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ABSTRACT

Every model-based diagnostic approach relies on
arepresentation of a real-world system, in this pa-
per called believed system. The believed system
is used along with the observations about the real-
world system to generate a diagnostic problem to
be solved. In this paper it is firstly argued that
believed systems can differ from real-world sys-
tems in many different manners. As so, proper-
ties of believed systems, diagnostic problems and
diagnostic results are introduced. Then, a series
of relations between these properties are proved.
The importance of such relations, sometimes seen
as intuitive, is that they are necessary to formally
prove the accordance between the real-world sys-
tem and the believed system; to formally prove
that a believed system and a diagnostic problem
will produce high-quality diagnostic results; or
even to ease diagnostic algorithms, since for sys-
tems and problems with certain properties, differ-
ent model-based diagnostic approaches produce
the same diagnostic results. In order to introduce
the referred properties and reasoning about them
a framework of diagnosis based on the difference
between the believed and the real systems is pro-
posed.

1 INTRODUCTION

Diagnostic reasoning aims at determining the normal
and faulty components of a system under study, typi-
cally for repairing the faulty ones, based on a formal
representation of such system and on a series of obser-
vations about it.

Since this description of diagnostic reasoning is be-
yond doubt on the line of thought of, for instance, Re-
iter (Reiter, 1987) and de Kleer and Williams in (de
Kleer and Williams, 1987), we start by noticing that
these approaches clearly distinguish the "real world
setting of interest" (or "artifact" or "physical system")
from the description of such system. Let us, in this pa-
per, call the former real system and the latter believed

system !. As described, apart from the real and the be-

"The believed system is also called "model" in the litera-
ture (for example in (Console and Torasso, 1991)). However,
such word will not be used in this paper since it will be re-
served for a model theoretic context.

lieved system, diagnostic reasoning also involves ob-
servations about the real system. So how does a diag-
nostic reasoner work?

A diagnostic reasoner operates by by using the ob-
servations (about the real system) and treat them as be-
ing observations about the believed system. Then, this
agent of diagnosis computes the possible health states
of the believed system, that is, those possible assign-
ments of abnormal or normal states to each component
of the believed system that, typically, are either con-
sistent with all the observations or, in a much stronger
manner, actually imply some of them. Finally, under
the [almost always implicit] assumption that the be-
lieved system is a "good" representation of the real sys-
tem, one usually states that the possible health states of
the believed system coincide with the possible health
states of the real system, given the observations. But
now some questions arise: what is a "good" represen-
tation? Is "good" a single property or a series of prop-
erties each one with a different influence on diagnos-
tic results? What can one expect from a "good" rep-
resentation? Is it possible to measure "how good" a
representation is? Can one deduce how "good" a rep-
resentation is based on how "good" a diagnostic result
is?

The main contribution of this paper is an answer
provided to all these questions. In Section 2 a frame-
work of diagnosis inspired on the works of de Kleer,
Mackworth and Reiter’s in (de Kleer et al., 1992) and
based on the difference between the believed and the
real systems is introduced. In Section 3 properties of
believed systems, diagnostic problems and diagnostic
results are introduced. Finally, in Section 4, a series of
relations between believed system, diagnostic problem
and diagnostic results properties are proved.

The importance of such relations, sometimes seen
as intuitive, is that they are necessary to formally prove
the accordance between the real-world system and the
believed system; to formally prove that a believed
system and a diagnostic problem will produce high-
quality diagnostic results; or even to ease diagnostic
algorithms, since for systems and problems with cer-
tain properties, different model-based diagnostic ap-
proaches produce the same diagnostic results.



2 TOWARDS A FRAMEWORK OF
DIAGNOSIS DISTINGUISHING THE REAL
AND BELIEVED SYSTEMS

As stated in the introductory part of this paper, this sec-
tion is devoted to the formalisation of some concepts,
whose understanding is almost always implicitly taken
for granted in the literature about model-based diag-
nosis. As so, a diagnostic framework based on the dif-
ference between the believed and the real systems will
be introduced. This framework will rely on first-order
logic since it encapsulates almost every diagnostic ap-
proach with appealing properties in the literature.

2.1 Motivation for a framework of diagnosis
distinguishing the real and believed systems
through an example

Let us start by presenting an example whose objective
is to motivate the need for a diagnostic framework dis-
tinguishing the believed and the real systems.
Consider the voltage divider of Figure 1 connected,
for instance, to a voltage source of 9V so that the in-
put parameter Vi, = 9V. Suppose that one day, for in-
stance at 11 a.m., the 21%* September 2010 in Lisbon,
John measures the voltage out of the voltage divider to
be 6V so that the output parameter Vo = 6V. With
his knowledge of physics John knows that in the volt-

age divider the relation Vgt = % - Vi holds and

he determined Rlljrsz = % Another day, suppose for

instance, at 3 a.m., the 21% December 2010 in Lisbon,
for the same value of Vi, John measured Vout = 5V,
which sets R]FERZ = g. This being the case, John could
jump to the conclusion that either one or both resistors
are abnormal, since the value differs between experi-
ences. However, in this case he forgot another impor-
tant input parameter: temperature. In fact, the resistiv-
ity of a material also depends on its temperature. As
so, the different results could be explained by the ma-
terial the resistors are made of, and did not indicate
an abnormal resistor. In fact, in this case, no resistor
was abnormal and the believed system was simply not
"good" enough.

