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ABSTRACT

This paper extends model-based diagno-
sis (MBD) (de Kleer and Williams, 1987;
Reiter, 1987) to systems with hidden interaction
faults. An interaction fault is present if an inter-
action among a set of components leads to an
observable failure, even though each individual
component individually meets the specifications.
A naive approach to address interaction faults
is to simply account for all possible interaction
faults in the system model. However, the naive
approach presumes that all possible faults, both
component and interaction faults, are known
and addressed in the model. This assumption
is violated by most real world systems, such as
shorts in circuits (Davis, 1984) or unmodeled
connections (de Kleer, 2007). That leads to in-
complete system models, hence possibly hidden
interaction faults. The problem of hidden inter-
actions has been known for a long time (Davis,
1984), but until now no general solution has
been proposed. Instead of pushing for complete
models (Preist and Welham, 1990) or relying on
additional structural information (Davis, 1984;
Bottcher, 1995; de Kleer, 2007) we approach the
challenge differently. We allow system models to
be incomplete and introduce a general, domain
independent extension to model-based diagnosis
to account for resulting hidden interaction faults.
This extends model-based diagnosis to systems
with incomplete models, in particular to models
with incomplete structural information. In the
paper, we demonstrate the proposed diagnosis
framework on a logic circuit with a hidden
interaction fault.

1 INTRODUCTION
Model-based diagnosis assumes that all necessary in-
formation, regarding all possible failure causes, is
available in the system model. In our experience, this
generally accepted assumption does not hold in prac-
tice. In reality, systems fail for all kind of reasons,
some of which designers might not be able to predict

at the time the system model is built. This leads to
incomplete models and to possible hidden interaction
faults. For example, during the landing maneuver of
the Mars Polar Lander an interaction between a touch
sensor and the deployment of one of the Lander’s legs
most likely caused the mission to fail (Young et al.,
2000). The deployment of the leg caused the touch
sensor to produce a noise spike which was incorrectly
classified as an indication of touch down. As a con-
sequence, the lander shut off its thrust about 40 me-
ters above the touch-down surface. This is a classic
example of a failure caused by a hidden interaction.
If the engineers could have predicted this interaction,
the failure could have been avoided. The classification
algorithm could have requested either additional infor-
mation from the altitude sensor onboard the lander or a
time persistent signal from the touch sensor. Building
adequate models for increasingly complex systems, es-
pecially for embedded systems, is very difficult; build-
ing complete models is practically impossible. In prac-
tice most models are incomplete, especially when all
possible interactions are not known at the time the sys-
tem is built.

Unlike a behavior model, which might describe the
behavior only partially, e.g. weak fault model (de-
scribes only nominal behavior), the structural model
is usually assumed to be complete (Davis, 1984; Preist
and Welham, 1990; Bottcher, 1995; de Kleer, 2007).
An incomplete system topology, e.g. a model that
doesn’t capture all connections, causes standard diag-
nosis frameworks to result in an irresolvable contradic-
tion.

Instead of pushing for complete models, we ap-
proach the challenge differently. We allow models to
be incomplete and introduce a diagnosis framework
that works with incomplete models, extending model-
based diagnosis to systems with hidden interactions.
We account for interaction faults without explicitly
modeling them. The resulting approach enables diag-
nosis for systems with multiple, interaction faults.

The paper is organized as follows: We introduce a
logic circuit, SMALLY, which serves as our example
system to review standard model-based diagnosis and
illustrate its limitations. Then, we define interaction
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faults formally and introduce a general extension to
model-based diagnosis to account for hidden interac-
tion faults.

2 RELATED WORK
The general mechanisms of inferring health states
from observations have a long history in artificial
intelligence and engineering including logic based
frameworks (Reiter, 1992), continuous non-linear sys-
tems (Rauch, 1995), xerographic systems (Zhong and
Li, 2000), and hybrid logical probabilistic diagnosis
(Poole, 1991).

The process of diagnosis can be viewed as the inter-
action between observations and predictions. Observa-
tions capture the actual system behavior, whereas pre-
dictions are deduced from the system model. Model-
based diagnosis presumes a system failure to be
present if predictions and observations differ from
each other.

