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ABSTRACT

Tools for automated fault localization usually
generate too many bug candidates depending on
the underlying technique. Hence, further infor-
mation is required in order to further restrict the
bug candidates. Approaches that rely on specific
knowledge of the program to be debugged like
variable values at specific position in the source
code, are not easily accessible for users especially
in case of software maintenance. In order to avoid
this problem we suggest to integrate testing for
restricting the number of bug candidates. In par-
ticular, we suggest to compute possible correc-
tions of the program and from this, distinguishing
test cases. A distinguishing test case is a test that
reveals different output values for two given pro-
gram variants, given the same input values. Be-
sides the formal definitions, and algorithms we
present the first empirical results of our approach.
The use of mutations and distinguishing test cases
substantially reduces the number of bug candi-
dates.

1 INTRODUCTION
Debugging, i.e., detecting, locating, and correcting a
bug, in a program is considered a hard and time con-
suming task. This holds especially in case of software
maintenance where the programmer has little knowl-
edge of the program’s structure and behavior. Today’s
research activities mainly focus on the fault detection
part of debugging. Automated verification and test-
ing methods based on models of the system and spec-
ification knowledge have been proposed. Little effort
has been spent in automated fault localization and even
less in fault correction. There has been also no re-
search activity bringing together testing and fault lo-
calization and correction, except the fact that test cases
are used for debugging. However, to the best of our
knowledge there is no work that analyzes the impact
of test suites on the obtained debugging results.

In this paper, we contribute to the test case genera-
tion problem in order to improve the obtained results
of automated debugging based on a model of the pro-
gram. In particular we show how test cases can be gen-

erated to distinguish potential diagnosis candidates. A
potential diagnosis candidate, or diagnosis candidate
for short, is a statement that can explain why the test
cases fail. A diagnosis candidate needs not to be the
real bug. But the real bug should be included in the
list of diagnosis candidates delivered by an automated
debugger.

We now consider the following code snippet
to illustrate our combined debugging and testing
approach. We use this small program to avoid intro-
ducing too much technical overhead and to focus on
the underlying idea.

...
1. i = 2 * x;
2. j = 2 * y;
3. o1 = i + j;
4. o2 = i * i;

...

We cannot say anything about the correctness of such
a code fragment without any additional specification
knowledge. Let us assume that we also have the fol-
lowing test case specifying expected outputs for the
given inputs: x = 1, y = 2, o1 = 8, o2 =
4. Obviously, the program computes the outputs o1 =
6 and o2 = 4, which contradicts the given test case.
Therefore, we know that there is a bug in the program
and we have to localize and correct it. At this stage we
might use different approaches for computing potential
fault locations. If using the data and control dependen-
cies of the program, we might traverse the dependen-
cies from the faulty outputs to the inputs backward. In
our example, we are able to identify statements 1, 2,
and 3 as potential candidates.

A different way to locate bugs is to consider state-
ments as equations and to introduce correctness as-
sumptions. If the test case together with the assump-
tions and the equations is consistent, the assumptions
stating incorrectness of statements can be used as po-
tential diagnosis candidates. Consider for example
Statement 1 to be faulty and all other statements to be
correct. As a consequence, Statement 1 does not deter-
mine a value for variable i. However, from Statement
4 and the test case we can conclude that i has to be
2 (if assuming only positive integers). Hence, we are
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able to compute a value for o1 again, which contra-
dicts the given test case. Therefore, the assumption
that Statement 1 is a diagnosis candidate, cannot be
correct. Note that even when assuming that i might
be -2, we are able to derive a contradiction. It is also
worth noting that the described approach for generat-
ing diagnosis candidates can be fully automated.

We are able to apply this technique for making and
checking correctness assumptions for all statements
and finally obtain statements 2 and 3 as diagnosis can-
didates. For larger programs we might receive a lot
of potential diagnosis candidates and the question of
how to reduce their number becomes very important.
One solution is to ask the user about the expected value
of intermediate variables like i or j for specific test
cases. Such an approach requires more or less exe-
cuting the program stepwise. Moreover, especially in
the case of software maintenance where a programmer
is not very familiar with the program answering ques-
tions about values of intermediate variables, this can
hardly be done. Therefore, we suggest an approach
that computes test cases, which allow to distinguish
the behavior of diagnosis candidates. More specifi-
cally, we are searching for inputs that reveal a different
behavior of diagnoses candidates. Such test cases are
called distinguishing test cases (Wotawa et al., 2010).
In case no such distinguishing test case can be com-
puted, the diagnosis candidates are, from the perspec-
tive of their input output behavior, equally good.

