
Role-Based Diagnosis for Distributed Vehicle Functions

Jens Kohl1, Andreas Bauer2

1 BMW Group and Technische Universität München
Jens.Kohl@bmw.com

2 National ICT Australia (NICTA) and The Australian National University
Andreas.Bauer@nicta.com.au

ABSTRACT

With distributed functions taking over more and
more safety-relevant functions in modern cars,
their possible faulty behaviour has to be detected
and dangerous effects to be prevented or miti-
gated. Additionally, information about the fault’s
root cause has to be provided to support repairs
in the garage. These are the central tasks of auto-
motive diagnosis, which is arguably a prime ap-
plication for the methods and tools developed by
the diagnosis community at large. However, our
experiences have shown that the constraints im-
posed by this domain, which has a great need
for efficient and accurate diagnoses, make it very
difficult to use some of the existing methods out
of the box. The main contribution of this paper
is therefore to introduce a methodology centred
around the different stakeholders of automotive
diagnosis, in order to facilitate the employment of
model-based diagnosis approaches for the diag-
nosis of vehicle functions as they are part of most
modern cars. Besides, we provide an in-depth
discussion of some of the challenges imposed by
automotive diagnosis, and relate these to existing
diagnosis methods where feasible, thereby also
further motivating our methodology.

1 INTRODUCTION
Automotive software functions contribute a great part
to a modern car’s innovations. In the last years au-
tomotive software development has shifted from a
component-centric view towards the realisation of fea-
tures as distributed functions. With distributed func-
tions taking over more and more safety-relevant func-
tions, their possible faulty behaviour has to be de-
tected and dangerous effects to be prevented or miti-
gated. Additionally, information about the fault’s root
cause has to be provided to support repairs in a garage.
These are the tasks of automotive diagnosis. The dis-
tributed functionalities’ interconnections contribute to
an increasing complexity of the car’s system architec-
ture which, as we argue in this article, poses a huge
challenge for automotive diagnosis. The importance
of diagnosis is increased by warranty regulations of
currently up to four years which make it a significant
economic factor in a car’s life-cycle. Hence control-
ling the distributed functions with diagnosis will be a

key competence for all automotive OEMs (i.e., “orig-
inal equipment manufacturers” as vehicle manufactur-
ers refer to themselves).

There are at least two different topologies used for
the design of a car’s system architecture: On a physical
level, functionalities are distributed in terms of elec-
tronic control units (ECUs), which are basically em-
bedded systems that control the electric systems in a
car, and are themselves interconnected via up to five
different bus systems. On a logical level, most func-
tionalities are realised by software components, which
are connected mainly by the exchange of messages.

Consequently, a functionality which is perceived by
the driver as a single service (e.g., automatic cruise
control (Ioannou, P. and Chien, C., 1993; Prestl, W. et
al., 2000)) is in fact, realised by a large number of soft-
ware components that operate concurrently within the
network of physically distributed ECUs. The hetero-
geneity of these functionalities and the way they are re-
alised in a modern car make it difficult to come up with
a single, holistic diagnosis model that captures, from a
diagnosis point of view, all the relevant components,
their behaviour, timings, and interactions. Therefore,
arguably, a diagnosis approach is needed which re-
flects the different artefacts that matter in diagnosing
faults of such systems, and which is not bound to a
single type of system or fault model that captures only
a fraction of the relevant information.

While there are many applications for, more or less,
classical diagnosis approaches in today’s cars, such
as the diagnosis of an engine management system,
which is mostly about the timely observation, analysis,
and control of the physical combustion process from
a single spot and the comparison of residual equa-
tions modelling these physical processes, cf. (Ny-
berg, M. et al., 2001; Isermann, R., 2004), there is
currently no “one-size-fits-all approach” for the on-
and off-board-diagnosis for all the logically as well as
physically distributed system built in a car, be it soft-
ware, electro-mechanical or purely mechanical com-
ponents. One would expect that, due to the fact that
these systems can be described in terms of their com-
ponents, be it software or hardware, that these are
prime applications for the methods and tools devel-
oped in the area of model-based diagnosis, where the
aim is to detect and isolate faulty components, such
as gates in an integrated circuit, cf. (Reiter, R., 1987;
Kleer, de J. and Williams, B. C., 1987; Sampath, M. et

1

21st International Workshop on Principles of Diagnosis

al., 1995). But our experience in trying to apply some
of these methods has shown that many of the real-
world constraints imposed by our domain can only be
poorly, if at all, reflected in the various approaches to
model-based diagnosis currently found in the litera-
ture. What is currently missing, as we argued in this
article, is a methodology that helps embed these ap-
proaches in a domain like ours.

