finite, logic
programming systems and model checkers can be used
to concisely express all possible process behaviors and
check whether E = nil is reachable. The search for
minimal, irreducible, or leading diagnoses can be im-
plemented by standard methods, such as HS-tree gener-
ation, combined with appropriate minimization proce-
dures, such as QuickXplain.

We conducted an empirical evaluation to determine
the diagnostic accuracy that can be expected from our
model, compare it with previous approaches, and as-
sess the computational resources required. We sourced
process examples from the literature, such as (Friedrich
et al., 2010), and generated additional (artificial) pro-
cesses to obtain a comprehensive benchmark suite of
200 processes. Each process comprised 5–79 activities
chosen from 3–9 different types of activity, and each
process included up to 22 xor decision nodes. Activi-
ties were assembled into complex processes based on a
randomized graph grammar to ensure process control
and data flow are well-defined. For each activity type,
a set of observed behaviors was generated randomly to
yield the observed process behaviors and exceptions.
Two execution paths were generated for each process.
The number of activities occurring in an execution path
varied from 5–65 activities. The resulting benchmark
suite of 400 process executions covers a wide range
of different process structures, and, to the best of our
knowledge, is more comprehensive than any other avail-
able benchmark.

We implemented the diagnosis framework in Eclipse
Prolog. Each process was compiled into a finite do-
main constraint satisfaction problem which captured
the structural and behavioral links between the activi-
ties. Concrete and symbolic values were encoded as in-
tegers to leverage efficient constraint solvers. We used
additional variables to model correctness assumptions

Size N Xor Trace Dep. Symb. Imp. Time (s)
0–9 48 0.67 8.04 3.98 3.50 0.10 0.12

10–19 100 3.10 16.84 6.40 4.63 0.16 1.07
20–29 124 5.21 27.16 8.97 4.89 0.45 5.43
30–39 60 7.67 33.43 9.67 5.37 0.59 16.85
40–49 28 10.21 41.64 12.36 6.31 0.50 74.52
50–59 12 12.17 35.17 10.42 6.29 0.32 124.22
60–69 16 14.62 30.75 9.12 4.50 0.40 130.63
70–79 6 17.00 35.67 9.33 2.00 255.80
0–79 400 5.85 24.95 8.19 4.82 0.29 14.56

Table 1: Comparison of dependency- and symbolic
diagnosis model

and the selection of possible behaviors. The constraint
system was then used to isolate the maximal subsets of
the observed process behaviors that did not result in an
exception.
Our results are summarized in Table 1, aggregated by
process size. The columns show the average number of
activities in a process (Size), the number of process exe-
cutions considered in our study (N), the average number
of decision nodes in a process (Xor), the average num-
ber activities in each execution trace (Trace), the num-
ber of minimal diagnoses obtained from dependency-
based models (Dep) and from our model (Symb), the
mean relative improvement (Imp= 1 − Symb/Dep),
and the average diagnosis time in seconds (Time) to
compute all diagnoses using the symbolic model. Ac-
curacy is measured as the fraction of activity behaviors
that need not be examined given a set of diagnoses.
Note that Imp may be larger than 1− Symb/Dep since
some instances exceeded the five minute time limit for
the symbolic model. The blank cell denotes “no im-
provement” and is caused by too few symbolic results.
Hence, Imp is a conservative estimate and may improve
further with faster algorithms.

The results show that the symbolic model yields
significantly more accurate results than simpler
dependency-based models. The symbolic model on
average eliminated three diagnoses, but could shorten
the result by as much as 20 diagnoses. Overall, the num-
ber of diagnoses dropped by roughly 30% compared to
dependency-based models. Our model on average im-
plicated only 21% of the executed activities. Figure 2
shows a bar plot of the additional spurious diagnoses
that are incurred when moving from a more precise
diagnosis model (lower bars in the diagram) to a more
abstract model (mid- and upper bars). The greatest re-
duction of the diagnosis ratio was observed for process
executions that contained a large number of activities.
Among all diagnoses, 90% were single-fault explana-
tions, 9.5% double-faults, and 0.5% triple-faults.

The measured execution times indicate that the sym-
bolic model also performed well in those scenarios that
are most relevant for practical application. Figure 2
shows a scatter plot of the diagnosis times. In 75% of
all cases, the result was obtained after just 5.3 seconds.
On average, all minimal diagnoses were obtained after
14.56 seconds of CPU time.1 Our results confirm that
the model is sufficient to address the majority of prac-
tical process diagnosis scenarios, where the number

1The data were obtained from Eclipse 6.1 on Intel
P4@1.86GHz with 6Gb RAM running Linux 2.6.

7



21st International Workshop on Principles of Diagnosis

0
−

9

1
0

−
1

9

2
0

−
2

9

3
0

−
3

9

4
0

−
4

9

5
0

−
5

9

6
0

−
6

9

7
0

−
7

9

0
1

0
2

0
3

0
4

0

Symbolic Model

Dependency

Model
Executed

Activities

N
u

m
b

e
r 

o
f 

M
in

im
a

l 
D

ia
g

n
o

s
e

s

20 40 60 80

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Number of activities

T
im

e
 (

s
e
c
o
n
d
s
)

Figure 2: Process size vs. result size and diagnosis time

of activities is virtually always less than 50. (Larger
scenarios are usually decomposed hierarchically, where
the number of activities on each level is small. Our
model is particularly suited for hierarchical diagnosis,
since no detailed specification of the abstract activities’
behavior is required.) We believe that further optimiza-
tion of our naı̈ve implementation will improve these
results.