What prevents us from applying the approach of dis-
tinguishing test cases to distinguish diagnosis candi-
dates is the fact that the fault localization approaches
only give us information about the incorrectness and
correctness of some statements but not about the cor-
rect behavior of potentially faulty statements. Hence,
computing test cases is hardly possible. In order
to solve this problem we borrow the idea of muta-
tion or genetic-based debugging (Weimer et al., 2009;
Debroy and Wong, 2010). Mutants, i.e., variants of
the original program, are computed and tested against
a test suite. The mutants that pass all test cases are po-
tential diagnosis candidates. Computing mutants for
all statements and testing them against the test suite is
very time consuming and some techniques for focus-
ing on relevant parts of the program have been sug-
gested. In our case we are able to use the diagnosis
candidates for focusing on relevant parts of the pro-
gram. Hence, when finding a mutant for a diagnosis
candidate that passes all test cases, we do not only lo-
calize the bug but also state a potential correction.

For our example program we might obtain two mu-
tations m1,m2 for statements 2 and 3, e.g.: m1 =2.
j=3*y and m2 = 3. o1=i+j+2. Obviously there
are more mutations available but for illustrating the
distinguishing test cases we only use these two now. A
distinguishing test case for these mutants is x = 1,
y = 1. Mutant m1 computes the value 5 and mu-
tant m2 the value 6 for the output variable o1. If we
know the correct value of o1, we are able to distin-
guish the two mutants. From this example we conclude
that we are able to distinguish diagnosis candidates us-
ing distinguishing test cases. What remains an open
research issue is to provide empirical evidence that the
approach is feasible and provides a reduction of diag-
nosis candidates when applied to general programs.

In this paper, we introduce and discuss the ap-

1. tmp = (a + 1); // ERROR
2. if (b == 0) {
3. result = -1;

} else {
4. result = 0;
5. while (tmp > 0) {
6. result = result + 1;
7. tmp = tmp - b;

}}

Figure 1: A program for dividing two natural numbers

proach and tackle the research question regarding the
approach’s practicability with some exceptions. The
programs used for the empirical evaluation are small
programs and they mainly implement algebraic com-
putations. Moreover, we do not handle object-oriented
constructs. However, we do not claim to answer the
research question completely. We claim that the ap-
proach can be used for typical programs compris-
ing language constructs like conditionals, assignments,
and loops. The structures of the used programs are
similar to those of larger programs or at least we do not
see why there should be any big differences. Another
argument is that the approach is mainly for debugging
at the level of methods comprising a smaller amount of
statements where our approach is definitely feasible.

The paper is organized as follows. We first intro-
duce the basic definitions. These include the defini-
tion of a test case and stating the debugging problem.
Since the debugging approach is based on a model of
the program, we introduce a constraint representation
of programs that serves our purpose in the next sec-
tion. This model can be used for debugging as well as
for computing distinguishing test cases. In the section
afterwards, we introduce the diagnosis algorithm us-
ing constraints and mutations. This section is followed
by the presentation and discussion of the obtained em-
pirical results. Finally, we discuss related research and
conclude the paper.

2 BASIC DEFINITIONS

In order to be self contained we briefly introduce the
basic definitions. This includes the definition of a test
case and test suites, the debugging problem, as well
as the definition of mutations. The paper deals with
debugging based on models of programs, which are
written in a programming language. In this paper we
assume an imperative, sequential assignment language
L with syntax and semantics similar to Java ignoring
all object-oriented constructs and method calls. We
further restrict the data domain of the language to in-
tegers and booleans. In Figure 1 we state an example
program, which serves as running example. The pro-
gram implements the division of two integer numbers
where a bug is introduced in Line 1.

In order to state the debugging problem, we assume
a program Π ∈ L that does not behave as expected.
In the context of this paper such a program Π is faulty
when there exist input values from which the program
computes output values differing from the expected
values. The input and correct output values are pro-
vided to the program by means of a test case. For
defining test cases we introduce variable environments
(or environments for short). An environment is a set of
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pairs (x, v) where x is a variable and v its value. In an
environment there is only one pair for a variable. We
are now able to define test cases formally as follows:

Definition 1 (Test case) A test case for a program
Π ∈ L is a tuple (I, O) where I is the input variable
environment specifying the values of all input vari-
ables used in Π, and O the output variable environ-
ment not necessarily specifying values for all output
variables.

