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ABSTRACT
Dynamic Bayesian Networks (DBNs) are tem-
poral probabilistic graphical models that repre-
sent in a very compact way dynamic systems.
They have been used for model based diagno-
sis of complex systems because they naturally
cope with uncertainties in the diagnosis process,
particularly sensor uncertainty in noisy environ-
ments. A caveat of DBN is the complexity of the
inference procedure which is usually performed
with Particle Filtering algorithms. Recently, fac-
toring has been proposed to decompose a DBN
into subsystems, distributing the diagnosis pro-
cess and reducing the computational burden.
This paper proposes decomposing a system with
Possible Conflicts (PCs) and, afterwards, build-
ing a DBN factor from each resultant PC. The
method can be systematically applied to a state
space representation of a dynamic system to ob-
tain minimal observable subsystems with analyti-
cal redundancy. Assuming single fault hypothesis
and known fault modes, the method allows per-
forming consistency based fault detection, isola-
tion and identification with the unifying formal-
ism of DBN. The three tank system benchmark
has been used to illustrate the approach. Two
fault scenarios are discussed and a comparison of
the behaviors of a DBN of the complete system
with the DBN factors is also included.

1 INTRODUCTION
The increasing complexity of current engineering sys-
tems, together with the increasing demand on their safe
and reliable operation even in the presence of system
faults, makes fault diagnosis an essential tool. Faults
must be detected, and if possible isolated and identi-
fied, close to their onset (Narasimhan, 2007) so that
quick action can be taken to minimize the effects of
the fault and thus prevent damage. Due to the com-
plexity of these systems, formal methods are required
for systematic design, analysis, and implementation of
system diagnosers. Model-based diagnosis provides a
formal framework to achieve these objectives.

Main approaches to model based diagnosis of con-
tinuous systems are consistency based, control the-
ory based, and stochastic based (Narasimhan, 2007).
Stochastic approaches have promoted the use of prob-
abilistic methods for fault diagnosis. This is motivated
by the uncertainty in the diagnosis process. The main
sources of uncertainty are the models and the sensors,
particularly in noisy environments. Among stochas-
tic approaches, Dynamic Bayesian Networks (DBNs)
(Murphy, 2002) play an important role.

DBNs have been applied (Dearden and Clancy,
2001; Koller and Lerner, 2001) to fault diagnosis be-
cause they allow estimating state variables of a dy-
namic system without the usual Gaussian assumption
for noise and modeling errors, which no longer ap-
ply when faults occur (Arulampalam et al., 2002).
Its major drawbacks are computational complexity of
learning and inference procedures. In model based
diagnosis, network structure and coefficients may be
obtained from models, particularly from Temporal
Causal Graphs (TCGs) (Lerner et al., 2000; Roy-
choudhury et al., 2008). Real time inference has been
tackled with Particle Filtering (Arulampalam et al.,
2002).

A problem with Particle Filtering is ’sample im-
poverishment’: less weighted samples tend to disap-
pear. Importance sampling may reduce this effect that
is especially harmful for diagnosis: faulty states have
small probabilities.(Roychoudhury et al., 2008) pro-
poses solving this problem using multiple DBNs: a
nominal DBN to track the system in normal oper-
ation and, under single fault hypothesis, a DBN to
model each fault. When a fault is detected, the TRAN-
SCEND method (Mosterman and Biswas, 1999) is
used to generate fault hypotheses. The fault hypothe-
ses are tracked in parallel by their associated faulty
DBN. Eventually, the DBN which best fits observa-
tions provides fault isolation and fault identification.
The major drawback of this proposal is the compu-
tational complexity of hypotheses tracking, because
each DBN models the whole systems plus the hypoth-
esized fault.

To reduce computational complexity of inference,
factoring DBNs has been recently proposed. In
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(Roychoudhury et al., 2009; Roychoudhury, 2009) a
method is proposed to obtain Factored DBNs, based
on conditional independence. After initial factors have
been obtained, they are augmented to achieve a struc-
tural observable system. Structural observability is
needed to assure that the state variables of the DBN
factor can be estimated from observations and known
inputs.