In this paper we therefore propose a role-based
methodology for the diagnosis of distributed automo-
tive functions. Central to this methodology is a lay-
ered system abstraction based on which diagnosis is
performed. The layers, in turn, are defined wrt. the dif-
ferent roles involved in the automotive diagnosis pro-
cess, i.e., customer view, garage view, technical view.
Fig. 1 shows the main dependencies between these lay-
ers from an automotive diagnosis point of view. Es-
sentially, the layers aim at reducing the complexity
of the diagnostic task, since only the relevant entities
are taken into account from the respective role’s point
of view; that is, following this methodology one does
not need to create a single, holistic diagnostic model
of a vehicle function taking all the different aspects,
which are currently abstracted from in the layers, into
account.

FunctionDeployed

Customer

Function

Functional

Component

Software

Component

Software

Unit

Component

Model

Link

Refinement

Link

Refinement

Link

Refinement

Link

Customer view

Garage view

Technical view

onboard ECU

Figure 1: Role-based diagnosis layers.

What is more, we take into account the online diag-
nosis of automotive systems, i.e., on a detailed techni-
cal level that is required to perform the diagnostic task
at runtime, and off-line diagnosis, i.e., in the garage,
where the main aim is to replace physical components
that may be responsible for observed faults. Reflect-
ing these different views is necessary to cover all the
possibly occurring faults in our domain.

Basically, for the detection and reasoning of the
root cause, we propose model-based diagnosis as orig-
inally proposed in (Reiter, R., 1987; Kleer, de J. and
Williams, B. C., 1987), but in a more general setting
as presented, e.g., in (Bauer, 2007; Tripakis, S., 2009).
In a nutshell, this allows us to reason about discrep-
ancies between observed and specified behaviour of
components, and is thus capable to diagnose compo-
nents with almost a black-box view onto each other.
And since these approaches do not impose any restric-
tions on the granularity of components, this allows us
to tailor the diagnostic models to the different layers of
abstraction introduced above.

Another aspect of our methodology is that we also
take a well-known and widely used quality assurance
method into account, namely Failure Mode and Ef-
fects Analysis (FMEA, (Stamatis, D. H., 2003)), which

helps describe faults that are anticipated by the OEM.
Essentially it does that by listing potential faults and
supporting a structured analysis of their effects on the
system or its operational environment. Moreover, a
complete FMEA also includes information about some
of the faults that can be detected and even prevented.
Based on this information it is then possible to classify
faults and to prioritise them based upon their severity,
i.e., according to the effects on the system and environ-
ment. Note that we will make use of the terminology
for errors, faults and failures as defined by (Avižienis,
A. et al., 2004). They define a system failure as an
event that occurs when the delivered service of a sys-
tem deviates from correct service. An error is part of
the system state which is liable to lead to subsequent
failure. The adjudged or hypothesized cause of an er-
ror is called a fault. The causal chain between these
definitions is that a fault causes an error and an error
can lead to a failure. For instance, a mechanical fault
of the window motor leads to a failure of the window
moving functions.
Outline: In the next section, we detail on the prob-
lems we faced with some of the existing diagnosis
methods, when used in our domain, and also motivate
the methodology presented in this paper. Sec. 3, in-
troduces a case study to which we have applied our
methodology, namely the controller of a car’s win-
dow (sometimes called power window). Note that we
haven chosen this case study, not because it represents
an unsolved diagnosis problem in the automotive do-
main (cf. (Struss, 2006) for a similar case study), but
because it is a distributed and easily intelligible com-
ponent that can be well explained within the limits of
this paper. Sec. 4 discusses how to obtain fault models
on the different levels of abstraction from the FMEA,
whereas Sec. 5 shows how this is performed on our
case study. Finally, Sec. 6 concludes.

2 THE NEED FOR A NEW METHODOLOGY
In this section, we briefly discuss why the application
of well-known approaches to diagnosis found in the
literature cannot compensate for a lack of methodol-
ogy, when used in our domain. For example, expert-
based diagnosis systems as defined first in (Buchanan,
B. and Shortliffe, E., 1984), are rather easy to under-
stand and straightforward to create, which is the reason
why they are widely used in this area. However, they
are also difficult to maintain as the system and its ar-
chitecture evolve over time. In the automotive domain,
expert-based diagnosis is used primarily for software-
intensive, non-safety-relevant components such as var-
ious infotainment devices.

Diagnosis of discrete event systems (DES) as origi-
nally introduced in (Sampath, M. et al., 1995), is dif-
ficult to apply in practice when one assumes that for
each component to be diagnosed in a distributed sys-
tem one has to create a dedicated behavioural DES
model. Diagnosis then would consist of evaluating
these components in parallel which additionally bears
a high level of complexity. Moreover, it is not al-
ways possible to create DES models in the first in-
stance since some components need to be handled as
black-boxes, meaning that they have been supplied by
a third party, according to a detailed specification by

2

21st International Workshop on Principles of Diagnosis

the OEM, and behavioural models are therefore diffi-
cult to extract.

