
Towards Partial (and Useful) Model Identification for
Model-Based Diagnosis

Vladimir Sadov 1, Eliahu Khalastchi 1, Meir Kalech 2, Gal A. Kaminka 1

1 Department of Computer Science, Bar-Ilan University, Israel
iholaynen@gmail.com, eli.kh81@gmail.com, galk@cs.biu.ac.il

2 Department of Information Systems Engineering, Ben-Gurion University, Israel
kalech@bgu.ac.il

ABSTRACT

A fundamental requirement for model-based di-
agnosis (MBD) is the existence of a model of the
diagnosed system. Based on the model, MBD al-
gorithms are able to diagnose the faulty compo-
nents. Unfortunately, a model is not always avail-
able. While it is possible in principle to infer a
partial model by repeated trials, performing such
trials is time and resource costly for any prac-
tical system. Therefore minimizing the number
of trials is important. In this paper, we propose
three algorithms for learning the model: two al-
gorithms are Depth-first search (DFS) based and
one algorithm utilizes a binary search algorithm.
We evaluate the algorithms theoretically and em-
pirically through thousands of tests and show that
one of the DFS-based algorithm scales well and
the binary search algorithm is efficient for small
systems. Finally, we successfully demonstrate
the algorithms on a model of the NAO robot (20
components) to show its capability in real world
domain.

1 INTRODUCTION

Many complex systems are capable of performing dif-
ferent actions. For instance, a humanoid robot can
walk, manipulate physical objects, examine the world
using sensors, adjust the parameters of these sensors,
etc. Each of these actions requires activating different
subsets of the robot’s components. For instance, walk-
ing requires the activation of leg actuators (and some-
times arms), but does not involve the head. Some ac-
tions can be performed in more than one way: a robot
can rotate its head to sense object laying out of direct
range of its head camera but it can also rotate its entire
body to achieve the same goal (Daigle et al., 2006).

We refer to the description of the component sub-
sets that are involved in the execution of an action
as a model in terms of model-based diagnosis (MBD)
(Steinbauer et al., 2009). Given such a model, MBD
algorithms can diagnose the faulty components utiliz-
ing reasoning methods (de Kleer and Williams, 1987),

by comparing the observed system behavior and the
expected behavior by the model.

Unfortunately, a model is not always available. For
instance, the topology of the communication network
is not always known (e.g., ad-hoc networks), and even
if known, does not exactly match the actual routes used
by the communicated data (e.g. IP packets). Indeed,
even if a model is known, it may differ from the system
as it executes, e.g., if the system uses learning to adapt
itself. For instance, a robot can realize locomotion by
learning which method to apply: crawling, walking,
running, etc. Each of these approaches requires a dif-
ferent subset of active robot components to succeed,
which are unknown before the learning occurs.

For each action available to the given system there
is at least one minimal subset of fully functional sys-
tem components that is sufficient for the operational of
the action. In this paper we define a partial model of
the system as a group of all such subsets. When no
information about the model is available, it is possible
to infer a partial model of the system, by repeated tri-
als. Assuming that it is possible to control the activity
of the systems’ components, we can activate a subset
of the components, try to perform an action and then
analyze the results. We can repeat this iteratively for
various actions to learn a partial model; It would de-
scribe which components are involved in the success
of an action, but not the relation between the compo-
nents.

Naturally, such an approach leads to massive failure
injection into the studied system: the activation of a
limited subset of required components will, of course,
lead to intended failures in most of the cases. This lim-
its the usage of the proposed approach. For instance,
heavy industrial systems, where each failure can dam-
age the system itself or cause environmental disaster.
However, there are other systems where such an ap-
proach is applicable. For example, virtual systems or
physical system which explicitly secured for evalua-
tion like a humanoid robot on rope can securely learn
locomotion. However, performing such trials is usu-
ally time and resource costly for any practical system.
Therefore minimizing the number of trials is impor-
tant.

1

21st International Workshop on Principles of Diagnosis

In this paper, we propose three algorithms that infer
a partial model by repeated trials, while minimizing
the number of trials. Specifically, given an action, they
find all the possible minimal sets of components that
must cause an activation of that action. The first, DFS-
based, algorithm is exponential both in the number of
trials as well as in runtime. Under the assumption that
the number of possible sets of components that acti-
vate an action is bounded by a constant, we propose
an improvement to the first algorithm which results in
a second algorithm, which is polynomial in the num-
ber of trials and runtime. The last algorithm is based
on a binary search approach. This algorithm guaran-
tees a polynomial number of trials independently of
the number of sets of components that activate the ac-
tion. However, computing these trials is exponential in
the number of components.