System
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R1 R2

Vout

Figure 1: A simple voltage divider

This example clearly shows an interest in distin-
guishing the real and believed systems in a diagnos-
tic framework; and clearly defining concepts such as,
for example, abnormality, input parameter or output
parameter before any attempt to define properties and
explore relations between believed system, diagnostic
problem and diagnostic results properties.

2.2 Towards a framework of diagnosis

distinguishing the real and believed systems
Some concepts in this subsection have already been in-
troduced in (de Kleer et al., 1992) and (Ribot et al.,
2009), in which case they will be reused. The first no-
tion to be presented is the definition of believed system
(also called "model" in the literature):

Definition 1 (Believed system). A believed system S
is a pair (SD,COMPS) where:

1. 8D, the system description, is a set of first-order

sentences.

2. COMPS, the system components, is a finite set of

constants.

Note that it is an hypothesis of this paper that there
is a bijection between the real and believed system
components. The notions of parameter and parame-
ter value follow concept of believed system and corre-
spond to the Struss’ concepts of local variables and its
values in a certain situation in (Struss, 1992):

Definition 2 (Parameter). A parameter (real or be-
lieved), noted p, designates any quantity (in terms of
mass or energy) that can be exchanged between a sys-
tem (real or believed) and its surroundings conveying
information. The set of parameters of a system is noted
Preai or Py depending on if it is referring to the pa-
rameters of the real or believed systems respectively.

Hereafter, the terms real and believed will be omit-

ted by default when referring to parameters in unam-
biguous situations.
Definition 3 (Value of a parameter). The value of a
parameter is the value assigned to the quantity desig-
nated by the parameter. If b is a constant, v(p) = b
states that the value of the parameter p is b.

The next two concepts to be presented are the
real system input and output parameters (note that,
in (Struss, 1992) no such distinction is made):
Definition 4 (Real system input/output parameters).
The real system parameters can be classified in two
types: input parameters and output parameters.

A parameter is an output parameter if it designates
any quantity exiting the system and conveying infor-
mation. The real system output parameter values can
be changed by the behaviour of the real system or by
the real system input parameter values.

A parameter is an input parameter if it designates
any quantity entering the system and conveying infor-
mation. The real system input parameter values can-
not be changed by the behaviour of the real system or
by the real system output parameter values.

In order to illustrate Definition 4 consider two ex-
amples. First, imagine a laptop with a keyboard and
a screen. In this case, information coming from the
keyboard is an input parameter of the system while the
information coming out of the screen is an output pa-
rameter. No other combination of input and output pa-
rameters exists, since we cannot "write letters on the
screen so that they get pressed on the keyboard". Now,
consider, for example, a simple resistor as illustrated
by Figure 2. In this case, it can either be the case that
p1 (the current flowing through the resistor) is an in-
put parameter and P (the voltage accross the resistor)
an output parameter or that p1 is an output parameter
and p4 an input parameter. In fact, if a current source
is connected to the system, then the former case is
present, while if a voltage source is connected the latter
is present. What actually differentiates both situations
is the context of utilisation. So, intuitively, a context
(undefined in (Struss, 1992) since the notions of input
and output parameters do not exist) is a possible struc-
ture of the system in terms of its inputs and outputs.
Such concept is now formalised in Definition 5.
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Figure 2: A simple resistor

Definition 5 (Contexts of the real system). A context
of the real system, m, partitions the set of real system
parameters Pygy, into the sets of input and output real
system parameters, 1Pz and OPyey respectively 2.

The set of every possible contexts of the real system,
CXT ea, is made only of first order sentences.

Following the notion of context comes the defini-
tions of believed system input and output parameters
and believed system contexts.

Definition 6 (Believed system contexts and in-
put/output parameters). The definitions of believed
system contexts and input or output parameters is the
same as Definitions 4 and 5 with the word "real" re-
placed by the word "believed", OPygq1 by OPpe), 1Prea
by IPpe; and CXT,eg replaced by CXTpe.. Moreover,
every believed system parameter is a part of the system
description SD.

Note that we have not yet committed to any relation
between the parameters or contexts of the believed and
real systems. This will be a subject of discussion from
here on. It is also important to note that in (Struss,
1992) it is always implicitly assumed that the believed
system parameters are always a subset of the real sys-
tem parameters. Finally, even the notion of real system
is, at most, implicit in (Struss, 1992) since the clos-
est concept to it, the one of "ideal" correct model of
behaviour, is never defined as isomorphic to the real
system as it should (shown later in this paper).

