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ABSTRACT

Estimating the mode of operation of a hybrid sys-
tem means to account for its interleaved contin-
uous and discrete dynamics from a partial set of
observations. The quality of the estimation ob-
viously depends on the level of diagnosability of
the system, which has been shown to depend on
the discrete and the continuous observations as
a whole. The case of two modes showing very
similar, if not the same, continuous dynamic in-
put/output behavior is critical when the discrete
events do not allow discrimination. In this case,
these modes, so called non-discernible modes,
are accepted to be not discriminable. This pa-
per uses the concept of Mode-Sequence Analytic
Redundancy Relation which is shown to achieve
discriminability of such non-discernible modes
in many cases. A focusing test based on mode-
sequence ARRs is then proposed to improve hy-
brid state estimation.

1 INTRODUCTION

Present-day artifacts, aircrafts, mobile robotic devices,
space probes, or production plants, benefit from multi-
domain technologies in interaction, which allow the
engineers to precisely design them at the nearest of ev-
ery situation that may be encountered. They hence ex-
hibit complex patterns of behavior and numerous nom-
inal modes of operation in order to satisfy the high de-
mand on performance and dependability. A precise
knowledge of the current mode of operation/failure
and the current state of the physical entities that cap-
ture the continuous evolution of the physical system
are important prerequisites for this supervision/control
task. This is even more true when the system may suf-
fer disturbances and faults. In the latter case, knowing
the health status of the different system components,
and consequently its mode of operation, is essential
for proceeding to the proper reconfiguration actions or
adapt appropriately the control laws. It is the task of
the state estimator to infer the mode and the state from
the partial observations that are available and a mathe-
matical model of the physical system.

An active track of research of the last decade is
based on hybrid modeling paradigms that integrates
both, the continuously-valued state evolution and the
interleaved discrete mode changes in a comprehen-
sive manner. The majority of research in hybrid es-
timation and diagnosis deals with the computational
complexity of the estimation task. An exact method
would require to consider every possible mode se-
quence with its associated continuous evolution, re-
sulting in an inevitable blowup of the number of state
estimates, also called hypotheses. This is why numer-
ous sub-optimal, but computationally feasible, estima-
tion methods have been proposed (Ackerson and Fu,
1970; Blom and Bar-Shalom, 1988; de Freitas, 2002;
Hofbaur and Williams, 2004; Narasimhan and Biswas,
2002; Benazera et al., 2002; Benazera and Travé-
Massuyes, 2009; Verma ef al., 2004).

In this manuscript, however, we focus onto the root
cause of ambiguity in hybrid estimation. The quality
of the estimation obviously depends on the level of di-
agnosability of the system, which has been shown to
depend on the discrete and the continuous observations
as a whole (Bayoudh et al., 2008a). The case of two
modes showing very similar, if not the same, contin-
uous dynamic input/output behavior is critical when
the discrete events do not allow discrimination. In this
case, these modes, so called non-discernible modes
(Cocquempot ef al., 2004), are not discriminable and
the cause of mode estimation ambiguity.

Whereas state of the art methods fail in discriminat-
ing among non-discernible modes, we propose to use
the concept of Mode-Sequence Analytic Redundancy
Relation which is shown to achieve discriminability.
Following the ideas introduced in (Rienmiiller et al.,
2009), mode-sequence ARRs are then shown to be par-
ticularly suited for focusing the set of mode hypotheses
to be considered by a hybrid (full) state estimator.

The paper is organized as follows. Section 2
presents the hybrid formalism. Section 3 consid-
ers the hybrid estimation problem, rises the issue
of non-discernible modes, demonstrated with a sim-
ple 2-mode system that shows this effect, and intro-
duces mode-sequence ARRs as a solution to discrim-
inate these modes. An algorithm integrating a mode-



sequence ARR test with a multi-mode filtering process
is then presented. Finally, section 4 concludes the pa-
per and provides some open issues for further investi-
gation.

2 HYBRID MODEL

The term hybrid system or hybrid model stands for
a large variety of different mathematical models that
combine continuously-valued and discretely-valued
dynamics. Depending on the application area, one puts
emphasis on either of the dynamics and thus provides
quite divergent models for such systems.