Empirical evaluation shows that the improved ver-
sion of the DFS algorithm finds the minimal sets of
components in reasonable number of trials, even in
large scale systems. The binary search algorithm
solves the problem efficiently only for small systems.
In addition, we ran several actions using a simulation
of a NAO humanoid robot manufactured by Aldebaran
Robotics, and showed that the improved DFS algo-
rithm and the binary search succeeded in inferring the
components that caused the actions in reasonable num-
ber of trials.
2 RELATED WORK
The question we present in this paper is similar to
the problem of finding minimal conflict sets in MBD.
A conflict set is a set of components such that, as-
suming they are normal, the system is not consistent
with the observation. Similarly, in our problem we
try to recognize a set of components that must be ac-
tivated in order to perform a given action. In both
problems, a set of all the components is both a con-
flict set and an activating set. On the other hand,
the empty set is neither a conflict set nor an activat-
ing set. In addition, in MBD, any superset of a con-
flict is a conflict set too; the same is in our problem,
any superset of an activating set will operate the ac-
tion too. The main difference between these prob-
lems is that while in MBD we assume that the sys-
tem description is known, and thus we can recognize
the conflict sets (e.g., (de Kleer and Williams, 1987;
Williams and Ragno, 2007). In our problem, the basic
assumption is that the system description is not given,
thus we propose to use a trial and error approach to
address this challenge.

The problem is also related to computer network
topology discovery (Farkas et al., 2008). Several ap-
proaches have been studied: Address Forwarding Ta-
bles (AFT) collected from switches (O’Hallaron et al.,
2001), this method needs that all the network switches
will support AFT forwarding and demands broadcast-
ing of the routing data by every switch. Another ap-
proach is based on sending packets from the end-points
and observing where they are delivered (Black et al.,
2004). This method requires that the network end-
points will be equipped with monitoring software. Our
algorithm, when applied to the networking, is less de-
manding in terms of required implemented protocols
on network switches. While not proposing a protocol

specific implementation for the topology discovery do-
main, we think that our algorithm in conjunction with
domain-specific modifications, can potentially serve
network topology discovery applications.

Another related problem is known as Frequent Item-
set Mining (FIM) problem: given a set of items and
database of transactions, the goal is to find all such
subsets of items which appear more than t times in the
database (Han and Kamber, 2001). FIM appears to be
similar to our problem: the items in FIM are the com-
ponents in our problem, the satisfaction of the thresh-
old t is the activation of an action by the subset of com-
ponents and the database queries can be replaced with
the system trials introduced in this paper. The power
set lattice of the items items and components is the
same. However, a closer examination shows, that FIM
DB queries and our system trials are very different ac-
tions. While FIM algorithms are performing bottom-
up search, starting from the trivial subsets contained
in transactions (so the database query is positive), our
system trials will fail on every state set which does not
contain all the components necessary to activate the
action. Thus making bottom-up approach is infeasi-
ble. on the other hand, a top-down approach, when we
start from the fully activated system does not allow to
effectively decide on the next DB-query. A determin-
istic approach leads to full exploration of current sub-
set O(n) nodes making the search exponential. Less
exhaustive search, leaves a probability to miss target
subsets as discussed furthermore.
3 PARTIAL MODEL IDENTIFICATION
This section presents the basic objects used for model
identification. A system is the most fundamen-
tal object. A system C is a set of n components
{c1, . . . , cn}.

Each component ci ∈ C can be enabled and dis-
abled externally. When ci is enabled it is fully opera-
tional and its output is defined to be correct. When ci
is disabled, it is not activated.

Definition 1 (enable). The predicate ω(ci) is true if
component ci is enabled. We define a state set S ⊆ C
to represent a set of enabled components. In first order
logic

∧
si∈S

ω(si)
∧

sj∈C\S

¬ω(sj).

The system is capable to perform several actions de-
fined by the following set: A = {a1, . . . , am}. A cer-
tain action ai is activated if a corresponding subset of
the components is enabled.

Definition 2 (activating set). The predicate Φ(S, ai) is
true if a given state set S activates the action ai.

For instance, assume a humanoid robot with four
servos C = {c1, c2, c3, c4} such that two servos are
controlling its hands (c1 for the right hand and c2 for
the left), and the other two are controlling its legs
(c3 for the right leg and c4 for the left). To operate
a kick action (a1), the robot could use his right leg:
Φ({c3}, a1).

The goal of this paper is to find the minimal state set
that activates a given action. For this, we define here
the minimality assumption: if a state set S does not ac-
tivate ai then all of its subsets will also fail. Formally:

2

21st International Workshop on Principles of Diagnosis

Assumption 1. Given sets S1 ∈ C, S2 ∈ C such that
S2 ⊆ S1, ¬Φ(S1, ai) ⇒ ¬Φ(S2, ai).

The contraposition of this assumption is a direct log-
ical corollary of this statement.
Corollary 1. Given sets S1 ∈ C, S2 ∈ C such that
S2 ⊆ S1, Φ(S2, ai) ⇒ Φ(S1, ai).

This assumption is reasonable in many physical sys-
tems, since a component that does not cause the acti-
vation of an action, is not expected to cause the action
to fail. For instance, a humanoid robot will succeed
kicking a ball with his right leg, even in case that all
his other components are enabled.

The problem of model identification is defined as
follow:
Definition 3 (Partial model identification problem).
Given the system C and the action ai, find a minimal
state set S ⊆ C such that Φ(S, ai) = true.