Model-based diagnosis (MBD) as introduced in
(Reiter, R., 1987; Kleer, de J. and Williams, B. C.,
1987) is often used for reasoning over electrical com-
ponents especially in safety-relevant domains (Iser-
mann, R., 2004). The focus is on isolating faulty com-
ponents by observing their input and outputs and relat-
ing the observed behaviour with a specified behaviour,
which seems to be a good match with the communi-
cating automotive components. However, MBD faces
similar problems in the automotive domain as the use
of DES diagnosis since both method’s system models
are tedious, if not impossible, to create for engineers.
Furthermore, although the behaviour of these systems
or components can be modelled on an abstract level
on behalf of the OEM, it would be difficult to include
these systems in a holistic diagnosis model on the de-
tailed and complex level of software components (i.e.,
source code and operating system tasks). Addition-
ally, the size of a diagnosis system model is expo-
nentially increased by the diversity of a single car’s
product line and different legal requirements that im-
pact on the car’s architecture, cf. (Broy, M., 2006;
Pretschner, A. et al., 2007), and thus the model. It is
therefore important that diagnosis on different levels
of abstraction is supported, depending on the specific
stakeholder of the diagnostic process (i.e., customer,
garage, technical view), and to be able to cope with
“black-box behaviour”, where necessary or useful to
avoid a too high complexity. Moreover, it is important
to leverage the effort in creating models that are useful
for the diagnostic process, and that can easily evolve
with the vehicle’s main architecture, which is not the
case if we apply any of the above approaches without
a methodology that would support us in the decision
making on which level of abstraction is the right one,
which components can be modelled as black-box, etc.

The wish for an extensive diagnosis system model
can lead to a practically unmanageable complexity of
diagnosis systems. Some modern components such
as driving assistant or infotainment systems tend to
have several hundred monitors, each monitoring sys-
tem properties that indicate the correct functioning of
the system, and storing up to 400 diagnostic trouble
codes (DTC), which support the garages in further di-
agnosis and subsequent repairs. Despite the high num-
ber of DTCs, which indicate the cause of observed
faults, the resulting task of fault localisation is chal-
lenging for the garages and thus results in high costs.
This is especially severe when repeated repairs are
undertaken for the same faults and the time spent in
trying to find the root causes. Nevertheless, weigh-
ing between an extensive or reduced diagnosis system
model, we argue that the amount of monitors and DTC
can be reduced without deteriorating the repair pro-
cess. We are convinced that this reduction even makes
the diagnosis and its results more understandable for
garages and thus can even help cut costs. Essentially,
we propose that for expensive components a more de-
tailed diagnosis can be beneficial, but for other com-
ponents, perhaps ones used for a long time, a reduced
diagnosis and model bears no disadvantages from the
OEM’s point of view. Clearly, such considerations are
not solely technically motivated, but methodologically

and aim at making the use of existing diagnosis meth-
ods easier in our domain.

A reduced diagnostic model further benefits the
reuse of diagnosis which is another important aspect
in our domain. Economic constraints such as wish to
shorten the car’s or component’s time to market and
the creation of platform strategies to save development
costs force OEMs and suppliers to reuse software. Ef-
forts in software product line methodology, cf. (Thiel,
S. and Hein, A., 2002), have been increased in the last
years for automotive functions, yet not for diagnosis.
This is the more important since code for performing
diagnosis contributes a substantial part to overall com-
ponent’s source code. The reuse of diagnosis code,
however, is currently limited by the lack of a holis-
tic diagnostic approach or process that would cover all
involved roles within a diagnosis incident. Previous
attempts such as (Picardi, C. et al., 2002) made an im-
portant step in this direction, but, for example, did not
include customers and the feedback from the garage
in the process. The following scenario illustrates how
this can be important though: For software-intensive
functions, there exist failures that can be detected and
prevented within the ECU alone, and which are known
by the OEM. For example, if the diagnosis detects an
overheating of a window motor, the ECU can disable
the motor for a specific time to cool down, and thus
preventing a permanent failure. Yet the majority of
the on-board-detectable failures cannot be prevented
by the ECU. Thus the on-board diagnosis has to store
symptoms to support the subsequent off-board repair
in a garage, e.g., storing a DTC if the on-board diagno-
sis detects components such as an incorrect attachment
of the window Hall-effect sensors. For a more detailed
explanation of the Hall-effect sensors refer to sec. 3 or
(Ramsden, E., 2006).

However, for mechanical failures such as a defect of
the mechanical window button, the on-board-diagnosis
cannot provide any support. These failures can only
be detected off-board by the garage. However, there
are failures which are unknown to OEM and garage
prior to their occurrence and for which no direct de-
tection and repair measures exist. Therefore feed-
back data from the garage and the customer is neces-
sary such that OEM and supplier can analyse the fail-
ure’s root cause and work on repair and detection mea-
sures to perhaps reflect this in the future. Moreover, it
happens that features are misinterpreted by customers
as failures. For instance, a customer unfamiliar with
the power window controller’s safety concept regard-
ing the prevention of jamming obstacle, could report
the window’s automatic reversing commanded by the
ECU in case of a detected jamming as a complaint.
Hence, the customer has to be informed of the safety
concept. As a result, a holistic diagnosis including on-
board and off-board is necessary which additionally
includes the customer and diagnosis feedback data to
cover all possible automotive failures.