In order to focus on the relevant aspects for
our problem of estimation and diagnosis for non-
discernible modes, we use a rather simple hy-
brid model that is related to so-called jump-
linear/switched-linear hybrid systems (Vidal et al.,
2003). The continuously-valued dynamics of the
model is described through the linear time-discrete
state-space model, with sampling period T, of the
form

X = Axp_1+Bjug (1)
v = GCixp+ Dy, 2

where x;, € R",u, € R and y, € R™ denote
the valuations of the (continuously-valued) state, in-
put, and output at time ¢ = kTs. The index ¢ speci-
fies the dependency of the dynamics on the mode or
discrete state xq = ¢; of the model. As a conse-
quence, the valuation of the mode at the time ¢ = kT,
X4k, defines the continuous evolution of the state x
in the time-interval (k — 1)T, < t < kT,. In the
following, we will abbreviate the multimode contin-
uous part of the model with = := (¢, Q, C), where
¢ = {x,u,y} denotes all continuously-valued (but
time-discrete) variables, Q@ = {q¢1,. .., ¢} denotes the
set of all modes and C' stands for the mode-dependent
state-space model (1-2).

The hybrid systems/hybrid model framework as-
sumes an infrequent, but abrupt discrete evolution of
the model. In other words, one can assume that the
system exhibits only a single mode change within one
sampling period. Our discrete-time model further as-
sumes that the abrupt mode change occurs immedi-
ately after the sampling time-point ¢ = k7§ so that
the new mode defines the continuous evolution within
the following sampling period. Figure 1 visualizes the
temporal ordering of the discrete and continuously-
valued dynamics. Discrete mode changes are modeled
through a discrete event model (DES). In detail, we

write
M = <Q727Ta Q0>a (3)

for the DES model part with the set of modes Q =
{@1,...,q}, the set of events ¥ = {o1,...,0p_}, the
transition function 7' : @ x ¥ — @ and the set of
initial states Q. Of course, we do assume that not
all events o; can be observed. As a consequence, we
define the sub-set X C X of observable events and
use the variable e to denote the event observation. The
valuation of e at time-step k can be either an observ-
able event o; € Yo or the empty valuation e whenever
there was no event or an unobservable event within the
last sampling period, i.e. ey, € {Z0, €}
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Figure 1: Dynamic evolution of the hybrid model.
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Figure 2: Discrete model with two modes ¢; and gs.

Summing up we denote the hybrid model through
the pair
S =(E M) O]

with the hybrid state
Xp = (Xd,X) 4)

that is comprised of the mode x4 and the continuously-
valued state x.

2.1 Example

For the following analysis we introduce a hybrid
model with two modes @ = {q1, ¢2}. The mode tran-
sitions q; — ¢o and go — ¢; are due to a common ob-
servable event . = X = {c}, as shown in figure 2.
Furthermore, we specify an ambiguous initial mode of
the DES through Qo = {q1, g2}, 1.e. both modes of the
system are potential initial states. This fact, as well as
the unspecific transition observation through the com-
mon event o prevents the mode estimation through ob-
serving the event sequence {eg, ..., ex_1} only.

The associated continuous dynamics = are of form
(1-2) with the following system parameters

08 0 0 1 1
A= [0 0.5] Ay = [0.4 1.3} Bi = M ;

T T
0 1 —-2.1
B2—|:1:|,Cl—|:1:| 302—|: 3 :| 7D1:D2:1'

These parameters define two dynamic models with
identical transfer function
2417217 3z—2.1
ze+ 1.7z . z 41

Gi=CGe= 593,704 #Z 13- 104 7'

One could also say that the dynamic models for the two
modes define two distinct state-space representations
of a common dynamic input/output behavior. This is
also the reason why hybrid observation is non-trivial
for this system.