In this paper a different approach is proposed,
based on Possible Conflicts (PCs) (Pulido and Alonso-
Gonzalez, 2004). For a given a system, PCs induces a
decomposition in minimal structurally observable sub-
systems (Moya et al., 2010). Hence our proposal con-
sists of first finding the set of PCs of a system and af-
terwards obtaining the DBN factors from the PCs.

An additional advantage of factoring with PCs is
that fault isolation may be performed on the standard
framework of Consistency Based Diagnosis, because
the support of a DBN factor is the same that the sup-
port of the PC that generates it. Fault identification re-
quires considering fault modes. Assuming single fault
hypothesis, DBN factors can be modify to model the
fault and tracking the faulty system.

Along the paper, the three tank system benchmark
is used to illustrate several concepts. Section 2 pro-
vides a basic background about DBNs. Section 3 dis-
cusses a method to derive DBNs from PCs. Section 4
introduces the diagnosis architecture, explaining how
to perform fault detection, isolation and identification
with PC factored DBNs. In Section 5 two fault scenar-
ios are examined. Section 6 compares the performance
of the DBN of the complete system with the DBNs fac-
tors. After Discussion, some Conclusions are stated.

2 DYNAMIC BAYESIAN NETWORKS
BACKGROUND

Dynamic Bayesian Networks are a probabilistic tem-
poral model representation of a dynamic system. Ba-
sically, a DBN is a two slices Bayes Network (BN).
Assuming that the system is time invariant and a First
Order Markov process, two static and identical BN
connected by inter slice arcs are enough to model the
system (Murphy, 2002). Inter slices arcs model system
dynamics. Intra slice arcs model instantaneous (alge-
braic) relations.

The system variables (X,Z,U, Y ) represented in a
DBN are the inputs (U ), the state variables (X), the ob-
served or measured variables (Y ) and, in some cases,
other hidden variables (Z) . Once we have the nodes,
we need to define the parameters of the model, which
are the state transition model (graphically represented
by the inter slice arcs) and the sensor model (repre-
sented by intra slice arcs).

Exact inference in DBNs is not computationally
tractable. Hence, Monte Carlo simulation methods
are use for approximate inference, particularly Particle
Filter algorithm (Koller and Lerner, 2001). The un-
known continuous stochastic distribution of the state
is approximated by a discrete distribution obtained by
weighted samples. After propagation of the state, the
weights are updated with current observations. In this
work, we assume a Gaussian distribution.

Figure 1 shows the three tank system and Figure 2
shows its DBN model. There are three available mea-

Figure 1: Three tanks system.

surements: (1) the flow out of tank 1 (F1), (2) the flow
between tank 1 and tank 2 (F12) and (3) the flow out
of tank 3 (F3). They are represented in the network
by f4, f6 and f16 respectively. Fin is a constant in-
put, represented by node f1. Nodes e2, e8 and e14
are the state variables, the pressures at the bottom of
each tank. Hence, X = {e2, e8, e14}, U = {f1},
Y = {f4, f6, f16} and Z = {φ}. The DBN can be
manually constructed from conditional independence
considerations. We have derived it from its TCG,
which is automatically generated from a Bond Graph
model of the system (Mosterman and Biswas, 1999).

Figure 2: DBN of the the three tank system.

3 OBTAINING DBN FACTORS FROM PCS
3.1 Possible Conflicts background
Possible Conflicts (PCs) is a compilation technique
for consistency based diagnosis of dynamic systems
(Pulido and Alonso-Gonzalez, 2004). Essentially, PCs
are minimal over determined subsystems with analyti-
cal redundancy.

Possible conflicts can be automatically derived from
a hypergraph model of a system. This hypergraph is
just an abstract representation of the system equations
in state space form. Hyperarcs of the hypergraph rep-
resent an equation (more generally, a constraint) and
the nodes included in the hyperarc are the variables of
the equation (i.e. constraint).

Each PC has associated a directed hypergraph call
Minimal Evaluable Model (MEM). Nodes of the di-
rected hypergraph represent variables of the system
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and directed hyperarcs represent a constraint with a
causal assignment. From a given MEM, a computa-
tional model of a PC can be directly obtained replacing
each hyperarc by its corresponding equation. A distin-
guished node in a MEM is the discrepancy node. The
discrepancy node is always a estimated variable that
can be estimated by another path or directly observed.
It is the node where redundancy manifests.