Since it is possible that an action can be activated
by more than one state set, we will extend the model
identification problem to find all those state sets. For
instance, the robot can kick either by his right leg or
by his left leg: Φ({c1}, a1) ∨ Φ({c2}, a1).
4 MODEL IDENTIFICATION ALGORITHMS
To address the model identification problem we adopt
a trial and error approach. This approach proceeds it-
eratively as follow:

1. Generate a state set S.
2. Check if ϕ(S, ai) = True by trying to execute

the required action ai when only the components
of state set S are enabled.

3. if Φ(S, ai) = true then store the result and pro-
ceed to find the next result else goto 1.

A key question is how to choose the next state set S.
A naive, brute-force approach will pass through all 2n
possible subsets of C to find those that activate the ac-
tion. This naive approach is exponential both in terms
of run-time and the number of trials. In the next sub-
sections we will propose two approaches to reduce the
complexity of traveling through the possible trials: (1)
a depth first search with branch and bound (DFBnB)
approach (Papadimitriou and Steiglitz, 1982), and (2)
a binary search approach.
4.1 A DFBnB Approach
In this section, we present a DFBnB approach for the
trials generation order. Usually, in DFBnB, the search
proceeds in a DFBnB manner while bounded by a cost
function (Papadimitriou and Steiglitz, 1982). In our
algorithm the bound is determined by the set of states
that have been proven to not activate the action. The
search starts with a root trial which includes all the
components (C) since, based on Assumption 1, it must
activate ai, yet it is not necessarily the minimal set.
Then, in a DFBnB manner, we go over all the states
except those that were bounded since they are subsets
of states that have been proven to not activate the ac-
tion.

To implement the DFBnB algorithm we manage two
lists, a close list (CloseList) which contains the roots
of all the explored state sets sub-trees and a results list
(Results) that contains only those minimal state sets

that do activate the action. To guarantee maximality (in
case of CloseList) and minimality (in case of Results
list) of state sets, when inserting a new state to one of
these lists we use the next routines:
Subroutine 1. InsertSuperset(CloseList,S) - Removes
all the subsets of S from the CloseList; If no superset
of S is in the CloseList, inserts S to the CloseList.
Subroutine 2. InsertSubset(Results,S) - Removes all
the supersets of S from Results; If no subset of S is in
Results, inserts S to Results.

Finally, since a state can be reached through differ-
ent descending states, we define a boolean property
visit for a state set S, representing whether it has al-
ready been visited or not.

Algorithm 1 DFBnB
(input: system – C
input: action – ai

output: list of results – Results)

1: CloseList← ∅
2: Result← ∅
3: Stack.push(C)
4: while Stack is not empty do
5: S ← Stack.pop()
6: if not S.visit then
7: S.visit = true
8: if Φ(S, ai) = true then
9: InsertSubset(Results, S)
10: for all S′ such that child(S′, S) do
11: if S′ is not a subset of a state in the CloseList then
12: Stack.push(S′)
13: end if
14: end for
15: else
16: InsertSuperset(CloseList, S)
17: end if
18: end if
19: end while
20: return Results

Algorithm 1 presents the DFBnB-based algorithm.
When generating a new state set S, we try to activate
ai by S: Φ(S, ai) (line 8). If it returns false, then
we insert S to the CloseList (15–16), otherwise, we
insert it to Result (line 9) and push all its children
(child(S′, S) ≡ S′ ⊆ S ∧ |S′| = |S| − 1) that are
not subsets of a state in the CloseList, into the Stack
(lines 10–14).

Figure 1 demonstrates the DFBnB traveling where
C = {c1, c2, c3, c4} and Φ({c4}, ai) = true. The
order of the trial states generation is marked. The fol-
lowing run will be generated (each list entry represents
a distinct DFBnB descending chain). × represents an
insertion to the CloseList and

√
represents an inser-

tion to Results:
1. {c1, c2, c3, c4} → {c1c2, c3} → ×
2. (backtracking to {c1, c2, c3, c4})→

{c1, c2, c4} → {c1, c4} → {c4} →
√

3. (backtracking to {c1, c2, c4})→ {c2, c4} → ×
4. (backtracking to {c1, c2, c3, c4})→

{c2, c3, c4} → {c3, c4} → ×
Although pruning by the close list, the worst-case

complexity of the DFBnB-based algorithm is still ex-
ponential in the number of components (2n). This will
happen, for instance, in case that Φ({c1}, ai) = true.

3

21st International Workshop on Principles of Diagnosis

{c1,c2,c3,c4}

{c1,c2,c3} {c1,c2,c4} {c1,c3,c4} {c2,c3,c4}

{c1,c2} {c1,c3} {c1,c4} {c2,c3} {c2,c4} {c3,c4}

{c1} {c2} {c3} {c4}

{}

1

2 3 7 9

86

5

4

Figure 1: The nodes exploration order by the DFBnB algorithm for C :
{c1, c2, c3, c4} action ai is activated by Φ({c4}, ai)

4.2 Polynomial DFBnB
In the DFBnB algorithm, when generating a new state,
we prune all its children that are subsets of a state in the
CloseList. However, if a child is a superset of a state
in the Results list, we could not prune it since it may
contain another state, that has not been generated yet,
and does activate ai. For instance, generating trial state
7 in Figure 1 is necessary, since although it contains c4
and thus Φ({c1, c3, c4}, ai) = true, it could also be
true due to other subsets as {c1, c3} that have not been
generated yet.