Observations are one of the few connections be-
tween real and believed systems in the diagnostic
scene. Intuitively, observations are captured from the
real system and used along with the believed system in
the diagnostic reasoning (an idea shared with (Struss,
1992)). The concepts of parameter observation and
context observation are now ready to be introduced:

Definition 7 (Context observation). The context ob-
servation (of a real system) is a set OBS;eaXT of
first order sentences. It represents the set of observed
undistinguishable possible contexts of the real system.
Definition 8 (Parameter observations). The parameter
observations (of a real system) is a set OBS,ea/” of first
order sentences of the form v(p) = b, where p is a real
system parameter and b is the observed value of p.
Moreover, given context observation OBSyeq
the parameter observations OBS,es” can be divided
in those observations that are about:
e input parameters for every context M in
OBS,62X7, called OBS,e3/.
e output parameters for every context M in
OBS,2°X7, called OBS;e4°.
e input parameters in some contexts and output pa-
rameters in others, called OBS;e/©.

and OBSrea/P = OBSrea/I @] OBSrea/O @] OBS{ea/IO.

CXT

2In set theory, a partition of a set X is a division of X into
disjoint subsets of X whose union is X.

Hereafter, the fact that the observations are about
the real system will be omitted and the notation will be

abbreviated so that OBS,¢4 X" becomes OBScxt and
so on. The notion of diagnostic problem, analogous
to the notion of "abduction problem" of (Console and
Torasso, 1991) and to the notion of "system" of (de
Kleer et al., 1992), will now be introduced:

Definition 9 (Diagnostic problem). A diagnostic prob-
lem DP is a tuple (SD,COMPS,0OBScx7, OBSp).

We will assume all along this paper
that given a diagnostic problem DP =
(SD,COMPS,0OBScx1,0BSp) the parameters in
OBSp are a subset of Ppg; for there is no reason for a
diagnostic system to try to observe a parameter that is
not a believed system parameter.

Since there is now a diagnostic problem one can
jump into solving it. Using de Kleer and Williams
words (in (de Kleer and Williams, 1987)) solving a
diagnostic problem consists of "assigning credit or
blame to parts" based on observations. "Blame" and
"credit" correspond to the notions of normal and ab-

normal which are defined, in this paper, as follows 3.

Definition 10 (Normality and abnormality of compo-
nents). A component C is said to be abnormal, noted
Ab(c), if it has passed its elastic limit and is deformed
irreversibly.

A component is said to be normal, noted ~Ab(c), if
it is not abnormal.

The concept of abnormality is well illustrated in the
example of Subsection 2.1. In that example one can
understand that it is not just because the voltage divider
provided a voltage output with an unusual value that
the resistors are abnormal. In fact, the unusual value
of the voltage output was related to temperature, an
input parameter of the real system that was not taken
into account in the believed system. Before providing
a way for finding solutions to diagnostic problems, the
notion of health state (used both in the context of real
and believed systems) needs to be added.

Definition 11 (Health state). Let A C COMPS be
a set of abnormal components. The health state
o(A,COMPS - A) is the conjunction:

[Nce aABC)IN[ Nce(comps - a) = Ab(C)]

As for solving a diagnostic problem, there are two

major model-based approaches:

e The first way, called in this paper the consistency-
based way, consists in, for a given diagnostic
problem DP, determining all the possible be-
lieved system health states that are consistent with
the observations and with the system description.
Then, using the fact that the believed system rep-
resents the real system, it is stated that the real
system health state is exactly the same as one of
the possible believed system health states. Ex-
amples of consistency-based diagnostic reason-
ing can be found, for instance, in (Davis, 1984),
(de Kleer and Williams, 1987) or (Reiter, 1987).

e The second way is called, in this paper, the
abduction-based way. For a given diagnostic

3The predicate Ab is borrowed from (de Kleer ef al.,
1992).



problem DP one starts by separating the observa-
tions in two different sets, the first one consisting
of the observations to be "explained" and the sec-
ond one consisting of the observations used for
consistency checking. A believed system health
state is then possible if it is consistent with the ob-
servations used for consistency and with the sys-
tem description and if, along with the system de-
scription and with the observations used for con-
sistency logically implies the observations to be
"explained" (note that this partitioning has noth-
ing to do with contexts as introduced in Defini-
tions 5 and 6). Then, as before, using the fact that
the believed system represents the real system, it
is stated that the real system health state is ex-
actly the same as one of the possible believed sys-
tem health states. Examples of abduction-based
diagnostic reasoning can be found, for instance,
in (Poole, 1988) or (Console et al., 1989).
In a more formal manner:

Definition 12 (Consistency-based  diagnosis).
Let A C COMPS. A consistency-based di-
agnosis  for the diagnostic problem DP =
(SD,COMPS,0BScx7,0BSp) is o(A,COMPS
- A) such that:

SDUOBS:x7JOBSpUc (A,COMPS - A)
is satisfiable.
Definition 13 (Abduction-based diagnosis). Let A C
COMPS. An abduction-based diagnosis for the diag-
nostic problem DP = (SD,COMPS,0OBS:x7, OBSp)
with OBSeyxp being the observations to be explained
and OBScons being the observations used for consis-
tency such that OBSexpUOBS¢ons = OBScx1UOBSp
is 0 (A,COMPS - A) such that:

SDUOBSnsUo (A,COMPS - A)

is satisfiable, and

SDUOBSonsUo (A,COMPS - A) = OBSeyp.