For example a (failing) test case for the program
from Fig. 1 is IΠ : {a = 2; b = 1} and OΠ :
{result = 2}.

A test case is a failing test case if and only if the out-
put environment computed from the program Π when
executed on input I is not consistent with the expected
environment O, i.e., when exec(Π, I) �⊇ O. Other-
wise, we say that the test case is a passing test case. If
a test case is a failing (passing) test case, we also say
that the program fails (passes) executing the test case.
For the program from Fig. 1 the test case (IΠ, OΠ) is
a failing test case. For input IΠ the program will re-
turn result = 3 which contradicts the expected output
OΠ : {result = 2}.

Definition 2 (Test suite) A test suite TS for a pro-
gram Π ∈ L is a set of test cases of Π.

A program is said to be correct with respect to TS
if and only if the program passes all test cases. Other-
wise, we say that the program is incorrect or faulty.
This definition of correctness is similar to the input
output conformance relation (IOCO) from Tretmans
(Tretmans, 1996).

We are now able to state the debugging problem.

Definition 3 (Debugging problem) Let Π ∈ L be a
program and TS its test suite. If T ∈ TS is a failing
test case of Π, then (Π, T ) is a debugging problem.

A solution to the debugging problem is the iden-
tification and correction of a part of the program re-
sponsible for the detected misbehavior. We call such
a program part an explanation. There are many ap-
proaches that are capable of returning explanations
including (Mayer et al., 2009; Weimer et al., 2009;
Mayer, 2007) and (Ceballos et al., 2006; Nica et al.,
2009) among others. In this paper, we follow the de-
bugging approach based on constraints, i.e., (Ceballos
et al., 2006; Nica et al., 2009). In particular, the ap-
proach makes use of the program’s constraint repre-
sentation to compute possible fault candidates. So, de-
bugging is reduced to solving the corresponding con-
straint satisfaction problem (CSP).

Definition 4 (Constraint Satisfaction Problem (CSP))
A constraint satisfaction problem is a tuple
(V,D,CO) where V is a set of variables de-
fined over a set of domains D connected to each other
by a set of arithmetic and boolean relations, called
constraints CO. A solution for a CSP represents a
valid instantiation of the variables V with values
from D such that none of the constraints from CO is
violated.

Note that the variables used in a CSP are not neces-
sarily variables used in a program. We discuss the rep-
resentation of programs as a CSP in the next section.
Afterwards we introduce an algorithm for computing

bug candidates from debugging problems. This algo-
rithm only states statements as potential explanations
for a failing test cases. No information regarding how
to correct the program is given. Hence, we have to
extend the approach to deliver also repair suggestions.
This is done by mutating program fragments.

In the context of our paper we define program mu-
tation as follows.

Definition 5 (Mutant) Given a program Π and a
statement SΠ ∈ Π. Further let S ′

Π be a statement that
results from SΠ when applying changes like modify-
ing the operator or a variable. We call the program
Π′, which we obtain when replacing SΠ with S′

Π , the
mutant of program Π with respect to statement SΠ.

Another important issue in the theory of program
mutation is the identification of a test case able to out-
line the semantical difference between a program and
its mutant. We call such a test case a distinguishing
test case.

Definition 6 (Distinguishing test case) Given a pro-
gram Π ∈ L and one of its mutant Π′, a distinguishing
test case for program Π and its mutant Π′ is a tuple
(I, ∅) such that for the input value I the output value
of program Π differs from the output value of program
Π′.

In the next section we discuss the conversion of pro-
grams into their corresponding constraint representa-
tion.

3 CSP REPRESENTATION OF PROGRAMS
Before converting a program Π ∈ L into its corre-
sponding constraint representation we have to apply
some intermediate transformation steps. These trans-
formations are necessary for removing its imperative
behavior, i.e., making it a declarative one, as required
by the constraint programming paradigm.