3 A CASE STUDY: WINDOW CONTROLLER
Let us now introduce the case study used in the remain-
der of the paper. Contrary to many peoples’ percep-
tions, the window controller is not an isolated, mono-
lithic system, but a distributed system communicating

3

21st International Workshop on Principles of Diagnosis

button block driver

: button

sensor

analogue

:button

back right window

: position sensor,

: window motor

front right window

: position sensor,

: window motor

back left window

: position sensor,

: window motor

: window control

rear windows ECU

: window control

: mirror control

front windows ECU

: button

sensor

analogue

:button

: button

sensor

analogue

:button

analogue

K-CAN (low speed CAN for comfort electronics)

analogue

analogue

analogueanalogue

analogue

front left window

: position sensor,

: window motor

: button

sensor
:button

analogue

: button

sensor
:button

analogue

: button

sensor
:button

analogue

: button

sensor
:button

analogue

analogue

LIN

Figure 2: Deployment diagram for a power window controller.

over different kinds of network protocols, and involv-
ing various functions realised in software. The window
controller’s prime tasks are the stepwise and automatic
opening and closing of the window. Automatic open-
ing of the window means that, unless the window run is
stopped by a window movement in the opposite direc-
tion, the window moves until its upper or lower border
where it stops. The window controller is designed for
use in all cars of a product line and thus includes spe-
cial functions depending on the particular model cho-
sen. An example for a special function is the short-
stroke opening function for frameless doors, such as
used in convertibles: in order to enable an opening of
a convertible’s doors the window has to be lowered as
soon as a door opening is detected. Another example
is the automatic opening or closing of all windows ini-
tiated by a long-time pressing of the car key which is
called comfort opening. Since a closing of the window
can jam obstacles, the power window controller has
to detect a jamming. The jamming, however, can be
overruled by the driver in case of an emergency which
is called the panic mode. To avoid faults in relation
with the window such as overheating of the window
motor, the ECU can deactivate the window.

Fig. 2 shows the abstract deployed technical archi-
tecture of a car with four windows: As the driver con-
trols all windows there are four different buttons and
thus four different signals, transmitted via a single-
wire bus protocol called Local Interconnect Network
(LIN). LIN therefore replaces the direct analogue wire
connections to the ECU. Driver commands for the rear
windows are sent via a specific Control Area Network-
Bus Protocol (Low CAN) from the front windows
ECU to the rear windows ECU. For brevity, we do not
give further details on the respective bus systems that
are employed by this function. Instead, we refer the
interested reader to (Nolte, T. et al., 2005) for a more
detailed overview of automotive bus systems.

Fig. 3 shows the different views on the automatic
window closing function according to our defined lay-
ers. The layers are separated as they represent the per-
spective of the different roles involved in the diagnosis
of the window controller. Observable events for the
respective layers are denoted using bold arrows, un-
observable events using dashed arrows. They are in-
dexed with a leading C, G, or T, indicating the respec-
tive abstraction. Grey rectangles mark the hardware
parts (or, replaceable units), similar to the deployment
diagram in Fig. 2, as seen from the different layers of
abstraction. Finally, the white rectangles are the com-
ponents performing individual functions. One can eas-
ily see that the model’s level of detail increases with
the further down we go in the abstraction layers, and
also more observations become available. However,
including the button, the front and rear windows ECU
as well as the window itself, only three replaceable
units for the garage exist, constituting in a total of 12
monitors in the ECU.

Naturally, the customer has a black-box view on the
window which is controlled with the button (C1), re-
sulting in an observable window movement (C2).

For a garage, the window unit consists of three ex-
changeable units with the button unit, the window it-
self and an ECU with the software for the power win-
dow controlling functions. A button sensor and the
mechanical button form the button unit. The ECU is
connected over a wire connection with the button unit.
This connection transmits an analogue, continuous sig-
nal (G1) that can be measured by the garage to analyse
if the button sensor transmits signals. The ECU deter-
mines in which direction the window shall be moved
and if an automatic or manual movement of the win-
dow is requested. The command is then transferred
over an analogue wire to the window unit consisting
of a window motor which moves a wire cable and thus
the window’s glass. Again, the connection between

4

21st International Workshop on Principles of Diagnosis

button window

button Sensor

window ECU

window

window motor

button front/rear windows ECU window

Garage view: fault assignable to garage-accessible parts

(mapping functional components à exchangeable parts)

button

button sensor

window

window

window motor

position sensor

Customer view: fault assignable to component

(mapping customer function à components)