3 HYBRID OBSERVATION AND DIAGNOSIS

The hybrid estimation task can be formulated as fol-
lows:

Hybrid Estimation: Compute on the basis
of the hybrid model S and the discrete-time
sequences for the inputs {ug,uy,...u},
measurements {yo,¥y1,...-Yyx}, and events
{eo, €1,...er} the estimate X, for the hy-
brid state x;, at time-point ¢ = kT's, com-
prised of the estimate X ;, for the mode x4
and the estimate X, for the continuously-
valued state x.

The interwoven mode-transitions and continuous
dynamics lead to a set of possible continuously-
valued evolutions of the system and it is not possi-
ble to determine estimates for the mode (or mode se-
quence) and the continuously-valued evolution sep-
arately. As a consequence, a hybrid estimator has
to track all possible mode-sequences with their as-
sociated continuously-valued evolution and evaluate
their compatibility with the known/observed system
variables. This leads to an exponentially increasing
number of hypotheses over time which is computa-
tionally unfeasible. Many estimation techniques deal
with exactly this computational issue and provide sub-
optimal hybrid estimators that limit the observation
history and merge hypotheses (Ackerson and Fu, 1970;
Blom and Bar-Shalom, 1988) or focus onto the sub-set
of likely hypotheses only (Li and Bar-Shalom, 1996;
de Freitas, 2002; Hofbaur and Williams, 2004; Verma
et al., 2004). The continuously-valued estimate is
then computed algorithm-dependent with specifically
instantiated dynamic filters.

Hybrid diagnosis, in contrast, only computes the
estimate Xq j for the mode of operation/failure x4 1.
However, because of the interwoven continuously-
valued and discrete evolution of the system, one still
has to evaluate both dynamics to provide the mode-
estimate sought for. Similar to hybrid estimation, one
has to evaluate the possible mode-hypotheses and their
consistency with the known and observed informa-
tion. The consistency test is formulated in terms of
a so called residual r which provides r; = 0 for
consistent hypotheses. The evaluation of the residual
is typically done through residual filters (Patton and
Chen, 1997), system identification (Ljung and Glad,
1994) or through so called Analytic Redundancy Rela-
tions (ARR) (Gertler, 1991; Cocquempot et al., 2004;
Bayoudh et al., 2008b).

Analytic Redundancy Relations associate the inputs
(u) and outputs (y) over a limited observation horizon
of length p + 1. The vectors

T T T T,
U = (W], Y= [Yip- - , V(&)
define the compound vectors of inputs and outputs
over the observation horizon so that we can re-

formulate the system equations (1-2) for the mode g;
as the analytic expression

Y = Oixp—p + LUy &)

with the matrices

C;
CiA;
0, = : (10)
C,A”
and
D, o - 0
L; := Ci_BZ' D; an
: . 0
C;AY'B; CiB; D,

If one selects the observation horizon, or the param-
eter p, sufficiently large, one can always compute an
orthogonal matrix €2; for O; so that

2,0, =0.

This fact allows us to eliminate the state (x;_,) depen-
dency of (9) through (left) multiplication with €2; and
we obtain the ARR for mode ¢;

QY. = QiOixk,p—#QiLiUk (12)
QY = QLU (13)

Based on this ARR we can define a residual-vector r; j,
for mode ¢;

r; k= QiYk — QthUk (14)

so that the associated consistency test'

- 0 if|r;; k| =0 .
Tijk :={ 1 els‘Q%’f' c j=1,...,m; (15)
that provides an m;-dimensional binary residual vector

for mode ¢; at the time-step k as

A (16)

A parallel evaluation of (14) for all modes ¢;,7 =
1,...,1 can be used for hybrid diagnosis (Cocquem-
pot et al., 2004). Furthermore, it is advantageous to
use an additional discrete-event diagnoser (Sampath er
al., 1995) that utilizes the discrete dynamics model to
focus the diagnosis result onto few modes (Bayoudh
et al., 2008a; 2008b). In (Rienmiiller et al., 2009) we
were able to show that the ARR based consistency test
also provides additional focusing capabilities for hy-
brid full state estimation.