DFBnB can be significantly improved by pruning
also subsets of the Results list. For this aim, before
pushing a trial state to the stack, we check first whether
it potentially contains states that should be in Results
but have not been generated yet, as shown in Algo-
rithm 2. The improved DFBnB search proceeds as pre-
sented in Algorithm 1, but instead of checking the new
state children only against the CloseList (as in line
12), we check them also considering the Results, as
shown in Algorithm 2.

Algorithm 2 will be invoked, substituting line 11 in
Algorithm 1. It obtains four parameters: S, a candi-
date child state that we check whether to add as a trial
to the stack or not; L, a list of states in Results that
are subsets of S (L = {R|R ∈ Results ∧ R ⊆ S});
and Stack and CloseList, the same as in the DFBnB
algorithm. Algorithm 2 proceeds recursively. At the
beginning, the algorithm checks whether L is empty,
if it is empty then S is not a superset of any mem-
ber of Results. In such cases, if it is not in the
CloseList, it is added to Stack as a new trial state
(lines 2–4). In lines 7–9 we go through the children
of S (child(S′, S) ≡ S′ ⊆ S ∧ |S′| = |S| − 1) that
are not superset of R (and thus they could be supersets
of other results), and recursively call Algorithm 2 with
each child and the remaining of L.

Let us demonstrate Algorithm 2. Assume S =
{c1, c3, c4} (state 7 in Figure 1). This state is a su-
perset of c4 and thus we call Algorithm 2 with S =
{c1, c3, c4} and L = {{c4}}. L is not empty and thus
in line 8 we call again to the algorithm with the child
state of S S′ = {c1, c3}, and the remaining of L. In
the next call, L is an empty set, and since {c1, c3} is a
subset of a state in the CloseList {c1, c2, c3}, we do
not generate it.

Figure 2 presents the order of the trial states of Al-
gorithm 2. We can see that the pruning by the Results
list, reduces the number of trials versus Figure 1.

To prove completeness of Algorithm 2 we first prove
the following lemma:

Algorithm 2 Prune DFBnB
(input: state – S
input: sublist of Results – L
input: stack – Stack
input: close list – CloseList)

1: if L = ∅ and S is not a subset of a state in the CloseList then
2: Stack.push(S)
3: else
4: R← L.first
5: if R ⊆ S then
6: for all S′ such that child(S′, S) ∧R * S′ do
7: Prune DFBnB(S′, L \ {R}, Stack, CloseList)
8: end for
9: else
10: Prune DFBnB(S,L \ {R}, Stack, CloseList)
11: end if
12: end if

{c1,c2,c3,c4}

{c1,c2,c3} {c1,c2,c4} {c1,c3,c4} {c2,c3,c4}

{c1,c2} {c1,c3} {c1,c4} {c2,c3} {c2,c4} {c3,c4}

{c1} {c2} {c3} {c4}

{}

1

2 3

4

5

Figure 2: The nodes exploration order by Algorithm 2 for C :
{c1, c2, c3, c4} action ai is activated by {Φ({c4}, ai)}

Lemma 1. Given S and L and let R⋆ ⊆ S such that
Φ(R⋆, ai) = true and R⋆ /∈ L. Then, after invoking
Prune DFBnB(S,L, Stack, CloseList) ∃S⋆ ∈
Stack such that R⋆ ⊆ S⋆

Proof. If L = ∅ then, since R⋆ ⊆ S and Φ(R⋆, ai) =
true, S /∈ CloseList and then S is pushed to Stack
(lines 1–3). If, however, L ̸= ∅, let R1 ∈ L be the first
member of L, if R1 ⊆ S then Prune DFBnB(S \
{ci}, L \ {R1}, Stack, CloseList) is executed for
each ci ∈ R1. Necessarily ∃ci such that S \ {ci} ⊆
R⋆. Because, R⋆ /∈ L and R1 ∈ L and R⋆ ⊆
S, then ∃ci ∈ R1 ∧ ci /∈ R⋆. So, the next re-
cursion level of Prune DFBnB is executed on a
superset of R⋆ (lines 9–11). If R1 * S then
Prune DFBnB(S,L \ {R1}, Stack, CloseList) is
executed (lines 6-8). Note, that R⋆ ⊆ S. Again, the
next recursion level of Prune DFBnB is executed
on a superset of R⋆. Recursively, Stack generated by
Prune DFBnB will include S⋆ ⊇ R⋆, by meeting
the stop condition L = ∅.

Now we can prove the algorithm’s completeness:
Theorem 1. ∀S such that Φ(S, ai) = true and there
is no S′ ⊂ S such that Φ(S′, ai) = true then S ∈
Results.

Proof. Given R⋆ ⊂ S such that Φ(R⋆, ai) = true and
R⋆ /∈ L, once S is popped out of Stack, according
to Lemma 1, Prune DFBnB will push S⋆ ⊂ S to
Stack such that R⋆ ⊆ S⋆. The recursion will repeat
itself in every decreasing size of S⋆ such that R⋆ ⊆ S⋆

until S⋆ = R⋆ and therefore R⋆ will finally be pushed
to |Results|. Based on this consequence, since that in
the first iteration of Algorithm 1: (1) S = C, (2) ∀R

4

21st International Workshop on Principles of Diagnosis

such that Φ(R⋆, ai) = true: R ⊆ C and (3) L = ∅,
then ∀R: R is pushed to |Results|.