Technical view: fault assignable to functions and parts

window button

window button

G1

G3

C1

G1

G2

C2

position sensor

sensor interface

C1 C2

G3

C1

C2
poll interrupts

evaluate mode

update window position

detect jamming

send to motor

convert dàa

analyze directionconvert aàd

front/rear windows ECU

T1

T2

T3 T4 T5

T6 T7

T8

T9

T10

T11

T12

G2

Figure 3: Selection of observable events of a window controller

ECU and window can be measured by the garage (G2).
Since the automatic closing function can jam obsta-
cles, jammings have to be detected and countered with
an immediate reversing of the window’s movement di-
rection. Most cars today detect jammings of the win-
dow by analysing two Hall-effect sensors aligned or-
thogonally to each other next to the window motor
with which they move along. After each movement
of the window motor, the ECU polls the Hall-effect
sensors (G3) to determine the current position and to
detect a jamming, if one occurs. The Hall-effect sen-
sors use the physical Hall effect to transduce the rota-
tions of a motor by returning an output voltage. The
rotations per minute (rpm) of the window motor can
be calculated by measuring the output voltage’s pulse
amplitude. Aligning two Hall-effect sensors orthog-
onally to each other additionally enables to detect the
motor’s rotation direction. Hence, the window position
can be updated. For a more detailed overview of Hall-
effect sensors refer to (Ramsden, E., 2006). The tech-
nical view on the window controller is more detailed
than the above. The first function that is performed in
the ECU is a polling of input signals from the window
button unit (T1). If an analogue signal from a win-
dow button is detected, the signal is converted into a
discrete value (T2, T3) and given as parameter to the
“evaluate direction and moving mode” function which
checks the desired direction (T5). Since the signals are
continuous, a timer is initialised to evaluate if the cus-
tomer wanted a stepwise movement of the window or
an automatic (T6), separated by pressing the button for
a short or a long-time. After movement mode and di-
rection have been determined, the command has to be
transferred to the window and therefore first converted
to an analogue signal (T7), then sent as a command
(T8, T9) over an analogue wire to the motor (G2).
Since the jammings have to be detected, the sensor sig-

nals are sent over (G3) to the ECU to determine the
new window position. The sensor signals are polled
(T1), converted to discrete values (T3) and given to the
“detect jamming” function (T11). The discretised sen-
sor signals indicate the direction into which the win-
dow moved and thus also the window’s new position.
If after an attempted movement of the window, the
window’s new position equals the old one, but is nei-
ther upper nor lower border of the window frame, a
jamming of the window has occurred. In this case the
window is reversed (observable in terms of C2), other-
wise the window position is updated (T12). Since the
automatic closing is safety-relevant, failures of func-
tions using the sensors lead to a deactivation of the
window by the window controller.

4 OBTAINING FAULT MODELS
The FMEA is a standard quality method in the au-
tomotive domain performed to analyse possible fail-
ures of a component and their effects on the system
as a whole and its environment. Analysing failures of
functional interactions is especially important for dis-
tributed functions, but, as mentioned in Sec. 2, prob-
lematic due to the restricted view into the components.
We tackle this problem by performing an FMEA on the
functions and their interactions on different abstraction
levels and analyse how the effects of faults can be as-
sociated with our abstraction layers. This helps asso-
ciate the functions, their interactions and faults with
the respective layers as given by Fig. 1. For each fault
we analyse how it can be detected by our roles starting
from customer down to garage and development. For
the roles garage and development, we add measures to
prevent the fault becoming a failure (pre-emptive diag-
nosis on the ECU) and repair measures (garage level)
for a system remedy. Starting from the customer, we
initiate our search for faults that manifest themselves

5

21st International Workshop on Principles of Diagnosis

using equivalent observations. If these faults have their
individual repair measures associated to them, involv-
ing different technical parts, the faults have to be dis-
tinguished by additional observations on deeper tech-
nical levels to avoid costly “try-and-error” repairs. We
are guided by the realistic assumption that due to the
garage’s focus on replaceable units, safety-irrelevant
faults with equal observations and repairable parts do
not need to be discriminable by the diagnosis.

In the next step, we then map some of the elements
of the FMEA which in the following are marked in
bold to logical variables as well as to our abstraction
layers, where they are relevant. Note that this is cur-
rently a manual process and, in some sense, constitutes
the transition from an informal description to a formal
diagnosis model given by logical statements. In our
case, however, the mapping from FMEA elements to
logical variables and statements is almost canonical,
hence, in what follows, we do not detail on this step.
From a logical point of view, we can then treat each
layer as a set of logical statements involving these vari-
ables.
System: name of the component, e.g., window con-
troller
Function: name of the analysed function. Can be
a customer function, functional component, software
component or software unit from Fig. 1, e.g., auto-
matic closing of window
Failure mode: classification of failure or its exact de-
scription, e.g., overheating of window motor.
Fault reason: root cause described with a formula
such as Fi → Bi with variable Fi assigned true if its
related fault is present and Bi assigned true if the be-
haviour corresponding to Bi can be observed, e.g., a
defect window ECU leading to an observable perma-
nent defect of the window.
Failure effect: observable behaviour of the system or
function that can be linked to the failure effect, e.g.,
a specific customer complaint linked to variable CCi
which is set to true if the complaint was reported to
the garage, a set of variables DTCi with each variable
DTCi assigned true if the DTC related to DTCi is set
by the ECU. An example for a failure effect is the cus-
tomer complaint “window is not moving generally”.
Detection: measure to detect the fault. Can be via vari-
able Ti with Ti assigned true if the abstract condition
related to Ti was observed by an on-board-monitor,
variable Gi assigned true, if the off-board test func-
tion’s condition corresponding to Gi is observed, etc.
An example for a detection is the garage test function
“check wire to window motor for electric flow” which
holds true if electronic flow can be measured by the
garage.
Occurrence: variable CMi is assigned true if its cor-
responding measure was initiated after fault was de-
tected, e.g., setting of a DTC and deactivation of win-
dow closing function if jammings cannot be detected.