2.3 Some words on abduction-based diagnoses

Before ending this section closer look is taken at the
definition of abduction-based diagnosis that comes di-
rectly from (de Kleer er al., 1992) and which also re-
flects other works of abduction-based diagnosis. In it,
there is no formal way of choosing the sets OBSgong
and OBSey, based on the sets OBSp and OBScxr.

Even if in (de Kleer et al., 1992) there are some "guide-
lines" for such task (which do not even exist in al-
most every work about abduction-based diagnosis),
the choice of such sets is left to the common-sense
of the human using the diagnostic system. Since the
first goal of this paper is to leave no room for "chance"
or "common-sense" in the diagnostic framework pre-
sented, we contribute with a correct way of choosing
the sets OBScons and OBSeyp:
Definition 14 (Correctly chosen abduction-based di-
agnosis). An abduction-based diagnosis for the diag-
nostic problem DP = (SD,COMPS,0OBS:x7, OBSp)
is said to be correctly chosen iff:

e OBS.ons = OBS|UOBS,oUOBScxT

e OBSgp = 0BSg

Intuitively if an abduction-based diagnosis is cor-
rectly chosen then the diagnostic system will not try
to explain observations about the inputs which would
be a nonsense.

3 DEFINING PROPERTIES IN BELIEVED
SYSTEMS, DIAGNOSTIC PROBLEMS AND
DIAGNOSTIC RESULTS

In this section and, more precisely, in the six subsec-
tions that come next, eight properties related to be-
lieved systems, diagnostic problems and diagnostic re-
sults are presented, being the formalisation of some
and the introduction of others our contribution.

Since the definition of some properties relies on
model-theory the readers not familiar with it may refer
to Appendix A or to (Hodges, 1993).

3.1 Validity and certainty of a diagnostic result

Two important notions related to a diagnostic result
(the set of all possible health states of the believed sys-
tem determined either in a consistency-based or in an
abduction-based manner for a given diagnostic prob-
lem) are now presented: validity and certainty.

Definition 15 (Validity of a diagnostic result). A diag-
nostic result is said to be valid iff one of its elements is
the real system health state.

Definition 16 (Certainty of a diagnostic result). A di-
agnostic result is said to be certain iff it contains one
and only one health state. Moreover, the more health
states are in a diagnostic result, the less certain it is.

To gain intuition about such concepts suppose a real
system with two components Cy and Cp; being, in re-
ality, ¢4 abnormal and C2 normal. Suppose two di-
agnostic results: DRy = [Ab(cy)AAb(c»)] and DR, =
[Ab(c1)A—Ab(cz)]V[-Ab(ci)A—Ab(cz)]. DR is in-
valid but certain and DR5 is valid but uncertain. Fi-
nally, validity can be seen as the property guaranteed
by valid models in (Struss, 1992) over the past obser-
vations; or the necessary property that works about
monotonic reasoning in diagnostic such as (Ribot et
al., 2009) implicitly assume.

3.2 Satisfiability of the believed system and of the
diagnostic problem

In Definition 1 it was stated that a believed system was
a pair (SD,COMPS) where SD was a first-order the-
ory. The first property of interest is the satisfiability of
a believed system:

Definition 17 (Satisfiability of a believed system). A
believed system is said to be satisfiable if the theory
SD has a model.

This apparently unflavoured property is extremely
interesting. In fact, if a believed system is not satisfi-
able it cannot represent the real system since the lat-
ter exists. Moreover, courtesy of Godel completeness
theorem (see (Hodges, 1993) for details), a first-order
theory has a model iff it is consistent. Thus, a purely
syntactic check is enough to assess this property.

Definition 18 (Satisfiability of the diagnostic prob-

lem). A diagnostic problem is said to be satisfiable if
the theory SDUOBScx7UOBSp has a model.

Being stronger than the satisfiability of the believed
system, the satisfiability of the diagnostic problem has
an added interest attached since it helps measuring the
adequacy of the believed system to the real system.
More precisely, if a a diagnostic problem is not sat-
isfiable (for a satisfiable believed system), then the be-
lieved system cannot represent the real system since



the real system itself and the observations about it, ex-
isting, must be satisfiable. This property will be stud-
ied with more detail in Section 4. Such concept corre-
sponds to the "remark 1" of (de Kleer et al., 1992).

3.3 Truth of the believed system

Let us contribute with a third property of interest: the
truth of the believed system. It is closely related to
the properties introduced in Subsection 3.2 but is much
stronger. However, since there is no such thing as per-
fection, it is much more difficult to assess than the two
properties introduced before. In fact, means will be
provided to prove that a believed system is not true,
but no means exist to deduce its truthfulness.