Model-based approaches (de Kleer and Williams,
1987; Reiter, 1987) predict component interaction
only where these are explicitly provided in the sys-
tem description. The problem of faults caused by hid-
den interactions has been known since (Davis, 1984).
In (Davis, 1984) bridge faults between adjacent com-
ponents are introduces, but the suggested solution
requires explicit knowledge about which unintended
connections potentially result from adjacent compo-
nents. In (Preist and Welham, 1990) a solution, sim-
ilar to the naive approach, is proposed which explic-
itly models all possible unintended interactions. We
support the argument that a complete model is prefer-
able over a incomplete model, but note that a complete
model might not always be available. In (Bottcher,
1995) the work of (Davis, 1984) is generalized by in-
troducing a notion of neighbors that requires informa-
tion about spatial proximity among components. We
are not aware of a diagnosis framework that accounts
for hidden interaction faults by a general, domain in-
dependent extension without relying on additional do-
main dependent knowledge. All approaches listed in
the related work section, (Davis, 1984; Preist and Wel-
ham, 1990; Bottcher, 1995; de Kleer, 2007) assume
that additional knowledge regarding potential hidden
interaction is available. In this paper, we introduce an
approach to diagnosing hidden interactions, that does
not rely on any kind of additional information such as
knowledge about potential unintended connections or
spatial proximity among components.

3 REVIEW OF MODEL-BASED DIAGNOSIS
Consider the logic circuit, SMALLY, illustrated in Fig-
ure 1. The system can be described by a component
set and a system description. The system description
specifies the behavior of the individual components
and how the components interact with each other. In
order to perform diagnosis we include observations in
the system definition. Formally, we define a system
by:
Definition 1. A observable system is a triple
(SD, COMPS, OBS) where
• SD, system description, is a set of first-order sen-

tences,

A
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Figure 1: Example circut, SMALLY, with two and-
gates and one inverter-gate.

• COMPS, components, is a set of constants,

• OBS, observations, is a set of first-order sen-
tences.

Typically, the system description SD organizes the
knowledge by maintaining a component library CL
and a system topology ST . Generally, we can not as-
sume that a system description SD is organized in any
particular way, but we can assume that the SD intends
to capture the behavior and the structure of the system.
Note, that we say ‘intends’, as a system description
might be incomplete.

Our example SMALLY contains two and-gates A, B
and one inverter C. In Figure 1 solid lines illustrate
connections captured by the topological model and
dashed lines connections not captured by the topolog-
ical model. The circuit SMALLY has a hidden connec-
tion between component A and C, as indicated by the
dashed line. The connection is hidden to the diagno-
sis framework, as it doesn’t appear in the model. The
model has no knowledge of the behavior of the hid-
den connection. We assume that the actual behavior of
the system will always deviate from the nominal be-
havior iff both component A and C are used together.
A real world scenario could be that both components
are late in propagating their signal, yet both are within
specification. As a result, both tested individually will
lead to no observable failure. If and only if we test
both together and the delay accumulates can a failure
be observed. In our example we assume that there are
no intermittent faults. This is not a general restriction
to our framework but makes the example more com-
prehensible.

In our example the set of components COMPS
consists of the three gates shown in Figure 1, thus
COMPS = {A, B,C}. The system topology ST ,
is shown in Equation 1. Note, that the connection
between component A and component C is not men-
tioned in the system topology, as we assume the con-
nection is hidden. Thus the topological model is in-
complete.

ST = {And(A) ∧ And(B) ∧ Inv(C),
a ≡ in(A, 1) ∧ b ≡ in(A, 2) ∧ out(A) ≡ d,
d ≡ in(B, 1) ∧ c ≡ in(B, 2) ∧ out(B) ≡ e,
e ≡ in(C, 1) ∧ out(C) ≡ f}

(1)

To indicate the health state of an component we define
the concept of an AB-literals and use them to formal-
ize the component behavior in the component library
CL.
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Definition 2. Let an AB-literal indicate the health of
a component x ∈ COMPS. An AB-literal can be
either AB(x) or ¬AB(x), where AB(x) represents
that component x is ABnormal (faulted) and ¬AB(x)
indicates that x is not ABnormal, thus normal.

The component library CL describes the behavior
of the individual components.