With the outlined mapping of the FMEA to vari-
ables, we now construct the following logical state-
ments for the respective abstraction layers, practically
encoding the fault models of the respective layers:
Fault model as seen from customer view:
¬Oi →

∨
i CCi

(Avižienis, A. et al., 2004) define a system failure ab-

stractly as an event that occurs when the delivered
service of a system deviates from correct service. A
failure of a customer function leads to an unexpected
output which is noted by assigning true to variable
¬Oi corresponding to the output. The unexpected be-
haviour leads to customer complaint(s) and a repair of
the car in the garage.
Fault model as seen from garage view:
After a customer reports a complaint to the garage,
the garage starts reasoning about the present faults in
the car. If a fault is assumed to be present, we as-
sign true to the related variable Fi. The garage starts
the repair with analysing and verifying the customer
complaints. Since some failures are well known and
their fault reasons deducible just by analysing the cus-
tomer’s complaints, we also have

∨
i CCi with vari-

able CCi assigned true if the corresponding complaint
was reported to the garage (e.g., jamming of a window
or warning lights):

∨
i CCi →

∨
i Fi.

If the variables Fi have different replaceable units,
their related fault causes have to be further isolated.
Therefore the garage either needs additional off-board
measurements from the garage testing system with
variable Gi assigned true if the related measurement is
observed in the process or, especially if the faults are
in relation with an ECU, the set of DTCs with variable
DTCi assigned true if the related DTC was set:∨

i CCi →
∨

i Fi,
∨

i Gi →
∨

i Fi,∨
i DTCi →

∨
i Fi

Note that as mechanical faults cannot be detected di-
rectly by the ECU, no corresponding DTC is stored.
Fault model as seen from technical view:∧

i Ti → DTCi.
The ECU analyses several measurements with related
variable Ti assigned true if the measurement was ob-
served and sets a DTC resulting in assigning true to
the respective variable DTCi. Within the ECU, di-
agnosis functions analyze the DTCs and reason for a
faulty function or component. The goal of a DTC or
DTC pattern is to distinctively identify a fault:∧

i DTCi → Fi.
Since faults of safety-relevant functions can have se-
vere effects, they have to be prevented or mitigated be-
fore leading to failures which is called pre-emptive di-
agnosis. The preventive diagnosis on-board the ECU
initiates counter measures (occurrences in FMEA) re-
lated to variable CMi assigned true if the counter mea-
sure was initiated: Fi →

∧
i CMi.

The initiation of counter measures can be an inhibition
of functions visible to the customer and thus leading to
a customer complaint related to CCi which is then set
to true: CMi → CCi.
For instance, the jamming detection function of the
window is safety-relevant as its failures lead to the
jamming of objects. If the power window controller’s
diagnosis detects those faults, the window moving
functions are disabled leading to a customer complaint
that the window is not working generally.

In consequence, we obtain a formal fault model
describing the relations between faults and their ob-
servable behaviour in terms of statements in canon-
ical variables. Obviously, these statements can then
be transformed into a clause normal form, and be de-
ployed on a testing system for the garages and those

6

21st International Workshop on Principles of Diagnosis

from the development layer on an ECU, thus solving a
propositional satisfiability problem. Each solution ob-
tained is then a potential diagnosis candidate, i.e., an
explanation of the fault’s cause(s).

5 HIERARCHICAL FAULT MODELLING
In this section we show the diagnosis of real-life faults
affecting the function “automatic closing of window”
from our case study. The diagnosis is performed on
the three different levels of abstraction defined earlier.
The fault model then consists of logical statements,
modelling the specified behaviour of the system as
seen from the perspective of the introduced roles. The
development view from the fault model is deployed
on the ECU and the garage view as a testing system,
which supports the garage in the repairs. At runtime,
the observable behaviour as shown in Fig. 3, is added
to the fault model thus forming the mentioned satisfi-
ability problem, which can then be efficiently solved
using a so-called propositional SAT-solver. Let us ex-
amine faults affecting the window controller’s function
“automatic closing of the window”, and which lead
to the observable fault effect “window does not move
generally”. The reason for this effect is one of the fol-
lowing faults shown in table 1. Each of the variables
F1, ..., F7 encodes a different fault responsible for this
problem.