Before jumping into the definition of a true believed
system it is important to understand what an axiom of
a theory is. An axiom is a proposition that cannot be
proved and is considered to be universally true, that is,
true in every model of the theory. So, for instance, one
can build a theory based on the axiom "All birds fly".

Another kind of truth that is different from the one
introduced in the paragraph before is the notion of on-
tological truth. The words of Tarski provide a proper
informal introduction to the subject: "a [ontological]
true sentence is one which says that the state of af-
fairs is so and so, and the state of affairs is indeed so
and so" (Tarski, 1936). So, for instance, the famous
sentence "All men are mortal” is an ontological truth,
since all men are indeed mortal. However, the also
famous sentence "All birds fly" is not an ontological
truth since, in reality, there are some birds that do not
fly. What is important understand is the difference be-
tween "logical truths" and "ontological truths", since
the former class represents all axioms in our theory
and the latter represents the correspondence between
the sentences in our theory and the "real world".

The notion of ontological truth of a sentence is for-
mally defined below:

Definition 19 (Ontological truth of a sentence). A sen-
tence is an ontological truth iff it has a model M that
that can be extended to a model N isomorphic to the
"real world" *.

Definition 20 (Truth of the believed system). A be-
lieved system is said to be an ontological truth (or sim-
ply true) iff it has a model M that can be extended to
a model N isomorphic to the "real world".

This property is highly important; for if one wants
a system description to be used in "real world" situ-
ations, then this same "real world" must always be a
model of the theory. The consequences of trying to
solve a diagnostic problem based on a believed system
that is not true are studied in the next section.

In order to provide a visual representation of this
and every other property that follows, consider the real
system depicted in Figure 3

Now, imagine one of the many possible true be-
lieved systems such as the one depicted in Figure 4.
Every connection between a believed system input and
output parameter, if it exists, is exactly the same as in
the real system. Moreover, there is no believed system
parameter which is not a real system parameter. Fi-
nally, a believed system can be true even if not every
real system parameter is a believed system parameter.

“"Real world" is the "real system" and its surroundings.
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Figure 3: A typical real system

Before ending this section, it is also important to
note that the truth of the believed system is not exactly
the same as Struss’ strong models in (Struss, 1992). In
fact, true believed systems are strong models but the
opposite isn’t true, since true believed systems refer to
the whole parameter value space and not to its domain
restriction.

Believed system op2

-

ips” -—-—» ___-t+—-——o0p3”

T e 1 o T
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ips’ opn”

Figure 4: A true believed system

3.4 Completeness of the believed system

Up to now three properties have been introduced and
we contribute in this paper with a fourth one: the com-
pleteness of the believed system.

Definition 21 (Completeness of the believed system).
Let m € CXTpe be a context separating Ppej into IPpg
and OPyg. Let @, be a set containing first order sen-
tences of the form v(ip) = b assigning a value for every
ip € IPpe;. Finally, let o be a health state of the be-
lieved system. In this case, a believed system is said to
be complete iff for every possible context m, for every
different ® 5, and for every different health state o:

If SDUD \Uo is satisfiable,
then SDU® ,Uo is a complete theory

Intuitively, the completeness property is a measure
of how many "loose strings" there are in the believed
system. In fact, if a believed system is complete one is
guaranteed to know the information flow from the in-
put parameters towards the output parameters for every
context, every health state and every input parameter
values. Note that even if there is a relation, complete-
ness is very different from truth. Moreover, no such
concept exists in any work known by the authors. Fi-
nally, one interesting aspect of this property is that it
can, in theory, be measured; for it relies on two math-
ematical concepts, satisfiability and completeness of
theories, that can, in theory, be proved (for instance
using Vaught’s test (Marker, 2002)).

Now, imagine one of the many possible complete
believed systems such as the one depicted in Figure 5.
Note that every connection between a believed system
input and output parameter exists, even if it is not ex-
actly the same as in the real system of Figure 3.

3.5 Coverage of the believed system

We now contribute with another property of believed
systems: coverage.

Definition 22 (Coverage of the believed system). A

believed system is said to fully cover the corresponding
real system iff Preaj = Ppej and CXTrear = CXTpel.



Believed system /),opz’
ipa’f——a/ —
T R T [ ope”
ipn"/ ‘opm’

Figure 5: A complete believed system

If the completeness was said to be a measure of how
many "loose strings" there are in a believed system,
then the coverage can be seen as a measure of how
many "strings" of the believed system are "strings" of
the real system. More formally, if a believed system
fully covers a real system, one is guaranteed to know
in the believed system every channel of the real system
from where information enters and leaves. Once again,
although related, coverage and truth are very different.
Although extremely attractive, this property lacks of
verifiability. In fact, it is possible to prove, through
the experience obtained with diagnostic results, that a
believed system does not fully cover a real system, but
no means exist to prove that it does cover. Finally, no
such concept exists any work known by the authors.