CL = {And(x)→ [¬AB(x)→ [in(x, 1) ∧ in(x, 2) ≡ out(x)]] ,
Inv(x)→ [¬AB(x)→ [in(x, 1) ≡ ¬out(x)]]}

(2)
The system description SD is the union of the component

library CL and the system topology ST , as shown in Equa-
tion 3.

SD = CL ∪ ST (3)

A complete assignment over all components or re-
spectively over all corresponding health AB-literals,
to either abnormal or not abnormal, is called a health
assignment. A special case is the assignment that as-
signs not abnormal to all AB-literals, denoted ¬AB∗.
The ¬AB∗ is defined in Definition 3.
Definition 3. The ¬AB∗ assigns not abnormal to all
AB-literals. Formally,

¬AB
∗

= {
∧

c∈COMP S

¬AB(c)}. (4)

In the absense of failures, the ¬AB∗ together with
the system description SD and the actual observations
should be consistent, as defined in Definition 4.
Definition 4. A set of observations OBS is consistent
with the system description iff the following sentence
is satisfiable:

SD ∪OBS ∪ ¬AB
∗ (5)

Let’s assume we collect observation obs1 which in-
volves both components, A and C, for example we ob-
serve a, b, c, and f ,

obs1 = [a ≡ 1 ∧ b ≡ 1 ∧ c ≡ 1]→ f ≡ 1. (6)

Given observation obs1 and the system description SD,
we can evaluate if the predicted behavior is consistent with
what we observed. In our example the predicted behavior is
not consistent with the actual observation obs1. The system
description SD together with ¬AB∗ imply that a ≡ b ≡
c ≡ 1 that d ≡ 1, e ≡ 1, and f ≡ 0. The predicted
value for f is therefore 0, but the actually observed value
is 1. The difference is called a discrepancy. Based on system
description SD and observation obs1 we can infer a conflict,
according to Definition 6.

Definition 5. An AB-clause is a disjunction of AB-literal
containing no complementary pair of AB-literals.

Definition 6. A conflict of (SD, COMPS, OBS) is an
AB-clause entailed by SD ∪OBS.

The resulting conflict in our example is

SD ∪ {obs1} ` AB(A) ∨ AB(B) ∨ AB(C). (7)

The diagnosis task is to find health assignments that
make SD and OBS consistent. Formally, a diagnosis
is defined by Definitions 7 and 8.

Definition 7. Given two sets of components, CAB and
C¬AB , we define D(CAB , C¬AB) to be the conjunc-
tion:  ∧

c∈CAB

AB(c)

 ∧
 ∧

c∈C¬AB

¬AB(c)

 (8)

where AB(x) corresponces to the AB-literal of x.
Definition 8. A diagnosis ∆ for
(SD, COMPS, OBS) is a subset of the compo-
nent set, formally ∆ ⊆ COMPS, such that the
following set of sentences is satisfiable

SD ∪OBS ∪ {D(∆, COMPS −∆)} (9)

Definition 9. The cardinality of a diagnosis ∆, de-
noted |∆|, is to the number of elements in ∆.

The list in Equation 10 shows all valid diagnoses
based on observation obs1 ordered by cardinality. The
cardinality of a diagnosis is defined in Definition 9.

single fault diagnoses:
∆1 = {A}, ∆2 = {B}, ∆3 = {C},

double fault diagnoses:
∆4 = {A, B}, ∆5 = {A, C}, ∆6 = {B, C},

triple fault diagnoses:
∆7 = {A, B, C}

(10)
We can reduce the set of diagnoses by a more con-

strained definition of diagnosis, coined minimal cardi-
nality diagnosis, defined in Definition 10.
Definition 10. A diagnosis ∆ for
(SD, COMPS, OBS) is a minimal cardinality
diagnosis if and only if there exists no other diagnosis
∆′ such that |∆′| < |∆|.