3.1 Non-discernible Modes

The ARR test (14-15) evaluates the consistency of the
mode hypothesis x4 1, = ¢; with the input and output
sequences. More specifically, because of the observa-
tion horizon that is defined through p + 1 tests

Xd,j:qiaj:k_pa"'ak:f'i,kz(l (17)

However, it is possible that more than one mode in a
system provides consistent residuals, i.e. residuals that

Fik = [Fil k.-

' Of course, any real world application has to take distur-
bances (measurement noise, etc.) into account, so that the
condition has to be re-formulated with an upper limit €;; for
745,k |-



evaluate to zero. The example above can illustrate this
fact. The evaluation-form of the ARRs (14) for p = 2

Q1Y — Q1L Uy

[ 0.2369 —0.7701 0.5923 |V
—[ —=1.0070 1.0070 0.5923 | Uy
QQYk — QQLQUk = Trok

rig

(18)
is identical for both modes! Of course, this is no
coincidence, but a direct consequence of the identi-
cal input/output behaviors of both modes, a fact that
was already suggested by the two identical transfer
functions (7). Modes of this type are called non-
discernible in the literature (Cocquempot et al., 2004;
Bayoudh et al., 2008b)). In detail, one can determine
this property through the following test:

Proposition 1 (Cocquempot et al., 2004) Two modes
q; and q; of a hybrid system are non-discernible iff the
matrices O;, 0;, L; and L; with p = n, satisfy

Null (O]) = Null (OF ) C Null (A]})  (19)

with Aij =L; — Lj.

These conditions can be tested efficiently through rank
tests:

Rank(Oi) = Rank(OJ) = Rank ([Oi7 Oj, A”])
(20)
One can detect this observation defect or better the
problematic modes of operation through a careful sys-
tem’s analysis at compile time. Evaluating the ARRs
for these modes does not provide enough evidence
to diagnose the specific mode of operation or failure.
However, one can use the evaluation of the ARRs to
identify (in almost all cases) mode transitions as it
can be seen in Fig. 4 for the simulation experiment of
Fig. 3. The evaluation to a non-zero residual value is
due to the mode transition within the observation hori-
zon

(k 7p)T9 oo kTs

This is also the reason why ARR based hybrid diag-
noser/observer can only provide the estimate for the
mode with a delay of (at least) p time-steps (unless the
observer uses also other information, such a discrete
events etc.).
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Figure 3: Simulation of the 2-mode example with 2
mode changes.
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Figure 4: Residuals ry ; and ryj for the simulation
experiment.

3.2 Mode-sequence Analytic Redundancy
Relations

The ARR based hybrid diagnoser/observer uses the
set of mode-specific ARRs and evaluates them con-
currently (Bayoudh et al., 2008b). This approach thus
concurrently evaluates mode hypotheses with constant
mode only. This is in contrast to hybrid observers
which evaluate mode-sequence hypotheses. However,
if one interprets a hybrid system as a time-variant dy-
namic system, one is brought to the idea to formulate
ARRs for mode-sequence hypotheses as well (Domlan
et al., 2007).

Basis for these ARRs is a time-variant formulation
of the matrices O and L. Let us illustrate these matri-
ces for our example (6) with n,, = 2 and an observa-
tion window defined through p = 2 and the associated
mode-sequence Q = (g, ge, g, ), in which ”—” indi-
cates the mode successor operator

Q: Xgk-2=q — Xdk-1=0q¢c = Xdk = q,

O(<qV7q57QL>) =

C,
CeAc ] 21

C,A /A,
D, 0 0
L([qv,q¢,q.)) == | CeBe D, 0
¢ C,AB. CB, D,

(22)
In analogy to (14) we can define the residual for the
mode sequence Q as

rok = Q(Q)Yr — QQ)L(Q)Uk (23)

with the matrix
T

Q(Q) = Null ((0(9))") (24)

These ARRs allow a more detailed observation of
the hybrid system. However, one has to keep in mind
that a hybrid system with [ modes possibly implies a
large number of

[ptt (25)
possible ARRs for the hybrid diagnosis/observation.
Our simple 2-mode example already provides 2% = 8
ARRs. As a consequence, it can be difficult if not even
prohibitive to evaluate all ARRs concurrently. How-
ever, a carefully selected set of ARR tests for the most



likely mode sequence hypotheses can provide the basis
for a detailed hybrid diagnosis/estimation.
Fig 5 shows the six residuals for the mode sequences