Now, imagine one of the many possible fully cov-
ered believed systems such as the one depicted in Fig-
ure 6. Note that every real system parameter is a be-
lieved system parameter, even if the connections be-
tween parameters are not identical to the real system
ones and if not every connection exists.
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Figure 6: A fully covered believed system

3.6 Observability of the diagnostic problem

The last property of interest to us is the observability
of the diagnostic problem.

Definition 23 (Observability of the diagnos-
tic problem). A diagnostic problem DP =
(SD,COMPS,0BScxt, OBSp) is said to be:

e weakly observed iff OBScxt contains one and
only one mapping and every input parameter
IPpey is given a value in OBSp.

e strongly observed iff OBScxt contains one and
only one mapping and every parameter Ppg is
given a value in OBSp.

The observability of the diagnostic problem is a
good measure of how much information the diagnostic
system has to perform a diagnosis. In fact, for instance,
given the diagnostic Definition 12, the more observed
is the diagnostic problem (i.e. the more believed pa-
rameters are observed) the less possible health states
are given as a solution of the consistency-based diag-
nostic problem. Finally, the good news is that the ob-
servability of the diagnostic problem can be measured,
since one can verify how many parameters of the be-
lieved system are observed in the diagnostic problem.

Now, imagine one of the many possible strongly ob-
served diagnostic problems such as the one depicted in
Figure 7. Every believed system parameter is observed
in the real system.

i )\ Real system— |
ips -—-——| & ‘ -~ ———ops

ip —_,|Believed system|
R i
R M O Bt

Figure 7: A strongly observed diagnostic problem

4 EXPLORING THE PARTICULARITIES OF
SYSTEMS WITH GIVEN PROPERTIES

In Section 3 the properties of believed systems and di-
agnostic problems were introduced. It is now time to
provide another contribution by explicitly deriving a
series of attributes of systems that have given proper-
ties.

First of all, if a believed system is true then it is
satisfiable and any diagnostic problem based on it is
also satisfiable.

Lemma 1. Every true believed system is satisfiable.

Proof. A true believed system must have a model (cf.
Definition 20), thus it is satisfiable. O

Theorem 2. If a believed system is true, then any di-
agnostic problem based on it is satisfiable.

Proof. Suppose an unsatisfiable diagnostic problem.
In this case: 1) either the associated believed system
is unsatisfiable or 2) the believed system is satisfiable
but its union with the observations is unsatisfiable.

Case 1): In this case, by Lemma 1 one gets that the
believed system is not true. Q.E.D.

Case 2): In this case the believed system has at
least a model since it is satisfiable; and since the ob-
servations come from the real system, then the theory
OBScxtUOBSp is made only of ontological truths
and, as so, has at least one model whose extension
is isomorphic to the "real world". Since the theory
SDUOBScxtUOBSE has no model, it means, in par-
ticular, that the "real world" is not isomorphic to any
extension of a model of the theory. Combining all
these arguments one gets that the "real world" is not
isomorphic to any extension of a model of the believed
system and, as so, it is not true. Q.E.D. [

Now, that the relations that hold between the truth
of a believed system and the satisfiability of believed
systems and diagnostic problems have been unveiled,
one can move to the relation between the truth of a be-
lieved system and the validity of the diagnostic results:

Theorem 3. If S is a true believed system, then, for
every diagnostic problem based on S:

1. the set of possible health states determined in a
consistency-based way is valid.

2. the set of possible health states determined in an
(correctly chosen) abduction-based way is not al-
ways valid.

Proof. 1) Let us suppose the real state oeq) is not a be-
lieved system health state determined in a consistency
manner. This being so, SDUOBScx1UOBSpUo ey
is unsatisfiable, thus having no model. Now, since



OBScx7, OBSp and orey come from the real sys-
tem, OBScx1UOBSpUG e must have a model that
can be extended to a model isomorphic to the "real
world". Combining all the arguments we get that the
"real world" is not isomorphic to any extension of a
believed system model. As so, it is not true. Q.E.D.

2) Suppose a true but incomplete believed system
with a single output parameter whose value is never
logically implied by the believed system along with
the input parameters. In this case, for every o such
that SDUOBSonsUo is satisfiable, SDUOBSonsUo
% OBSexp and SDUOBSconsUU % - OBSexp SO,
every abduction-based diagnosis results in an empty
set of diagnostic results, which, obviously, cannot con-
tain the real system health state. Q.E.D.

Theorem 3 is the actual rational for a diagnostic
reasoner to be consistency-based instead of abduction-
based. In fact, suppose that one "believes" > a believed
system to have no other property than truth. In this
case one is forced to choose a consistency-based rea-
soning over an abduction-based one, or there would be
no guarantees of valid results.

The next theorem concerns the relation between
consistency-based and abduction-based diagnoses for
the class of complete believed systems in weakly ob-
served diagnostic problems.