The three tank system of Figure 1 has three PCs.
Figure 3 shows the MEM of PC1 for this system. ec1 1
models the mass balance at tank 1, ec4 1 models the
output and ec12 1, ec13 1 and ec14 1 model the sen-
sors. The dash arc is a differential constraint in integral
causality. The discrepancy node in PC1 is f4.

Figure 3: Possible conflict 1 of the system three tanks
system.

An important aspect of PCs is that they induce a
decomposition of a system into a set of subsystems
(Alonso-Gonzlez et al., 2008). A first feature of this
decomposition is that it is systematic and unique. A
second important feature is that the subsystems are in-
dependent, in the sense that they can be analyzed iso-
lated, because they are structurally observable (Moya
et al., 2010). Moreover, they are minimally redundant.
These properties make them an interesting tool to de-
compose DBNs.

3.2 Generating a DBN from a PC
PCs can also be obtained using the Bond Graph for-
malism (Bregon et al., 2009). Hence it is to be ex-
pected that factored DBNs may be obtained from a PC.
In this work we propose a method to obtain a DBN di-
rectly from the associated MEM of a PC.

Proposition 1. Those Possible Conflicts with a
MEM containing:

• Condition 1, a state variable and a differential
arc,

• Condition 2, a path made only of instantaneous
arcs from an estimated state variable to a discrep-
ancy node that is observed,

provide the minimal structural description of a DBN
for the subsystem defined by the possible conflict.

Condition 1 is required to have a dynamic system.
Condition 2 is necessary to avoid an empty sensor
model in the DBN.

The demonstration of Proposition 1 is constructive
and generally requires two steps:

• Structure : Generate DBN structure from nodes
and hyper arcs of the related MEM according to
the criteria of Tables 1 and 2.
• Simplification : For any state variable which is

conditionally dependent only on input nodes, re-
place that state variable and inputs by a new input
node, according to algebraic MEM computation.

The criterion 1 of the Structure step defines the ini-
tial set of nodes of the DBN. Arcs in the network are
added according to criterion 2. Second step of the
construction process just simplifies the network, elim-
inating state variables that are algebraically estimated
from known inputs and observed variables in the orig-
inal MEM.

Table 1: Equivalence between nodes in the hypergraph
of a MEM and nodes in the DBN.

PCs DBNs

Inputs (U) Inputs

Observation of the discrep-
ancy node

Observation (sensor model)

Any other observation Input

States States

Table 2: Equivalence between relations in the hyper-
graph of a MEM and arcs in the DBN.

PCs DBNs

Differential constraint Inter slice arc for related
state variable

Path from a state variable to
a state variable, including only
one differential constraint

Inter slice arcs from state
variable to state variable

Path from an observation or in-
put to a state variable, including
only one differential constraint
and no additional state variables

Inter slice arcs from
nodes to state variable

Paths without differential con-
straints, starting or ending at a
state variable

Intra slice arcs

Figure 4 shows the DBN obtained from the PC1
of the three tank systems, applying just the Structure
step. None of the PCs of this system needs to perform
the Simplification step to generate the DBN. Figure 5
shows a PC whose transformation on a DBN requires
both steps. Figure 6 shows the intermediate network
created applying step 1 and Figure 7 the final DBN af-
ter step 2.

4 DIAGNOSIS ARCHITECTURE WITH DBNS
AND PCS

Factored DBNs from Possible Conflicts allows tack-
ling all the stages of model based diagnosis, that is,
fault detection, fault isolation and fault identification,
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Figure 4: DBN of the possible conflict 1 of the three
tank system.

Figure 5: Possible conflict of a two tank system with
the pressure of each tank measured.

in the Consistency Based Diagnosis framework with
fault models in a predictive approach. Figure 8 shows
the architecture of the system.

4.1 Fault Detection
Nominal DBNs factors are obtained off line from the
system model through PCs decomposition. The three
resultant DBNs factors for the three tank system are
shown in Figure 4, Figure 9 and Figure 10. These DBN
factors are run in parallel to perform fault detection.
A ztest (Biswas et al., 2003; Gelso et al., 2008) on
the residual of tracked variables is used to decide on
detection of each DBN factor.