The list in Equation 11 shows the set of minimal
cardinality diagnoses. The minimal cardinality among
all diagnoses is 1 yet we can’t conclude that there is
only one failure in the system. The only conclusion
we can draw is that there is at least one failure in the
system.

single fault diagnoses:
∆1 = {A}, ∆2 = {B}, ∆3 = {C} (11)

Let’s say we collect another observation obs2:
obs2 = [a ≡ 1 ∧ b ≡ 1]→ d ≡ 1. (12)

Based on the two observations collected, obs1 Equa-
tion 6 and obs2 Equation 12, we can deduce that a fault
in component A individually can not explain the dis-
crepancy. Recall, we assumed non-intermittent faults.
This reduces the set of minimal cardinality diagnoses
to the list:

single fault diagnoses:
∆2 = {B}, ∆3 = {C}, (13)

To illustrate the limitations of prior diagnosis frame-
works, we assume that we collect another two obser-
vations obs3 and obs4, shown in Equation 15.

obs3 = [d ≡ 1 ∧ c ≡ 1]→ e ≡ 1 (14)

obs4 = [e ≡ 1]→ f ≡ 0

Based on the observations obs1, obs2, and obs3, we
can conclude that neither component A individually
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nor component B individually can explain the discrep-
ancy. Once we expand our reasoning to include all
available observations, obs1, obs2, obs3, and obs4, the
diagnosis framework results with an irresolvable con-
tradiction. But why is that? Let’s take a closer look at
our observations, obs1, obs2, obs3, and obs4. We can
re-write the observations as shown in Equation 16.

obs2 = [a ≡ 1 ∧ b ≡ 1]→ d ≡ 1 (15)

obs3 = [d ≡ 1 ∧ c ≡ 1]→ e ≡ 1

[obs2 ∧ obs3] → [a ≡ 1 ∧ b ≡ 1 ∧ c ≡ 1]→ e ≡ 1

obs4 = [e ≡ 1]→ f ≡ 0

[obs2 ∧ obs3 ∧ obs4] → [a ≡ 1 ∧ b ≡ 1 ∧ c ≡ 1]→ f ≡ 0

obs1 = [a ≡ 1 ∧ b ≡ 1 ∧ c ≡ 1]→ f ≡ 1

We can now see that observation obs1 is in an irresolv-
able contradiction to the observations obs2, obs3, and obs4.
This inconsistency is independent of the health assignment
we choose. As there exists no health assignment that makes
the observations consistent, we can infer that there exists no
diagnosis for the system. Generally, we can define the exis-
tence of a diagnosis as:
Definition 11. A diagnosis exists for
(SD, COMPS, OBS) iff SD ∪ OBS is consistent.

Standard model-based diagnosis will terminate with an ir-
resolvable contradiction, if no diagnosis can be found. For-
mally, from Definition 11 it follows that there exists no diag-
nosis for (SD, COMPS, OBS) iff SD∪OBS is inconsis-
tent. Hence, in our example, no diagnosis can be found, and
standard model-based diagnosis terminates with an error.

4 LIMITATIONS OF STANDARD
MODEL-BASED DIAGNOSIS

In the previous section we illustrated the limitations of stan-
dard model-based diagnosis. The limitations are caused by
the assumption that an accurate and complete model is avail-
able. In a real world scenario this is rather impractical.
Building models is a time demanding, expensive process.
Therefore, most system models are limited to enable detec-
tion or isolation of a small pre-defined set of failures. Typi-
cally, a system model captures only the knowledge required
to diagnosis this pre-defined set of failures and abstracts all
other information away.

For example, the automobile industry adopted on-board
diagnosis for cars, but only targeted to specific subsystems
and failure modes. Some cars have the capability to diagno-
sis if a head light bulb is out, but fail if the connecting cable
is broken. A broken cable occurs so infrequently, that most
diagnosis designer neglect that a cable might break and ab-
stract it away (de Kleer, 2007). If the cable does break, the
initial diagnosis might suggest that one of the two connected
components is faulted. Once the two components are indi-
vidually tested without noticeable abnormality the diagnosis
framework either incorrectly concludes an intermittent fault
in one of the two components (if the framework is aware of
this fault type) or terminates with an irresolvable error. The
irresolvable error results from the unawareness of the con-
nection. The connection is hidden to the diagnosis frame-
work and all other components are exonerated as fault can-
didates. The diagnoser results with an empty list of diagnosis
candidates, yet has observed a discrepancy. This results in an
irresolvable contradiction.

Another reason for incomplete system models is due
to model recycling, the act of reusing an already existing
model. Building models is an expensive and time demand-
ing task, which makes model recycling attractive. Typically,
there are two kinds of sources for reusable models: Either
there exists a similar system, similar enough to adapted its
model or there exists a model for the target system which
was originally built for a different task, e.g. system based on
a planning (Kuhn et al., 2008) or scheduling (Muscettola et
al., 1998) model.