The soundness of the algorithm is presented in the
next proof:
Theorem 2. ∀S ∈ Results, Φ(S, ai) = true and
there is no S′ ⊂ S such that Φ(S′, ai) = true.

Proof. Based on lines 8–9 in Algorithm 1, a state
that has been added to the Results list affirms
Φ(S, ai)=true. Subroutine 2 (Section 4.1) guarantees
minimality.

Finally, we analyze the complexity of the algorithm:

Theorem 3. The worst case complexity of the num-
ber of trial states and the runtime is bounded by
O(|Results|n|Results|+1).

Proof. Given a state S ∈ 2C where Φ(S, ai) = true
and given R ⊆ S where R is a minimal set such as
Φ(R, ai) = true but R /∈ Result yet. We will prove
that n|Results|+1 trial states are required to add R to
Result. Since Φ(S, ai) = true, Algorithm 2 is in-
voked for each child S′ of S. In line 6, Algorithm 2
goes over through the children of S′ that are not super-
sets of R. There are at most |R| − 1 such children,
where R is bounded by the number of components
(n). For each one of these children we recursively call
Algorithm 2 with the next R in L (and again we go
through |R| − 1 children). This recursion will proceed
as long as the list L is not empty, while L is bounded
by |Results|. Thus, in the worst case Algorithm 2 will
be invoked n|Results| times recursively. In each time
it is invoked, it will add at most one trial state to the
stack. Since Algorithm 2 is invoked by Algorithm 1 for
each one of the children of S, the worst case complex-
ity provides O(n|Results|+1) trial states until R will be
added to the stack. In the first iteration, only C is in
the stack and |Result| is empty, thus any R that af-
firms Φ(R, ai) = true is R ⊆ S, and therefore it re-
quires at most |Results|n|Results|+1 trial states to be
added to Results. The worst case complexity of the
required number of trials to explore all the Results is
O(|Results|n|Results|+1). The number of iterations
of the while loop of DFBnB algorithm is bounded by
the total number of trials; thus the runtime complexity
is O(|Results|n|Results|+1).

Since the complexity of the algorithm is exponential
in the size of Results, we can relax the complexity by
proposing the next assumption:
Assumption 2. The number of minimal state sets
that activate the action ai is constant, that means
|Result| = O(1).

This is a reasonable assumption in many physical
systems. For instance, a humanoid robot can operate
a pushing action either by its right hand or by its left
hand. A kick action can be achieved by one of its legs.
Thus, in many cases, the total size of the Results list
will be very small.

Based on this assumption, the complexity of the
number of trial states as well as the runtime complexity
will be polynomial.

5 A BINARY SEARCH APPROACH
The complexity of the number of trials can be re-
duced by using a binary search approach. In this ap-
proach in each iteration we generate a new state S,
where its size is the average of (1) a currently known
state S′ that activates ai (Φ(S′, ai) = true) and (2)
a currently known state S” that does not activate ai
(Φ(S”, ai) = false). This binary search prunes the
state space efficiently, and thus generates only a poly-
nomial number of trial states. However, the computa-
tional time for choosing the next trial is exponential.

The binary search is presented in Algorithm 3.
The algorithm manages two stacks: StackUP and
StackLOW . In the first iteration, the algorithm ini-
tializes StackUP (line 3)with C (this set must affirm
Φ(C, ai)) and StackLOW (line 4) with the empty set
(this set must affirm ¬Φ(∅, ai)). The algorithm itera-
tively continues as long as the StackUP is not empty.
This will happen only when there are no possible trial
states anymore. In each iteration it tries to find a trial
state between the root and the leaf states. This state
must satisfy the conditions that appear in lines 9–12.
Then we perform the founded trial state S and based
on the response we decide to continue the search with
S either as a new root (line 15) or as a new leaf (line
18). Correspondingly, we also decide to add S either
to Results or to the CloseList. If no trial state has
been found, we pop out the leaf from StackLOW
– in case that the leaf exists in the CloseList (lines
22–23), otherwise we are guaranteed that we cover the
power set of the root and then we continue with the
next root in StackUP (line 24).