Fault Description
F1 wire from button sensor to ECU defect
F2 wire from ECU to window motor defect
F3 wrong polarization of Hall-effect sensors
F4 button defect
F5 button sensor defect
F6 ECU defect
F7 window motor defect

Table 1: Faults of case study

Fault model as seen from customer view:
¬C2 → CC1
The customer requested an automatic closing of the
window, but the observable behaviour of the window
was not as expected. The customer reports to the
garage the complaint encoded as CC1, i.e., “window
does not move generally”. Note that the following re-
dundancy showing up in the formulation stems from
the automatic conversion of FMEA artefacts into the
logical statements. Although they may potentially
dampen performance, they are not a logical problem
per-se.
Fault model as seen from garage view:
(¬C2 → CC1)

∧
(CC1 → F1 ∨ . . . ∨ F7)

∧
(¬C2 → F1 ∨ . . . ∨ F7)

∧
(¬G1 → F1 ∨ F4 ∨ F5)

∧
(¬G2 → F2 ∨ F6)

∧
(¬T3 → F3 ∨ F7)

The garage analyses (and verifies) the customer
complaint and knows that if the window does not move
generally, at least one of the faults F1, ..., F7 is usually
present.

With the garage test functions “check cable from
button to ECU for electric flow”, “check cable from
window ECU to window for electric flow” and “check
cable from Hall-effect sensors to ECU for electric
flow”, the garage is able to collect observations

G1, G2, G3 where each variable is true if electrical
flow can be measured. Table 2 shows the suggested
repair measures for the faults.

Fault present Suggested repair measure
F1 replace wire from button to ECU
F2 replace wire from ECU to motor
F3 repolarise ECU’s Hall-effect sensor

input or replace ECU
F4 replace button
F5 replace button
F6 flash or replace ECU
F7 replace window motor

Table 2: Suggested repair measures for faults

Faults F2 and F6 as well as Faults F3 and F7 are
faults which have equivalent observations, but with re-
pair measures for different repairable parts. Hence,
these faults have to be distinguished on a deeper tech-
nical level to avoid expensive repeated repairs, when
only viewed on the same abstract level. Therefore the
garage needs support by the diagnosis on the ECU.
Faults F1, F4, F5 can neither be distinguished by the
ECU nor the garage meaning that the garage has to try
both different repair measures.
Fault model as seen from technical view:
(T1 → DTC1)

∧
(T2 → DTC2)

∧
(T3 → DTC3)

∧
(DTC3 → F3)

∧
(F3 → CM1).

The ECU performs observations with monitors ex-
amining the discretised Hall-effect sensor signal which
is the variable D11 from fig. 3. The monitors and
its related variables are “discretised Hall-effect sensor
signal did not change after movement of window” and
T1, “no discretised Hall-effect sensor signal available
after window movement”’ and T2, as well as “discre-
tised Hall-effect sensor signal indicates window move-
ment in wrong direction” and T3. If one of the mea-
surements holds, the ECU sets a corresponding DTC
to support the garage.

Fault F3 is an example for a fault mitigation. If
the sensor signal indicates a movement contrary to
the commenced, jammings cannot be detected. As
the jamming detection function is safety-relevant, the
ECU has to initiate the counter measure “deactivate
window permanently” related to variable CM1. In
this case the window controller deactivates the win-
dow permanently to prevent critical failures. In case of
the other faults, the window motor cannot be moved.

Including the DTC set enables the garage to distin-
guish the faults F2, F6 and F3, F7 and initiate the re-
pair measures from Table 2.

¬G2 ∧DTC1 → F2

¬G2 ∧ ¬DTC1 → F6

¬G3 ∧DTC3 → F3

¬G3 ∧DTC2 → F7

With Fault F6 being a fault of the ECU itself, no
relevant DTCs are present.

6 SUMMARY AND OUTLOOK
We presented a methodology for diagnosing automo-
tive systems. The methodology reflects and supports

7

21st International Workshop on Principles of Diagnosis

on-board as well as off-board diagnosis, the latter be-
ing performed by the garage. Our methodology cen-
tres around the respective roles involved in the di-
agnostic process and reflects these by allowing diag-
nosis on different levels of abstraction to cover all
occurring faults within the domain. What is more,
in Sec. 5 we showed that our methodology seam-
lessly integrates two of the most widely used diagno-
sis techniques in the automotive domain, namely the
expert-based diagnosis which we employed for diag-
nosing the discretised Hall-effect sensor signals and
the model-based diagnosis, which we employed for
diagnosing the semi-mechanical components window
and button. Furthermore, using the different layers of
abstraction, we showed how to make the high com-
plexity of the diagnosis task manageable in practise.

The proposed methodology is currently under eval-
uation for the off-board case, i.e., garage diagnosis,
where it is possible to run, e.g., a solver on a dedicated
tester which is equipped with sufficient resources to
undertake this task as outlined in this paper. It is our
hope that results from this evaluation allow us to deter-
mine and isolate some of the constraints that need to
be addressed before we can also use our approach to
on-board diagnosis. Depending on the on-board sys-
tem, i.e., whether or not it is safety-critical, there are
stringent constraints for on-board software. Safety-
critical systems, for example, must not dynamically
allocate memory (cf. MISRA Coding Guidelines, rule
118 (MISRA, 2004)). Hence when diagnosing such
components, it is not yet clear how and where the di-
agnosis engine should be executed, and what memory
requirements have to be met.