The set of failures desired to be diagnosable as well as the
intended repairs influence the scope and abstraction level of
the resulting system model. For example, a vendor that only
performs repair by exchanging entire subsystems might ne-
glect fault isolation on the component level as it is not nec-
essary for the repair. This leads to abstract system models
targeted towards a specific diagnosis task. In our car exam-
ple, diagnosis is targeted to find the most common failures
(e.g. broken light bulb), but results with an irresolvable con-
tradiction if a component outside of the model scope causes
the abnormality, e.g. a broken cable. Such models violate
the no-function-in-structure principle.

5 MODEL-BASED DIAGNOSIS WITH
INTERACTION FAULTS

We propose a diagnosis framework that is able to diagnose
component faults as well as hidden interaction faults. Our
approach builds on the assumption, that there is no addi-
tional knowledge besides what’s already captured by the
model. Hence all available knowledge is already built into
the model, yet the model might still be incomplete. This
leads to a new fault type: faults caused by hidden inter-
actions, coined interaction faults. An interaction fault is
present, if an interaction among a set of components leads
to an observable failure, even though each individual com-
ponent individually meets the specification. Hidden interac-
tions can lead to interaction faults. We distinguish between
the following two kinds of hidden interactions:
• A hidden component interaction is present if a set of

known components interact through a hidden compo-
nent. The component is hidden in the sense that it
doesn’t appear in the model. A common example
for hidden components are connections in circuits (de
Kleer, 2007). Most system models abstract connec-
tions away. Typically, a fault in a connection initially
results in the belief that one of the two connected com-
ponents is faulted. Once the two components are indi-
vidually tested without noticeable abnormality the di-
agnosis framework either incorrectly concludes an in-
termittent fault (if the framework is aware of this fault
type) or terminates with an irresolvable contradiction.

• A hidden behavior interaction is present iff the interac-
tion between a set of components leads to unpredicted
behavior. Consider a food processing line for candy
bars. There are multiple components wrapping and
boxing candy bars. It may be that component A leaves
a tiny rip which is of no consequence for the consumer,
but boxing component B has a small protrusion such
that the rip sometimes catches and destroys the candy
bar. We call such faults hidden behavior interaction
faults: A and B are perfectly operational individually
but will not work correctly if A and B operate together.
Such faults also occur in circuits: Two gates A and B
may not work well together as the accumulated delay
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leads to a failure. Testing both components individu-
ally might convey that both are late, yet within specifi-
cation. (Some call this bad design, but most complex
systems have design errors.)

In the following section we introduce a diagnosis frame-
work for systems containing interaction faults. First, we
define such systems and discuss an extension to standard
model-based diagnosis such that the diagnosis framework
accounts for both individual component faults as well as hid-
den interaction faults. The extension is generally applicable
without additional system knowledge. Definition 12 defines
a model-based diagnosis system with hidden interactions:

Definition 12. A model-based diagnosis system with hidden
interactions is represented as a quadruple
(SD+, COMPS, OBS+, SCOPE) where:

• SD+, extended system description, is a set of first-
order sentences,

• COMPS, components, is a set of constants,

• OBS+, extended observations, is a set of first-order
sentences,

• SCOPE, scope of an observation, is a function map-
ping an observation onto a subset of COMPS.

The extended system description SD+ extends the stan-
dard system description SD, defined in Definition 1, to ac-
count for potential hidden interactions. Similar to before, the
SD+ contains knowledge about the behavior and the struc-
ture of the system, but admits the possibility of a hidden in-
teraction. Related approaches (Davis, 1984; Bottcher, 1995;
de Kleer, 2007) have suggested to extend the SD by ex-
plicitly modeling potential hidden interactions by using ad-
ditional knowledge about the system. The extension we sug-
gest is domain independent, hence any system is extended
with the same extension. This enables our approach to be
widely applicable, even if potential hidden interactions are
not known at design time. Before we introduce the exten-
sion, we need to modify the definition of AB-literals. We
denote the modified literals as ABi-literals:
Definition 13. Let Pow(COMPS) be the set of all subsets
of COMPS such that

Pow(COMPS) = {pc | pc ⊆ COMPS} , (16)

let pc ∈ Pow(COMPS) indicate an interaction
among all components in pc and let all ABi(x) =
AB(x). An ABi-literal indicates the health of
pc ∈ Pow(COMPS) and can be either AB(pc) or
¬AB(pc), where AB(pc) represents that pc is ABnor-
mal (faulted) and ¬AB(pc) indicates that pc is not
ABnormal, thus behaving normal.