Algorithm 3 Binary Search
(input: system – C
input: action – ai

output: list of results – Results)

1: CloseList← ∅
2: Result← ∅
3: StackUP.push(C)
4: StackLOW.push(∅)
5: while StackUP is not empty do
6: root← StackUP.top()
7: leaf ← StackLOW.top()
8: choose S such that:
9: 1. S ⊆ root and S ⊇ leaf AND
10: 2. S is not a subset of any state in the CloseList AND
11: 3. S is not a superset of any state in Results AND
12: 4. |S| is close as possible to |root|+|leaf|

2

13: if Φ(S, ai) then
14: InsertSubset(Results, S)
15: StackUP.push(S)
16: else
17: InsertSuperset(CloseList, S)
18: StackLOW.push(S)
19: end if
20: if no S has been found then
21: if leaf ∈ CloseList then
22: StackLOW.pop()
23: else
24: StackUP.pop()
25: end if
26: end if
27: end while
28: return Results

Figure 3 demonstrates a run of the algorithm. In
the first iteration all the states have not been generated

5

21st International Workshop on Principles of Diagnosis

yet, so we randomly choose one state from the mid-
dle stage (state 1). This trial state fails to activate ai
(Φ({c1, c3}, ai) = false) and so it is added to the
CloseList and continues the search with this state as
a leaf . The next chosen state, between {c1, c3} and
the root C, is {c1, c3, c4} (there are only two options
– the parents of {c1, c3}). This trial state succeeds to
activate ai and so we add it to Results and continue
the search between this state, as the root, and {c1, c3}
as the leaf . Since there are no more states between
these states, and since {c1, c3} is in the CloseList,
we pop out {c1, c3} from the StackLOW , and con-
tinue the search with the empty set as the leaf . As-
sume {c4} has been chosen ({c1} and {c3} are subsets
of a state in the CloseList). This trial state activates
ai and so it is inserted to Results. The next iteration
does not find any state between {c4} and the empty set,
and so {c4} is popped out from the StackUP . The
next iteration returns to the former search to search for
more trial states between {c1, c3, c4} and the empty
set. However, no fitting S can be found since either
the states are supersets of {c4} or subsets of {c1, c3}.
{c1, c3, c4} is popped out and we return to the first
bounds, C and the empty set. Assume {c1, c2} has
been chosen (there is only one more possible option:
{c2, c3}). This state is added to the CloseList and
we continue the search with this state as the new
leaf . The last chosen trial state is {c1, c2, c3}, which
is added to the CloseList too and then all the state
space is either subsets of the CloseList or supersets
of Results.

To prove completeness of Algorithm 3 we first prove
the following lemma:
Lemma 2. At the end of the execution of Algorithm
3, ∀S ∈ 2C either S ⊆ S′|S′ ∈ CloseList or S ⊇
S”|S” ∈ Results.

Proof. By initialization, state C is in the bottom of
StackUP (line 6). StackLOW and the CloseList
contain only states that do not affirm ai (lines 17–
18), therefore C will stay in StackUP as long as
StackLOW ’s top is not the empty set (lines 21–22).
Thus in the last iteration of the algorithm root = C
and leaf=∅. In this case, the algorithm tries to find a
state in the full state space that satisfies the condition
S * S′|S′ ∈ CloseList and S + S”|S′ ∈ Results.
Since it does not find such state the algorithm stops.
Thus, ∀S ∈ 2C either S ⊆ S′|S′ ∈ CloseList or
S ⊇ S”|S′ ∈ Results.

Now we can prove the algorithm’s completeness:
Theorem 4. ∀S ⊆ C such that Φ(S, ai) = true and
there is no S′ ⊂ S such that Φ(S′, ai) = true then
S ∈ Results.

Proof. Based on Lemma 2, given S ∈ 2C either S ⊆
S′|S′ ∈ CloseList or S ⊇ S”|S′ ∈ Results. If
Φ(S, ai) = true then, by line 14, there is no S *
S′ such that S′ ∈ CloseList. On the other hand, it
must be added to Results. If not exist S′ ⊂ S such
that Φ(S′, ai) = true, S must be in Results based on
Subroutine 2 (Section 4.1).

Algorithm 3 is sound:
Theorem 5. ∀S ∈ Results, Φ(S, ai) = true and
there is no S′ ⊂ S such that Φ(S′, ai) = true.

Proof. Only states that affirm the condition
Φ(S, ai) = true are added to Results (lines13–
14), thus ∀S ∈ Results, Φ(S, ai) = true. Subroutine
2 (Section 4.1) guarantees minimality.

Finally, we analyze the complexity of Algorithm 2:
Theorem 6. The number of trial states is bounded by
O(|Results|n2 log n).

Proof. Let us analyze the complexity of finding only
one state that affirms Φ(S, ai) = true. In the bi-
nary search, we divide the state space in each itera-
tion by two and continue only with one half. Thus,
to find a trial state that affirms Φ(S, ai) = true is
O(logn), similarly, to find a trial state that affirms
Φ(S, ai) = false is O(logn). The worst case com-
plexity of finding a child S′ of C (S′ ⊂ C, where
|S′| = |C| − 1) that affirms Φ(S′, ai) = true is
O(n log n). The reason is that it is possible that there
is only one such a child; then we should verify, for
each state S′ of the other n children, that it does not
activate ai: Φ(S, ai) = false. To guarantee minimal-
ity, we continue this search iteratively with S′ as the
root, and then with the child of S′ that activates ai as
the new root and so on, until the the size of the root
is one, then one of these states must be minimal. The
number of such iterations is bounded by n, and the
overall worst case complexity to gauarantee one mini-
mal trial state is O(n2 logn). To find all the |Results|
trial states, we can iterate through the same process for
each one of them and thus the worst case complexity
will be O(|Results|n2 log n).