Theorem 4. Let S be a complete believed system.
Moreover, let DP be a diagnostic problem based on
S at least weakly observed. In this case for every o:

SDUOBS cx7UOBSpUo is satisfiable
iff
SDUOBS|Uo is satisfiable and
SDUOBSUs = OBSp

Proof. <: If SDUOBS,Uo is satisfiable, then it has a
model. Since SDUOBS|Us |= OBSg then, in particu-
lar, there is a model of SDUOBS,Us which is a model
of OBSgq. This being the case, since OBS;UOBSq =
OBScx7UOBSp, then SDUOBScx7UOBSpUo has a
model, thus being satisfiable. Q.E.D.

=: Since OBSUOBSy = OBScxtUOBSE,
SDUOBS|UOBSpUo is satisfiable so one only needs
to prove that SDUOBS|Ucs |= OBSq. For the sake
of the argument, let ¢ be the sentence representing the
conjunction of every element in OBSg. Since S is
a complete system, SDUOBS,Uo is a complete the-
ory and, this being so, either SDUOBS|Us = ¢ or
SDUOBS|Us = —¢. Suppose SDUOBS|Uo = —¢
which is the same as saying that SDUOBS,UcU{¢}
is unsatisfiable. However, this cannot be the case
because SDUOBS|UcU{p} is satisfiable.  Thus,
SDUOBS|Us = ¢. Q.E.D. O

So, abduction becomes consistency (and vice-versa)
for a complete believed system in a at least weakly ob-
served diagnostic problem. Once again, this relation is
extremely useful due to the verifiability of complete-
ness and observability. In fact, for a system with the
discussed properties, one automatically knows that all
possible health states explain the output observations.

Let us now combine Theorems 3 and 4:

The usage of the word believe in the sentence is ex-
tremely important; for one cannot "know", that is, prove, that
a believed system is true.

Corollary 5. If S is a true and complete believed sys-
tem and DP is a fully observed diagnostic problem
based on S, then the set of possible health states of the
believed system determined either in a consistency or
(correctly chosen) abduction-based manner is valid.
Proof. Immediate by Theorems 4 and 3. O
Means for comparing both consistency-based and
abduction-based diagnostic approaches and for guar-
anteeing that a diagnostic approach gives a valid result
have been introduced. It is now the time to study how
to guarantee the certainty of a diagnostic result. First
of all, if a believed system is false there is no point
in assessing the certainty of a diagnostic result. This
is because a false believed system can be, for example,
the simple sentence A¢ ¢ compsAb(C) which would al-
ways indicate a useless but certain diagnostic result.

Theorem 6. Let S be a true, fully covered and com-
plete believed system and DP a strongly observed di-
agnostic problem based on S. In this case the diagnos-
tic result D determined either in a consistency-based
or in an abduction-based manner (using a classical
logic) is valid; and there is are no other true believed
systems or diagnostic problems than lead to a diagnos-
tic result more certain than D.
Proof. Since Theorem 4 can be applied this proof is
only consistency-based oriented.

Validity of the diagnostic result comes directly from
the truth of the believed system and by Theorem 5.

Now, consistency-based diagnoses rely on the the-
ory SDUOBSpUOBScxt. Call this theory 7. Sup-
pose that 7 is an empty theory that becomes larger
and larger, either with the addition of first-order sen-
tences to SD or to OBSpUOBScxr. Since the be-
lieved system is true, 7 will always be satisfiable by
Theorem 2 and Definition 18. Moreover, these new
sentences added can either make the believed system
converge towards full coverage and completeness or
make the diagnostic problem converge towards strong
observability. At the same time, as new sentences are
a part of T the diagnostic results become more and
more certain due to the monotonicity property of clas-
sical logic. When the theory 7 corresponds to a fully
covered complete believed system and to a strongly
observed diagnostic problem any new true sentences
added to T can only refer to entities that have no re-
lation to the system, thus having no effect on the di-
agnostic results. This being so, the limit of certainty is
reached with a fully covered complete believed system
and a strongly observed diagnostic problem. O

5 DISCUSSION

From Theorems 5 and 6 we are able to understand
that the truth of a believed system is the main driver
for obtaining valid diagnostic results. Similarly, cov-
erage and completeness (assuming truthfulness) of a
believed system and the observability of the diagnos-
tic problem are the main drivers for obtaining a cer-
tain diagnostic result. Moreover, the observability of
the diagnostic problem is a main condition for finding
properties in diagnostic systems.

From the application of modus tollens to every theo-
rem one can actually try to deduce some properties of a
certain believed system from the diagnostic problems
and the diagnostic results they provide. For example,



if a diagnostic result obtained in a consistency-based
manner is different from a diagnostic result obtained
in an abduction-based manner for the same believed
system, then either the believed system is incomplete
or the diagnostic problem is not at least weakly ob-
served. Since the latter is easily checked, one gets an
indicator on the completeness of believed systems.