4.2 Fault isolation
In a predictive approach, fault isolation requires intro-
ducing fault modes. We have opted for a simple abrupt
fault model (Roychoudhury et al., 2008).
Abrupt fault An abrupt fault is characterized by a

fast change in a parameter value. The temporal

Figure 6: Intermediate DBN of the possible conflict in
Figure 5 after the Structure step.

Figure 7: DBN of the possible conflict in Figure 5 after
the Simplification step.

Figure 8: The diagnosis architecture integrating DBNs
and PCs

profile of a parameter with an abrupt fault, pa(t)
is given by:

pa(t) =
{
p(t) t < tf
p(t) + b(t) = p(t) + σa

p t ≥ tf
where σa

p models the absolute change of the parameter
value. For all the considered faults, σa

p is set to 10% of
the nominal value of the parameter.

We have considered 8 abrupt faults: in the capaci-
tances of each tank (C1, C2 and C3), in the resistance
of the output of each tank (Rv1, Rv2 and Rv3) and
in the resistance of the flow between tanks (Rv12 and
Rv23). The fault signature matrix of the DBNs factors
is the same as the fault signature matrix of the PCs of
the system, shown in Table 3. We use this fault sig-
nature matrix to generate Reiter candidates, which are
updated if new observations generate new detections,

Figure 9: DBN of the PC2 of the three tank system.
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Figure 10: DBN of the PC3 of the three tank system

assuming non intermittent faults.

Table 3: Signature matrix of the system in Figure 1

PC1 PC2 PC3

C1 1 1

C2 1 1

C3 1 1

Rv1 1

Rv12 1

Rv2 1 1

Rv23 1 1

Rv3 1

For complexity reasons, we limit fault identifica-
tion to single faults. DNB factors for each fault
mode are obtained from DBN factors of the nomi-
nal system according to (Roychoudhury et al., 2008;
Roychoudhury, 2009) proposal. Nominal DBN factors
are extended with an additional node for the faulty pa-
rameter. If some network node is conditionally depen-
dent on the new node, and edge is added from the new
node to the ’not conditionally independent’ node. Fig-
ure 11 shows the faulty network factor obtained from
PC1 for an abrupt fault in the capacitance of tank 1.
For each DBN factor it is necessary to build as many
faulty DBNs as indicated in the fault signature matrix.

Figure 11: DBN of possible conflict 1 of the three
tanks system with a fault in the capacitance of tank
1.

Fault isolation requires tracking the system with
faulty DBNs. For each single fault candidate a faulty
DBN factor has to track the system. If a new detection
allows reducing the number of single faults candidates,

the corresponding fault hypotheses are rejected and the
associated DBN factors no longer track the system.
Eventually, one of the faulty DBNs will converge iden-
tifying the new value of the parameter.

5 FAULT SCENARIOS
We have developed two fault scenarios for the three
tank system: (1) an abrupt fault in the capacitance of
tank 1 and (2) an abrupt fault in the resistance out of
tank 3. In both cases the fault magnitude is 10% of the
nominal value of the parameter. We have simulated for
10.000 time steps, starting with the three tanks empty
and injecting the faults at time stamp 2000. Simulink
has been used to generate data of the faulty system.
A 5% and a 0.5% Gaussian noise has been added to
sensors and input, respectively. The number of parti-
cles used in the Particle Filter algorithm has been 500.
Ztest has been applied to decide on network detection
and also on network convergence for fault identifica-
tion.

5.1 Abrupt fault in C1
Fault detection is performed with the nominal DBN
factors (see Figure 12). The DBN from PC2 detect
the fault at time 2001 (Figure 12 b)) while the factor
from PC1 detect the fault at time 2002 (Figure 12 a)).
According to the fault signature matrix of the system,
Table 3, the factor from PC3 does not detect the fault
(Figure 12 c)).

Figure 12: Behaviour (observed variable) of the nom-
inal DBN of a) PC1, b) PC2 and c) PC3 tracking an
abrupt fault (10%) in the capacitance of tank 1.

Hence, from time 2002 there is only one single fault
candidate: C1. We have run the faulty DBN of PC1 for
a fault in C1 (Figure 11) starting 50 time steps before
the fault is injected, to launch simulation from a known
system state with nominal behavior. The behavior of
the network is shown in Figure 13. Convergence time
is 389 time steps, (339 after fault injection). Figure 13
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shows that the faulty parameter converges to an accept-
able value many instants before, but ztest is performed
on the residual of the observed flow (not shown in the
figure) and introduces a 170 time stamps delay.