REFERENCES
(Avižienis, A. et al., 2004) Avižienis, A., Laprie, J.

C., Randell, B., and Landwehr, C. Basic Concepts
and Taxonomy of Dependable and Secure Comput-
ing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, 2004.

(Bauer, 2007) Andreas Bauer. Model-based runtime
analysis of distributed reactive systems. PhD thesis,
Technische Universität München, 2007.

(Broy, M., 2006) Broy, M. Challenges in Automotive
Software Engineering. In International Conference
on Software Engineering (ICSE 2006), pages 33–
42, Shanghai, China, May 2006. ACM.

(Buchanan, B. and Shortliffe, E., 1984) Buchanan, B.
and Shortliffe, E., editors. Rule-Based Expert
Systems—The MYCIN Experiments of the Stan-
ford Heuristic Programming Project, volume 1 of
The Addison-Wesley Series in Artificial Intelligence.
Addison-Wesley, 1984.

(Ioannou, P. and Chien, C., 1993) Ioannou, P. and
Chien, C. Autonomous Intelligent Cruise Control.
IEEE Transactions on Vehicular Technology,
42(4):657 – 672, 1993.

(Isermann, R., 2004) Isermann, R. Model-based fault
detection and diagnosis: status and applications. In
Proceedings of the 16th IFAC Symposium on Auto-
matic Control in Aerospace, St. Petersburg, Russia,
June 2004.

(Kleer, de J. and Williams, B. C., 1987) Kleer, de J.
and Williams, B. C. Diagnosing multiple faults. AI,
32(1):97–130, 1987.

(MISRA, 2004) Motor Industry Software Reliabil-
ity Association MISRA. MISRA-C:2004 – Guide-
lines for the use of the C language in critical sys-
tems, 2004.

(Nolte, T. et al., 2005) Nolte, T., Hansson, H., and
Bello, L. L. Automotive Communications - Past,
Current and Future. In 10th IEEE Conference
on Emerging Technologies and Factory Automation
(EFTA 2005), volume 1, 2005.

(Nyberg, M. et al., 2001) Nyberg, M., Stutte, T., and
Wilhelmi, V. Model based diagnosis of the air path
of an automotive Diesel engine. In IFAC Workshop:
Advances in Automotive Control, 2001.

(Picardi, C. et al., 2002) Picardi, C., Bray, R., Cascio,
F., Console, L., Dague, P., Dressler, O., Millet, D.,
Rehfus, B., Struss, P., and Vallée, C. IDD: Integrat-
ing diagnosis in the design of automotive systems.
In Proceedings of the Fifteenth European Confer-
ence on Artificial Intelligence (ECAI 2002), pages
628 – 632, Lyon, France, July 21 – 26 2002.

(Prestl, W. et al., 2000) Prestl, W., Sauer, T., Steinle,
J., and Tschernoster, O. The BMW active cruise
control ACC. Society of Automotive Engineers
(SAE) Transactions, 109(7):119–125, 2000.

(Pretschner, A. et al., 2007) Pretschner, A., Broy, M.,
Krüger, I., and Stauner, T. Software engineering
for automotive systems: A roadmap. In Future of
Software Engineering (FOSE’07), pages 55 – 71.
IEEE Computer Society, Mai 2007.

(Ramsden, E., 2006) Ramsden, E. Hall-Effect
Sensors—Theory and Application. Elsevier, 2.
edition, 2006.

(Reiter, R., 1987) Reiter, R. A theory of diagno-
sis from first principles. Artificial Intelligence,
32(1):57 – 95, 1987.

(Sampath, M. et al., 1995) Sampath, M., Sengupta,
R., Lafortune, S., Sinnamohideen, K., and Teneket-
zis, D. Diagnosability of discrete event sys-
tems. IEEE Transactions on Automatic Control,
40(9):1555–1575, September 1995.

(Stamatis, D. H., 2003) Stamatis, D. H. Failure Mode
and Effect Analysis: FMEA from theory to execu-
tion. American Society for Quality (ASQ), 2. edi-
tion, 2003.

(Struss, 2006) P. Struss. A model-based methodology
for the integration of diagnosis and fault analysis
during the entire life cycle. In Proc. of SAFEPRO-
CESS 2006. Elsevier, 2006.

(Thiel, S. and Hein, A., 2002) Thiel, S. and Hein, A.
Modeling and using product line variability in auto-
motive systems. IEEE Software, 19:66–72, 2002.

(Tripakis, S., 2009) Tripakis, S. A combined on-
line/off-line framework for black-box fault diagno-
sis. In 9th International Workshop on Runtime Ver-
ification (RV 2009), pages 152 – 169, Grenoble,
France, 2009. Springer.

8