Unfortunately, the runtime complexity of finding the
next trial state is exponential, since the number of pos-
sible states between the root and the leaf is the power
set of the root O(2n).

{c1,c2,c3,c4}

{c1,c2,c3} {c1,c2,c4} {c1,c3,c4} {c2,c3,c4}

{c1,c2} {c1,c3} {c1,c4} {c2,c3} {c2,c4} {c3,c4}

{c1} {c2} {c3} {c4}

{}

1

2

3

5

4

Figure 3: The nodes exploration order by the binary algorithm for C :
{c1, c2, c3, c4} action ai is defined by {Φ({c4}, ai)}

6 EXPERIMENTAL RESULTS
In this section we present empirical evaluation for the
algorithms. We run thousands of experiments by vary-
ing (1) the number of components (n) (2) the number
of activating sets (v) and (3) the number of enabled
components in each activating set (e). In particular, for
a specific combination we generated a system with n
components, and randomly selected v sets where each
one of them contains e enabled components among the
system. Since we chose the enabled components ran-
domly, we run each combination 30 times. Then we
run each algorithm trying to find the activating sets and
measured the runtime and the number of trials the al-
gorithm used.

6

21st International Workshop on Principles of Diagnosis

Figure 4: The impact of changing the number of components on the
number of trials.

Figure 5: The impact of changing the number of components on the
runtime.

Figure 6: Prune DFBnB: the impact of #components in large scale sys-
tems. #activating sets = 3.

In the first set of experiments, we examine the in-
fluence of the size of the system on the number of re-
quired trials (Figure 4) and on the runtime (Figure 5),
for the three algorithms. In this experiment, the num-
ber of activating sets is fixed to two where each one of
them contains n/2 enabled components selected ran-
domly. The size of the system (n) was varied from
8 to 22 in a skip of two (represented by the x-axis).
Every data point is an average over 30 executions ran-
domizing the enabled components.

In Figure 4 the y-axis represents the number of re-
quired trials to recognize all the activating sets. As ex-
pected, by the complexity analysis, this number grows
exponentially in the DFBnB algorithm, and polynomi-
ally in the Prune DFBnB and the binary search algo-
rithms. There is no significant difference between the
two algorithms since there are only two activating sets.
Unfortunately, we could not run the binary search al-
gorithm for large number of activating sets due to the
exponential runtime of this algorithm. In Figure 5 we
can see the runtime of the algorithm (the y-axis repre-
sents the runtime). As expected, the DFBnB and the
binary search grow exponentially while the Prune DF-
BnB algorithm remains polynomial.

In the next set of tests we focus on the prune DF-
BnB algorithm to examine the number of required tri-
als in large scale systems. The reason that we focus
on this algorithm is that it is polynomial in runtime.
The other two algorithms are not feasible to more than
30 components. Figure 6 shows the results for three
activating sets. The x-axis represents the number of
components and the y-axis represents the number of
trials. The bars represent different sizes of activating
sets (enabled components 1–4). We bounded the run-
time of all the tests to one minute, thus we omitted bars
that took more than one minute. Every data point is an
average over 10 executions randomizing the enabled
components taken from the first 16 components of the
system.

338329

1124830

109461278 69543
0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5

Number of activating sets

N
u

m
b

e
r

o
f

tr
ia

ls

Figure 7: The impact of the the number of activating sets in the Prune
DFBnB algorithm.

0

100

200

300

400

500

600

700

800

1,14 2,13 3,12 4,11 5,10 6,9 7,8 8,7 9,6 10,5 11,4 12,3 13,2 14,1

The sizes of two actuating sets

N
u

m
b

er
 o

f
tr

ia
ls

Figure 8: Prune DFBnB: the impact of the distribution of the enabled
components among the activating sets.

It seems, from the figures, that Prune DFBnB algo-
rithm scales well in terms of the number of trials. Note
that the algorithm performs much better than the the-
oretical worst case. For example, the average number
of trials where n = 1280 is 3800 ≪ 3 ∗ 1280(3+2).
In addition, we can see that as the number of en-
abled components per activating set grows, the num-
ber of queries grows. The reason for this fact will
be investigated bellow (Figure 8). Finally, Prune DF-
BnB’s complexity depends on the number of activat-
ing sets (|Results|n|Results|+1), therefore we can see
the high difference between the two figures. This is
clearly shown in Figure 7, where the x-axis represents
the number of activating sets. The system’s size, in
this experiment, is 40, and each one of the activating
sets contains 7 enabled components. The curve grows
exponentially as expected by the complexity analysis
(|Results|n|Results|+1).

In the previous experiments we distributed the en-
abled components uniformly among the activating
sets. In the next experiment we examine the influ-
ence of other distributions. For that we fixed the num-
ber of components to 20, the number of activating
sets to two. We run all the options of distributing 15
enabled components between the two activating sets
(1/14, 2/13, ...). For each one of this options we run

7

21st International Workshop on Principles of Diagnosis

action DFBnB Prune-DFBnB Binary
#trials runtime #trials runtime #trials runtime

1 76 13934 21 6 153 60347
2 127216 1863477 2582 249 125 10940
3 134673 2163477 636 101 201 124406
4 1048575 5732982 39 56 34 6404

Table 1: Number of trials and runtime for Nao experiments.