Figure 13: State variables tracked with the DBN of
PC1 for a fault in capacitance of tank 1. The last chart
at the bottom is the estimation of the parameter C1.

5.2 Abrupt Fault in Rv3

Like in the previous scenario, fault detection is per-
formed with the three nominal DBN factors. Now,
only the factor form PC3 detects the fault, at time
2007, (see Figure 14).

Figure 14: Behaviour (observed variable) of the DBN
of PC3 for a fault in the resistance out of tank 3.

In this case, we have 5 single fault candidates (C2,
C3, Rv2, Rv23 and Rv3) and we have to run the faulty
DBNs from PC3 for all these faults to check which one
converges.

In Figure 15 we can see how the DBN from PC3
with the extra node for the fault in Rv3 is able to track
the state variables and also gives us a pretty good es-
timation of the parameter after the fault. Convergence
time is 378 (328 after fault injection).

On the other hand, checking the behavior of the
other DBNs launched to identify this fault we can see
charts like the ones in Figure 16 where it is shown how
the DBN of PC3 with a fault in C2 is not able to track
the system behavior, as it was expected. It does not
converge because it does not track the actual fault.

Figure 15: State variables tracked with the DBN of
PC3 for a fault in resistance out of tank 3. The last
chart at the bottom is the estimation of the parameter
Rv3.

6 COMPARING COMPLETE DBN AND DBN
FACTORS PERFORMANCE

This section presents a quantitative comparison of the
performance of the DBN of the complete system and
the performance of the DBNs factors. For the two con-
sidered abrupt faults, C1 and Rv3, mean detection, ex-
ecution and convergence times are computed. Param-
eter value convergence is also considered. All experi-
ments have been repeated ten times. Table 4, row Ex-
ecution Time, shows execution time for 10.000 time
steps. As it was to be expected, DBN factors require
less computation time that the original DBN. Faults are
injected at time 2000. Rows C1A and Rv3A shows that
there are no false positive detections and that detection
time is similar for every network considered.

Table 4: Mean execution and detection time for nomi-
nal DBNs (standard deviation in brackets).

Complete PC1 PC2 PC3

Execution Time 84.2495 71.1413 77.7708 78.402

C1A +0.1 2001 (0) 2002 (0) 2001 (0)

Rv3A +0.1 2008 (0) 2007 (0)

For fault identification, simulation starts 50 time
steps before the fault is injected and simulation time
extends to 8.050 seconds. Table 5, first two rows,
show execution time for faulty networks, that are also
smaller for DBN factors. Second two rows show con-
vergence time. Compared with the complete DBN,
convergence time is smaller for the fault in capacitance
of tank 1, and it is equal for the fault in resistance Rv3.
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Figure 16: State variables tracked with the DBN of
PC3 for a fault in the capacitance of tank 2. The last
chart at the bottom is the estimation of the parameter
Ct2. The data used to simulate the DBN are from a
fault in Rv3.

Finally, Table 6 shows the Mean Square Error
(MSE) of the estimated parameter. Error is smaller for
PC1 and PC2 for faults in capacitance of tank 1, but it
is slightly bigger for PC3 for fault of resistance Rv3.

Table 5: Mean execution and convergence time for
faulty DBNs (standard deviation in brackets).

Complete PC1 PC2 PC3

Exec. Time C1 46.6603 43.4288 45.4047

Exec. Time Rv3 67.1525 63.3121

C1A +0.1 1.15 · 103(
2.1 · 103

) 3.89 · 102(
2.8 · 101

) 4.95 · 102(
1.16 · 102

)
Rv3A +0.1 3.78 · 102

(1.39)
3.78 · 102(
8.82 · 10−1

)

7 DISCUSSION
The two faulty scenarios considered in this paper show
that PCs decomposition form a state space represen-
tation of a system allows using a unique formalism,
DBNs, to perform consistency based fault detection,
isolation and identification with a simple architecture.