What is interesting to note is that the validity and
certainty of diagnostic results, the satisfiability, com-
pleteness, truth and coverage of believed systems and
the satisfiability and observability of diagnostic prob-
lems are strongly related. Thus, the knowledge of
some of these characteristics can be used to deduce the
others as depicted in Figure 8.

DR DP
validity| (satisfiability

BS BS BS DP
coverage truth] (completeness| |observability)

5& abduction-based diagnosis
-

consistency-based diagnosis

Figure 8: Believed system (BS), diagnostic problem
(DP) and diagnostic results (DR) property relations

This being the case, these relations are necessary
to formally prove the accordance between the real-
world system and the believed system; to prove that
a believed system and a diagnostic problem will pro-
duce valid and certain diagnostic results; or even to
ease diagnostic algorithms in some situation where a
consistency-base approach is guaranteed to provide the
same results as an abduction-based approach.

REFERENCES

(Console and Torasso, 1991) Luca Console and Pietro
Torasso. A spectrum of logical definitions of
model-based diagnosis.  Computational Intelli-
gence, 7:133-141, 1991.

(Console et al., 1989) Luca Console, Daniele Thesei-
der Dupre, and Pietro Torasso. A theory of diag-
nosis for incomplete causal models. In Proc. 11th
1JCAI, pages 1311-1317, 1989.

(Davis, 1984) Randall Davis. Diagnostic reasoning
based on structure and behavior. Artif. Intell., 24(1-
3):347-410, 1984.

(de Kleer and Williams, 1987) Johan de Kleer and
Brian C. Williams. Diagnosing multiple faults. Ar-
tif: Intell., 32(1):97-130, 1987.

(de Kleer et al., 1992) Johan de Kleer, Alan K. Mack-
worth, and Raymond Reiter. Characterizing diag-
noses and systems. Artif. Intell., 56(2-3), 1992.

(Hodges, 1993) Wilfrid Hodges. = Model Theory.
Number 42 in Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1993.

(Marker, 2002) David Marker. Model Theory: An In-
troduction, volume 217 of GTM. Springer-Verlag,
New York, NY, 2002.

(Poole, 1988) David Poole. Representing knowledge
for logic-based diagnosis. In FGCS, 1988.

(Reiter, 1987) Raymond Reiter. A theory of diagnosis
from first principles. Artif. Intell., 32(1), 1987.

(Ribot et al., 2009) Pauline Ribot, Yannick Pencolé,
and Michel Combacau. Diagnosis and prognosis
for the maintenance of complex systems. In Proc.
SMC’09, IEEE International Conference on Sys-
tems, Man, and Cybernetics, 2009.

(Struss, 1992) Peter Struss. What’s in SD?: Towards
a theory of modeling for diagnosis, pages 419-449.
Morgan Kaufmann Publishers Inc., 1992.

(Tarski, 1936) Alfred Tarski. The concept of truth in
formalized languages. In Logic, Semantics, Meta-
mathematics, pages 152-278. Oxford University
Press, Oxford, 1936.

A SOME WORDS ON MODEL-THEORY

In this paper we use the notions of: model, isomor-
phism, extension, theory and complete theory. These
concepts are clarified hereafter. The material presented
is based on (Hodges, 1993) and (Marker, 2002).

First of all, a structure M is an object specified by:

e A (possible empty) set called the domain or uni-
verse of M written M.

e A (possible empty) set of constant elements of
M, each named by one or more constants.

e For each positive integer n, a (possible empty) set
of n-ary relations on M. Each relation is named by
one or more n-ary relation symbols.

e For each positive integer n, a (possible empty)
set of n-ary operations on M. Each operation is
named by one or more n-ary function symbols.

The signature £ of the structure M is specified
by the set of constants, relation symbols and function
symbols of M (we assume L can be read off uniquely
from the structure). We will also use the symbol L to
indicate the language generated by the signature L.

Let M and N be two L-structures with domains M
and N respectively. An £-embedding f: M — Nis a
one-to-one map f: M — N that preserves the interpreta-
tion of all the symbols of L. A bijective L-embedding
is an L-isomorphism.

Now, if M C N and the inclusion map is an £-
embedding, we say that A is an extension of M or
that M is a substructure of V.

The language £ consists of formulas, that is, strings
of symbols built using rules of grammar, the symbols
of the signature £, variable symbols, the equality sym-
bol, the boolean connectives, quantifiers and parenthe-
ses. Moreover, a theory is simply a set of sentences.

To make a long story short, if M is a L-structure,
then each L-sentence ¢ is either true or false in M.
If ¢ is true in M, M is said to be a model of ¢ and
noted as M |= . Moreover, given a theory T, M is
said to be a model of T if M = ¢ for all sentences ¢ €
T. This is written as M = T. A theory with at least a
model is said to be satisfiable.

Given a theory T and a sentence ¢, ¢ is said to be
a logical consequence of T, written T |= ¢, if M = ¢
whenever M = T.

Finally, a theory T is said to be complete iff for every
sentence ¢ in the language £, either T = por T = -