(g1, q1, @), (a1, q1,42), {q1,92, q2),

<q27 q2, q2>7 <CI2» q2, q1>7 <CI27 q1, Q1>
Obviously r(; 1,1y,x and r(z 2 9y 1, are identical to ry
and ry 1, respectively and provide the same informa-
tion about transition occurence. But one can easily
see that the mode transition ¢; — g2 can be identi-
fied through the residuals r(; 1 2y &, T(1,2,2),x Whereas
the transition g2 — ¢1 can be uniquely detected
through the residuals r(3 21y %, T(2,1,1),x- The eval-
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Figure 5: Residuals r, ¢ ,) ;, for the simulation exper-
iment.

uation of mode-sequence ARRs thus allows us to suc-
cessfully diagnose and estimate hybrid systems with
non-discernible modes of operation or failure!

Now the identification is only possible if the sys-
tem actually transitions. Essential for the diagnosis is
hence an active behavior of the system w.r.t. its mode
of operation or failure. This allows us to discrimi-
nate the modes of operation according to the specific
mode-transition signature within the observation hori-
zon. Active behavior can be achieved, for example,
through active diagnosis which enforces mode tran-
sitions through externally triggered events so that the
system uniquely reveals its operational condition.

Furthermore, capabilities of the mode-sequence
ARRs suggest an extended definition of non-
discernibility. For two modes ¢; and g; of a hybrid
system (4) and an observation horizon of length p + 1
we can define A = 2P+ possible mode sequences
Q = {Qo,...,9x-1}. Then two modes ¢; and g;
are said to be actively non-discernible if none of the
possible mode sequences are discernible on the basis
of their residuals (Domlan et al., 2007).

Proposition 2 On the basis of the mode sequence set
Q ={Qo,...,Qx_1} with mode sequences of length
p+ 1 =n, + 1, two modes q; and q; are said to be
actively non-discernible if for all Q,, € Q and Q¢ € Q

and the A(Ql,, Q¢) defined as
A(Q,, Q¢) == L(Q,) — L(Q¢) (26)

it is true that
Rank(O(Q,)) = Rank(O(Q¢))

= Rank ([O(Qu% O(Q¢), A(Qw QE)D '
(27)

3.3 Hypotheses Filtering for hybrid Observation

Hybrid observation with hME (Hofbaur and Williams,
2004) proceeds through focussed selection of the most
likely mode-sequence hypotheses and a consecutive
continuous filtering process. In (Rienmiiller et al.,
2009) we were able to show that the additional eval-
uation of ARRs can significantly improve the filtering
capabilities of the hybrid observation algorithm. How-
ever, we only used mode-specific ARRs for this com-
bined algorithm. The algorithm that was proposed uti-
lizes two modes of operation, (a) an ARR improved
focusing mode and (b) a bypass mode (standard hME)
in the vicinity of detected mode transitions. Using
the mode-sequence ARRs we can now incorporate the
ARRs in the hME algorithm in a simpler and more el-
egant way.

Our standard hME algorithm achieves its compu-
tational efficiency through two carefully interwoven
search processes. The exponential explosion of pos-
sible mode-sequences is handled through a top-level
beam search process that limits the number of estima-
tion hypotheses at each time step. Fig. 6 illustrates
this operation graphically for an upper limit of o = 4
hypotheses at each time step. Each node represents

k-2 k-1 k k+1
<0 O O O
SRIIRCONTS
NG S S 0

Figure 6: Beam-search process of hME.