The goal of the paper was not to obtain the most ef-
ficient diagnoser, but to present the approach in simple
terms. There are several possibilities for improvement,
especially to reduce the number of fault hypothesis that
have to be tracked. A TRANSCEND like approach
(Mosterman and Biswas, 1999), including qualitative

Table 6: Mean Square Error of the estimation for the
faulty parameter by each DBN (standard deviation in
brackets).

Complete PC1 PC2 PC3

C1A +0.1 2.62·10−8(
2.4 · 10−7

) 2.06·10−8(
1.6 · 10−8

) 1.67·10−8(
7.2 · 10−9

)
Rv3A +0.1 2.77 · 104(

3.58 · 108
) 2.81 · 104(

9.01 · 103
)

fault propagation information, can be use to that end.
Specially using the Reduce Qualitative Fault Signature
Matrix (Bregon et al., 2009), that provides qualitative
information to each DBN factor.

Interpretation of quantitative efficiency measures
should be done carefully, because final quantitative fig-
ures depend on several factors, including fine parame-
ter tuning of the diagnoser. All experiments have been
performed with Matlab, with the same Particle Filter-
ing software and on the same machine. Ztest param-
eters have been selected conservatively, favoring the
convergence to the real parameter value against fast
fault identification. These initial experimental results
indicate that the approach is computationally advan-
tageous even for a small system like the three tank
systems. Further research is needed to obtain confi-
dent conclusions about parameter value estimation ac-
curacy. The DBN factor from PC2, which keeps all the
state variables of the system and a single element in
the observational model, provides the best estimation
of the new value of the capacity in tank 1. However the
DBN factor from PC3, with a simpler structure, esti-
mates the value of Rv3 slightly worse than the DBN of
the complete system.

A closely related approach to fault detection, iso-
lation an identification of continuous systems with
factored DBNs is presented in (Roychoudhury et al.,
2009). Their proposal to obtain DBN factors is based
on conditional independence. They define DBN fac-
tors as a subset of random variables of the complete
DBN, conditionally independent of the variables in all
other DBN factors, for a given set of observations. To
generate new factors, the main idea is to substitute
some of the state variables for new ones worked out
as algebraic functions of measurements. The proposed
algorithm to generate factors from DBNs can be di-
vided into three main steps: (1) split the system DBN
into the maximal number of conditionally independent
factors, (2) map each factor with the bond graph fac-
tor which models its structure to determine whether it
is observable or not and (3) merge every unobservable
DBN factor with other DBN factors to get an observ-
able DBN factor. Finally, repeat steps (2) and (3) while
needed.

Both approaches have some similarities, like elim-
inating state variables that can be computed by alge-
braic relations and assuring that the resulting factors
are observable. However, the factoring methodology
is different. In (Roychoudhury et al., 2009) network
splitting does not consider observability, which has to
be recovered later merging unobservable factors with
other factors. In contrast, PCs decomposition war-
ranties the observability of the factors, which also as-
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sures their conditionally independence. Factoring is
more systematic with the PCs decomposition, essen-
tially because structure searching work is made at PCs
computation time. Deriving factors from the PCs has
the advantage that all minimal factors with analytical
redundancy are found. Minimal factor are desirable
because they have the potential to maximally reduce
computing time on a simulation based approach, par-
ticularly for fault identification. Nevertheless, further
research is needed to characterize both approaches on
that dimensions and to compare their performance on
complex, real systems.

8 CONCLUSIONS
This work has presented a method to factor Dynamic
Bayesian Networks. A method to generate DBNs
factors from Possible Conflicts has been introduced.
These factors are minimal redundant structurally ob-
servable subsystems. Factoring is desirable because
it reduces system complexity, simplifying its analysis
and enabling the design of more efficient diagnosers.
Structural observability of the factors is needed not
only to compute the state variables of the factors, but
also to assure their conditional independence of the
other minimal factors.

Based on DBNs factors, a unified solution has been
proposed to Consistency Based fault detection, isola-
tion and identification. Two scenarios have been devel-
oped on the three tank system benchmark to illustrate
the proposal. A quantitative comparison of the per-
formance of the DBN of the complete system and the
DBNs factors has also been done, in terms of execu-
tion, detection, and convergence time plus parameter
estimation error. Comparison has confirmed that DBN
computation is more efficient for factors than for com-
plete DBNs. Conclusions on parameter value estima-
tion accuracy require additional research.
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