7 RELATED WORK
Dependency tracking techniques are well-known
techniques for model-based diagnosis of pro-
grams (Wotawa, 2002) and Web Services (Ardissono
et al., 2005). The approach has been employed to
diagnose Web service workflows built from BPEL
models (Yan et al., 2009). The semantics of the service
are expressed as an automaton and diagnosis is con-
ducted by tracing backwards along the dependencies
when a fault occurs. These mechanisms correspond to
the dependency-based approach in our evaluation.

Expressive constraint models have been developed
to increase the accuracy of model-based debugging
of imperative programs (Mayer and Stumptner, 2008;
Nica et al., 2008). While our processes are much sim-
pler “programs”, we cannot rely on the precise behav-
ioral specification of the programs required by the ear-
lier approaches. Instead, we exploit specific behavior
instances observed at run time and embrace a symbolic
representation to address the problem of incomplete
information.

Related work on planning for diagnosis (McIlraith,
1998) has been concerned with fault explanation by
constructing sequences of events that lead to a particular
set of observations given a set of operations. In contrast,
we assume that the process structure is given and fixed
but the effects of each activity may not be entirely
known.

Logging mechanisms facilitating compensation of
failing transactions have also been analyzed (Biswas,
2004). However, the paper focuses on sequential com-
pensation and does not identify diagnoses.

8 CONCLUSION
In this paper we pointed out the limitation of depen-
dency tracing methods and motivated the necessity to
reason with multiple possible activity behaviors includ-
ing the propagation of symbolic values. We proposed
a diagnosis approach which (1) can deal with partial
knowledge about activity behaviors and (2) does not
assume that activities are executed in an order as de-
fined in the process. Both properties are necessary in

diagnosis/repair scenarios where only limited behavior
knowledge is available. We introduced symbolic values
to deal with unknown behavior and obtained a complete
and correct diagnosis method, provided a correct and
complete model of the known activity behavior and
the constraints on the possible behaviors are given. In
our evaluation we empirically confirmed the increased
precision of our method and its feasibility for practical
applications.
Acknowledgements The research project is partially
funded by the Austrian Research Promotion Agency
(Project 813806 - C2DSAS) and by the Australian
Research Council (Grant DP0881854).

REFERENCES
(Ardissono et al., 2005) L. Ardissono, L. Console,

A. Goy, G. Petrone, C. Picardi, M. Segnan, and
D. Theseider Dupré. Enhancing web services with
diagnostic capabilities. In Proc. ECWS, 2005.

(Biswas, 2004) Debmalya Biswas. Compensation in
the world of web services composition. In SWSWPC,
pages 69–80, San Diego, 2004.

(Cytron and others, 1991) Ron Cytron et al. Effi-
ciently computing static single assignment form
and the control dependence graph. ACM TOPLAS,
13(4):451–490, 1991.

(Friedrich et al., 2010) G. Friedrich, M. Fugini,
E. Mussi, B. Pernici, and G. Tagni. Exception
handling for repair in service-based processes. IEEE
TSE, 2010.

(King, 1976) James C. King. Symbolic execution and
program testing. CACM, 19(7):385–394, 1976.

(Kroening and Strichman, 2003) D. Kroening and
O. Strichman. Efficient computation of recurrence
diameters. In VMCAI, volume 2575 of LNCS, pages
298–309, 2003.

(Mayer and Stumptner, 2008) Wolfgang Mayer and
Markus Stumptner. Evaluating models for model-
based debugging. In Proc. ASE, pages 128–137.
IEEE, 2008.

(McIlraith, 1998) Sheila A. McIlraith. Explanatory
diagnosis: Conjecturing actions to explain observa-
tions. In KR, pages 167–179, 1998.

(Nica et al., 2008) M. Nica, J. Weber, and F. Wotawa.
How to debug sequential code by means of con-
straint representation. In Proc. DX Workshop, 2008.

(Pencolé and Cordier, 2005) Yannick Pencolé and
Marie-Odile Cordier. A formal framework for the
decentralised diagnosis of large scale discrete event
systems and its application to telecommunication
networks. Artif. Intell., 164(1-2):121–170, 2005.

(Reiter, 1987) R. Reiter. A theory of diagnosis from
first principles. Artif. Intell., 23(1):57–95, 1987.

(Wotawa, 2002) F. Wotawa. On the relationship be-
tween model-based debugging and program slicing.
Artif. Intell., 135(1-2):125–143, 2002.

(Yan et al., 2009) Y. Yan, P. Dague, Y. Pencolé, and
M. Cordier. A model-based approach for diagnosing
fault in web service processes. Int. J. Web Service
Res., 6(1):87–110, 2009.

8