a specific estimation hypothesis with its associated
state estimate. A path in the graph defines a specific
mode-sequence with an associated continuously val-
ued (discrete-time) evolution of the system’s state. The
hybrid estimation is done recursively and extends step-
by-step the graph as the time evolves. This involves the
computation of possible successor-hypotheses/-states
which is done through an underlying search process.
This process deduces the most likely successor-states
and thus avoids the computationally expensive contin-
uous filtering process for unlikely hypotheses as good
as possible. We use an A* search procedure that con-
secutively deduces a successor-hypothesis on the ba-
sis of the DES Model (3) and classifies its likelihood
according to the transition likelihood and the consec-
utive continuous filtering step. The algorithm derives
the necessary continuous filter (Kalman Filter) during
run-time or retrieves it from a cache to deal with sys-
tems with many modes. The evaluation of the filter
provides the continuous state estimate X, sought for.
Our proposed improvement is now to include an ad-
ditional consistency test with mode-sequence ARRs
prior to the continuous filtering process in the hME
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Figure 7: A* search-tree for hypothesis-extension.

search procedure as shown in Fig. 7. Of course, this
means that we perform a continuous estimation step
twice, ARR based and filter based! However, one ob-
tains the additional capability to distinguish between
non-discernible behaviors or behaviors with very sim-
ilar input/output behavior. Even more important, we
can dismiss many estimation hypotheses and thus pre-
vent the continuous filtering process for these hypothe-
ses early in the search process. This additional focus-
ing capability can compensate the additional compu-
tations necessary for ARR evaluation. For (memory)
efficiency purposes we also use on-line ARR deduc-
tion and caching in our algorithm to deal with complex
hybrid systems.

3.4 Example

Figure 8 shows the behavior for the extended hME al-
gorithm with the 2-mode example introduced above
and the simulated hybrid trajectory of Fig. 3. We fur-
ther assume that the transition event o is not observ-
able, thus we have to deduce the estimate from the
continuous measurements only.

Figure 5 already indicated that the two modes of our
system are actively discernible. We can proof this fact
with the mode sequences Qp = (q1,41,¢1) and Q1 =
(g1, q1, g2) that provide distinct residuals because the
associated matrices

11 1 1

0(Qy) = lo.s 05|, 0(Q) = [ 0.8 0.5]
0.64 0.25 —0.96 0.9
(28)

span linear independent spaces which leads to

Rank(O(Qo)) # Rank ([0(Q0), O(Q1)])  (29)

so that condition (27) does not hold.

We initiate the observer at time-step £ = 3 with
no mode information, i.e. both modes ¢; and ¢, are
equally likely estimates for the time-steps k£ < 2. Hy-
pothesis generation of hME extends the two initial es-
timates with 2 successor hypotheses for each.

<CI17 Q1»(J1>

= {{q,q1,0), {q1,q1,92) } (30)
(42, 2, q2)

= (@2, @, %2), (2,02, 01)}

The ARR consistency check can exclude two hypothe-
ses ({q1,q1,92) and {(gs,q2,¢1)) and hME proceeds
with the mode-sequence hypotheses ({¢1,¢1,q1) and
(g2, q2,q2)) and computes an associated continuous
estimate X for both hypotheses. hME proceeds in this

Number of hME Hypotheses
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Figure 8: Simulation result with the extended hME Al-
gorithm.

way up to the first mode change (k = 10). The tran-
sient continuously-valued behavior immediately af-
ter the mode transition provides enough evidence so
that the ARR evaluation reduces the four hypotheses
(30) to the single (correct) mode sequence hypothesis
{(q1,q1,q2). Once the algorithm became focused onto
the correct mode of operation, it remains focused due
to the interplay between DES based successor genera-
tion, ARR pre-selection and continuous filtering.

4 SUMMARY AND DISCUSSION

In model-based diagnosis, ARRs have always been
used as a tool to check the consistency of observations
w.r.t. a given specific model, representing the behav-
ior of the system. This has been extended to multi-
mode and hybrid systems for checking the consistency
w.r.t. the different models. ARRs can be extended
even further to fit the mode transitional behavior of
hybrid systems. The proposed mode-sequence ARRs
provide a deeper insight into the dynamics of the sys-
tem and allow one to distinguish classically known as
non-discernible modes. Some technical issues remain
to be further investigated, for example what if the dif-
ferent models do not have the same order? Would
it be more efficient for active diagnosis to consider
mode-sequence ARRs involving multiple transitions?
Does it impact on the temporal window to be consid-
ered? These questions, and other aspects of the mode-
sequence ARRs are subject to ongoing research.
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