Based on the standard system description SD, we can
construct the extended system description SD+ simply by
first adding the model extension ME shown in Equation
17 and secondly by replacing all AB-literals with the cor-
responding single component ABi-literals.

ME =
⋃

pc∈P ow(COMP S)

AB
i
(pc)→

 ∧
pc′⊂pc

¬AB
i
(pc
′
)


(17)

The extension semantically adds two aspects to a
system description. First, it introduces ABi-literals for
pc’s with higher cardinality and second it introduces

the relation among individual ABi-literals. ABi-
literals for higher cardinality pc’s account for unmod-
eled interactions which might occur between compo-
nents c ∈ pc. This guides the diagnosis framework to
detect and isolate abnormalities even if they are caused
by hidden interactions. In case we diagnosis some pc
to be abnormal, sentence 17 enforces that all subsumed
pc′’s are diagnosed to be not abnormal. The second
aspect is important as it only makes sense to hypothe-
size about an interaction fault if all hypotheses of sub-
sumed individual component faults as well as interac-
tion faults are exonerated.

We can formalize the extended system description
for our example SMALLY as shown in Equation 18.
The hidden interaction is indicated as a dashed con-
nection in Figure 1.

SD = CL ∪ ST ∪ME where
CL = {And(x)→

[¬AB({x})→ [in(x, 1) ∧ in(x, 2) ≡ out(x)]]
Inv(x)→ [¬AB({x})→ [in(x, 1) ≡ ¬out(x)]]}

ST = {And(A) ∧ And(B) ∧ Inv(C),
a ≡ in(A, 1) ∧ b ≡ in(A, 2) ∧ out(A) ≡ d,
d ≡ in(B, 1) ∧ c ≡ in(B, 2) ∧ out(B) ≡ e,
e ≡ in(C, 1) ∧ out(C) ≡ f}

ME = {ABi({A, B})→ [¬AB({A}) ∧ ¬AB({B})] ,

ABi({A, C})→ [¬AB({A}) ∧ ¬AB({C})] ,

ABi({B, C})→ [¬AB({B}) ∧ ¬AB({C})] ,

ABi({A, B, C})→
[¬AB({A}) ∧ ¬AB({B}) ∧ ¬AB({C})∧
¬AB({A, B}) ∧ ¬AB({A, C}) ∧ ¬AB({B, C})]}

(18)
The extended SD+ doesn’t define any relations be-

tween possible observations and interaction faults. A
good technician can infer interaction faults from obser-
vations. Let’s say a technician tests two components
individually and observes no abnormality, but if both
components are tested together the observations indi-
cate an abnormality. The technician would draw the
conclusion that there might exist a hidden interaction.
To enable a diagnosis framework to perform the same
kind of inference, we define two things: First, we de-
fine the scope of an observation, basically what is be-
ing tested together. Second, we incorporate the scope
into the observations, to indicate which observation is
relevant to which interaction fault. Given an observa-
tion, the concept of an observation scope defines the
set of components that has potentially impacted this
observation. Once the function SCOPE is defined,
we can extend a set of observations OBS to a set of
extended observations OBS+ according to:

OBS+ =

[obs] ∨
∨

pc⊆Scope(obs)

AB
i
(pc) | |pc| > 1, obs ∈ OBS


(19)

Generally, the function SCOPE can be extracted from
the system description without relying on additional infor-
mation. An observation is a set of measurement points.
The system structure combined with the component behav-
ior provides information in order to determine which set of
components has potential impact on which set of measure-
ment points. By backward reasoning, we can extract the
scope of an observation. In our example, we informally de-
fine the scope of an observation as the components that had
potentially impacted the resulting measurement point. For
example an observation measuring at point a and e scopes
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over component A and B, an observation measuring at point
a, b, and f scopes over the components A, B, C and an ob-
servation measuring only a and b scopes over no component
as the signal neither travels from a to b nor from b to a. The
scope for the observations in our example are illustrated in
Listing 21.