30 tests randomizing the enabled components. Figure
8 shows the results of the experiment. The Y-axis rep-
resents the average number of trials, and the x-axis
represents the number of enabled components in the
activating sets.

As shown in Figure 8, the number of required trials
grows as the distribution between the activating sets is
close to uniform. The reason is that the space of op-
tional trial states is

(
x
n

)
, where x is the number of en-

abled components in the set. This space is the smallest
when the number of enabled components is the mini-
mum or the maximum, and is is the largest when they
are equal. We ran additional experiments for n = 30
40 and 50 and for various number of enabled compo-
nents, and the same pattern was observed.

Lastly, we examined the different algorithms in a
simulation of real world tasks by recognizing the sets
of components activating different actions performed
by a NAO humanoid robot. It has 20 servos controlling
its movements. These servos are the components in
our problem, thus the size of NAO system is n = 20.
We defined a set of actions which were explored by the
different algorithms without making any assumptions
on robot real architecture:

1. Walking - the task requires all the hands and legs
to be active jointly (total of 18 joints).

2. Hitting button by hand - this task is performed by
either right or left hand, so the correct output is
two activating sets with four components each.

3. Tracking a moving ball with video sensor - this
task is performed by moving only the head, or by
moving the entire body to compensate for more
extreme ball motion.

4. Trigger a security motion sensor in the room - The
task requires a motion of any single servo.

Table 1 summarizes, for each one of the above ac-
tions, the results by running the different algorithms.
The algorithms are presented in the columns, where
the left sub-column represents the number of trials and
the right sub-column represents the runtime. It seems
that the runtime of Prune DFBnB algorithm is much
less than the others, but the Binary search algorithm
succeeded to achieve the least number of trials by in-
ferring the activating servos of actions 2–4.

7 SUMMARY AND FUTURE WORK
In this paper we addressed the challenge of identi-
fying a model, in particular, identifying the minimal
sets of components that must be activated in order
to operate a given action. We presented three algo-
rithms: (i) a DFBnB-based algorithm that is exponen-
tial both in terms of number of the trials as well as
in runtime (O(2n)); (ii) an improved DFBnB-based
algorithm with pruning with polynomial complexity

(O(|Results|n|Results|+1), under the reasonable as-
sumption that the number of result sets is constant);
(iii) a binary search based algorithm finds the mini-
mal sets of components in polynomial number of trials
(O(|Results|n2 log n)), yet it is exponential in terms
of runtime (O(2n)).

We empirically evaluated our algorithm and found
that the Prune DFBnB algorithm is efficient both in
terms of number of trials as well as in runtime. The
binary search algorithm presented polynomial growth
in number of trials but exponential in runtime. We ex-
amined also the Prune DFBnB algorithm in large scale
systems and showed that it scale well both in the num-
ber trials and in runtime.

We also ran the Prune DFBnB algorithm on a model
of the NAO robot for several test cases, and showed
that it succeeded in finding the activating sets. Ob-
viously, the Prune DFBnB and the binary algorithms
solved the problem in reasonable number of trials.

In the future we plan to explore the similarity of our
problem to the problem of the conflict sets in MBD.
We plan to examine the use of the algorithms for find-
ing conflict sets.
REFERENCES
(Black et al., 2004) Richard Black, Austin Donnelly,

and Cedric Fournet. Ethernet topology discovery
without network assistance. In In ICNP, 2004.

(Daigle et al., 2006) Matthew Daigle, Xenofon Kout-
soukos, and Gautam Biswas. Multiple fault diagno-
sis in complex physical systems. In DX-06, pages
69–76, 2006.

(de Kleer and Williams, 1987) J. de Kleer and B. C.
Williams. Diagnosing multiple faults. Artificial In-
telligence, 32(1):97–130, 1987.

(Farkas et al., 2008) Janos Farkas, Vinicius G.
de Oliveira, Marcos R. Salvador, and Giovanni C.
dos Santos. Automatic discovery of physical topol-
ogy in ethernet networks. In 22nd International
Conference on Advanced Information Networking
and Applications. IEEE, 2008.

(Han and Kamber, 2001) Jiawei Han and Micheline
Kamber. Data mining : Concepts and techniques.
Morgan Kaufmann, 2001.

(O’Hallaron et al., 2001) David R. O’Hallaron, Bruce
Lowekamp, and Thomas R. Gross. Topology dis-
covery for large ethernet networks. In ACM Sig-
comm 2001, 2001.

(Papadimitriou and Steiglitz, 1982) Christos H. Pa-
padimitriou and Kenneth Steiglitz. Combinatorial
optimization: algorithms and complexity. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1982.

(Steinbauer et al., 2009) Gerald Steinbauer, Alexan-
der Kleiner, and Franz Wotawa. Using qualitative
and model-based reasoning for sensor validation of
autonomous mobile robots. In DX-09, pages 219–
226, 2009.

(Williams and Ragno, 2007) Brian C. Williams and
Robert J. Ragno. Conflict-directed a* and its role
in model-based embedded systems. Discrete Appl.
Math., 155(12):1562–1595, 2007.

8