SCOPE(obs1) = {A, B, C} (20)

SCOPE(obs2) = {A}
SCOPE(obs3) = {B}
SCOPE(obs4) = {C}

Given the observation scopes we can construct the
extended observation based the extension rule shown
in Equation 19. The resulting extended observations
are shown in Listing 22.

obs
i
1 = [obs1] ∨ AB

i
({A, B}) ∨ AB

i
({A, C}) ∨ (21)

AB
i
({B, C}) ∨ AB

i
({A, B, C})

obs
i
2 = obs2

obs
i
3 = obs3

obs
i
4 = obs4

We have extended the system definition and introduced
ABi-literals with the intent to diagnose hidden interaction
faults. Definition 7 defines a diagnosis as set of components
assigned to be abnormal such that the resulting assignment
over all components makes the system description consis-
tent with the observations. In this definition an assignment
is limited to determine which individual component is con-
sidered to be abnormal or not abnormal. In order to account
not only for individual components but also for hidden in-
teractions we expand the assignment to be over all ABi-
literals. Individual components are captured by ABi-literals
with cardinality 1 and hidden interactions are addressed by
ABi-literals with higher cardinality. A diagnosis is an as-
signment of abnormal or not abnormal to all elements of
Pow(COMPS) describing one possible health state of the
system. Formally, a diagnosis for systems with hidden inter-
actions is defined in Definition 15.

Definition 14. Given two sets CAB , C¬AB ⊆
Pow(COMPS), we define Di(CAB , C¬AB) to be
the conjunction:

 ∧
pc∈CAB

ABi(pc)

 ∧
 ∧

pc∈C¬AB

¬ABi(pc)

 (22)

where ABi(x) corresponds to the ABi-literal of x.

Definition 15. A diagnosis ∆i for
(SD+, COMPS, OBS+, SCOPE) is a subset of
Pow(COMPS), such that the following set of sentences is
satisfiable

SD ∪OBS ∪
{

D
i
(∆, Pow(COMPS)−∆)

}
(23)

The Listing 24 shows all valid diagnoses for SMALLY
given that we observed only observation obsi

1.

single fault diagnoses:
∆i

1 = {{A}}, ∆i
2 = {{B}},

∆i
3 = {{C}}, ∆i

4 = {{A, B}},
∆i

5 = {{A, C}}, ∆i
6 = {{B, C}},

∆i
7 = {{A, B, C}}

double fault diagnoses:
∆i

8 = {{A}, {B}}, ∆i
9 = {{A}, {C}},

∆i
10 = {{B}, {C}}, ∆i

11 = {{A}, {B, C}},
∆i

12 = {{A, B}, {C}}, ∆i
13 = {{B}, {A, C}}

triple fault diagnoses:
∆i

14 = {{A}, {B}, {C}}
(24)

Similar to Definition 10, we can reduce the set of
diagnoses by adapting the concept of minimal cardi-
nality diagnoses, as illustrated in Definition 16.
Definition 16. A diagnosis ∆i

x for
(SD+, COMPS, OBS+, SCOPE) is minimal
in cardinality if and only if there exists no other
diagnosis ∆i

y such that |∆i
y| < |∆i

x|.
The minimal cardinality diagnoses resulting from

observation obsi
1 are all single fault diagnoses in List-

ing 16. We can further reduce the set by an even more
strict definition of minimality, coined a minimal cardi-
nality, minimal interaction diagnosis.
Definition 17. A minimal cardinality diagnosis ∆i

x for
(SD+, COMPS, OBS+, SCOPE) is also a mini-
mal cardinality, minimal interaction diagnosis if and
only if there exists no other diagnosis ∆i

y such that
an element in |∆i

y| is a strict subset of any element in
|∆i

x|.
The resulting set of minimal cardinality, minimal in-

teraction diagnoses, given that we observed observa-
tion obsi, is illustrated in Listing 25.

minimal cardinality, minimal interaction diagnoses:
∆i

1 = {{A}}, ∆i
2 = {{B}}, ∆i

3 = {{C}} (25)

Listing 25 shows the set of minimal cardinality,
minimal interaction diagnoses assuming only observa-
tion obsi

1 is available. Let’s say we include observation
obsi

2 such that the resulting set of diagnoses has to be
consistent with both observations, obsi

1 and obsi
2. We

can deduce that a fault in component A individually
can not explain the discrepancy. Therefore the result-
ing set of minimal cardinality, minimal interaction di-
agnoses reduces to the once shown in Listing 26

minimal cardinality, minimal interaction diagnoses:
∆i

2 = {{B}}, ∆i
3 = {{C}} (26)

Let’s say we continue and include observations
obsi

3. From all three observations, we deduce that a
single fault in component A as well as a single fault
in component B can not explain the discrepancy. The
only explanation for the discrepancy is that there ex-
ists either a single fault in component C, an interac-
tion fault or a multiple fault. As we are interested in
the set of minimal cardinality, minimal interaction di-
agnoses the multiple faults will only be considered if
all single faults are exonerated. This leaves us with the
hypotheses of a single fault in component C or some
kind of interaction fault. Let’s look at the remaining
set of diagnoses, shown in Listing 27, in more detail.

6
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minimal cardinality diagnoses:
∆i

3 = {{C}}, ∆i
4 = {{A, B}},

∆i
5 = {{A, C}}, ∆i

6 = {{B, C}},
∆i

7 = {{A, B, C}}

(27)

The diagnoses in Listing 27 are all minimal cardi-
nality diagnoses according to Definition 16, yet not all
of them are also minimal cardinality, minimal inter-
action diagnosis. According to Definition 16 and the
fact that diagnosis ∆i

3 is a valid diagnosis we can con-
clude that diagnoses ∆i

5, ∆i
6, and ∆i

7 are not consid-
ered to be minimal cardinality, minimal interaction di-
agnoses. All three contain at least one element x, such
that {C} ⊂ x. The resulting set of minimal cardinality,
minimal interaction diagnoses is shown in Listing 28.

minimal cardinality, minimal interaction diagnoses:
∆i

3 = {{C}}, ∆i
4 = {{A, B}} (28)

Considering all four observations
obsi

1, obs
i
2, obs

i
3, obs

i
4, we deduce that a single

fault in component C can’t explain the observations
either. Diagnosis ∆i

3 is not longer a valid diagnosis.
At this point the standard model-based diagnosis
framework terminates with an irresolvable contradic-
tion. The proposed framework generates the set of
minimal cardinality, minimal interaction diagnosis
shown in Listing 29.

minimal cardinality, minimal interaction diagnoses:
∆i

4 = {{A, B}}, ∆i
5 = {{A, C}}, ∆i

6 = {{B, C}}
(29)

Our framework he does not result with an irre-
solvable contradiction if and only if at least one of
the ABi-literals shown in Listing 30 is assigned to
abnormal. By assigning one of the interaction ABi-
literals to abnormal observation obsi

1 evaluates inde-
pendently of the assignment to all other ABi-literals
without conflict.
AB

i
({A, B})∨AB

i
({A, C})∨AB

i
({B, C})∨AB

i
({A, B, C})

(30)

Definition 18. A system is diagnosed to contain mul-
tiple faults iff a minimal cardinality diagnosis ∆i con-
tains more than one element.
Definition 19. A system is diagnosed to contain an in-
teraction fault iff a minimal cardinality, minimal inter-
action diagnosis ∆i contains an element x ∈ ∆ with
more than one component.

6 CONCLUSION
This paper has proposed a fundamentally new ap-
proach to address the very real issue that all system
models are incomplete. Ensuring complete models
is impossible. Through introducing interaction liter-
als most kinds of unintended interactions can be ac-
commodated within the model-based diagnosis frame-
work. One of the main motivations behind this work
arose from developing diagnostic algorithms for Xero-
graphic equipment. Interaction faults are surprisingly
common and are difficult for technicians to diagnose.
They are also difficult to self-diagnose (more and more
equipment includes self-diagnosis).

This paper has lays out our fundamental approach
to hidden interaction faults. As with all model-based

frameworks, it is computationally explosive if directly
implemented as described in the definitions of this
paper. In our implementation we employ a notion
of diagnostic foci which introduces both AB(x) and
ABi(x) literals only when needed, i.e., extends ME
only when needed. A direct translation of Equation 17
to all interaction faults of cardinality n leads to poten-
tially |COMPS|n clauses. The implementation is a
subject of another paper.
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