Our three step algorithm for converting a program
and encoding its debugging problem into a CSP, is as
follows:

1. Loop elimination ΠLF = LR(Π): We define
loop-elimination as a recursive function where n
is the number of iterations:

LF (while C {B}, n) ={
if C{B LF (while C {B}, n − 1)} if n = 0
ε otherwise

We replace each loop-structure by a number of
nested if-statements, i.e., number of iterations.
The number of iterations n, is given by the test
case. The two-iterations version of the program
from Figure 1 is given in Figure 2.

2. SSA conversion ΠSSA = SSA(ΠLF ): The static
single assignment (SSA) form is an intermediate
representation of a program with the property that
no two left-side variable share the same name.
This property of the SSA form allows for an easy
conversion into a CSP. It is beyond our scope to
detail the program-to-SSA conversion. However,
to be self-contained we only explain the neces-
sary rules needed for converting our running ex-
ample into its SSA representation. For more de-
tails regarding the SSA-conversion see for exam-
ple (Wotawa and Nica, 2008).

3



1. tmp = (a + 1); // ERROR
2. if (b == 0) {
3. result = -1;

} else {
4. result = 0;
5. if (tmp > 0) { // first iteration
6. result = result + 1;
7. tmp = tmp - b;
8. if (tmp > 0) { //second iteration
9. result = result + 1;
10. tmp = tmp - b;

}}}

Figure 2: Two iteration unrolling for the program from
Figure 1

1. tmp 1=(a 0+1);
2. cond 0=b 0==0;
3. result 1=-1;
4. result 2=0;
5. cond 1=(!cond 0 ∧ tmp 1>0);
6. result 3=result 2+1;
7. tmp 2=tmp 1-b 0;
8. cond 2=(cond 1 ∧ tmp 2>0);
9. result 4=(result 3+1);
10. tmp 3=tmp 2-b 0;
11. result 5=Φ(result 3,result 4,cond 2);
12. tmp 4=Φ(tmp 2,tmp 3,cond 2);
13. result 6=φ (result 2,result 5,cond 1);
14. tmp 5=Φ(tmp 1,tmp 4,cond 1);
15. result 7=Φ(result 6,result 1,cond 0);
16. tmp 6=Φ(tmp 5,tmp 1,cond 0);

Figure 3: The SSA form corresponding to the program
from Figure 2

• We convert assignments by adding an index
to a variable each time the variable is de-
fined, i.e., occurs at the left side of an assign-
ment. If a variable is re-defined, we increase
its unique index by one such that the SSA-
form property holds. The index of a refer-
enced variable, i.e., a variable occurring at
the right side of an assignment, equals to the
index of the last definition of the variable.

• We split the conversion of conditional struc-
tures into three steps: (1) the entry condition
is saved in an auxiliary variable, (2) each
assignment statement is converted following
the above rule, and (3) for each conditional
statement and variable defined in the sub-
block of the statement, we introduce an eval-
uation function

Φ(vthen, velse, cond)
def
=

{
vthen if cond = true
velse otherwise

which returns the statement conditional-exit
value, e.g., vafter = Φ(vthen, velse, cond).

The SSA representation of the program from Fig-
ure 2 is given in Figure 3.

3. Constraint conversion CON = CC(ΠSSA):
This last step of the conversion process addition-
ally to converting the SSA statements to the cor-
responding constraints, also includes the encod-
ing of the debugging problem. For this purpose
we introduce a special boolean variable AB(S)
for a statement S, that states the incorrectness
of a statement S. The constraint model of
a statement comprises corresponding constraints

or-connected with AB(S). Let S ∈ ΠSSA and
let CS be the constraint encoding statement S in
the constraint programing language. Note that
φ functions cannot be incorrect. Hence, no AB
variable is defined for statements using φ. We
model S in CON as follows:

CON ∪
{

AB(S)∨ CS if S does not contain φ
CS otherwise

Hence the CSP representation of a program Π is
given by the tuple
(VπSSA , DSSA, CON), where VπSSA represents
all variables of the SSA representation ΠSSA of
program Π, defined over the domains DSSA =
{Integer, boolean}.
Debugging of a program requires the existence
of a failing test case. This means that, in addi-
tion to the set of constraints CON , we must add
an extra set of constraint encoding a failing test
case (I, O). For all (x, v) ∈ I the constraint
x 0 = v is added to the constraint system. For all
(y, w) ∈ O the constraint y ι = w is added where
ι is the greatest index of variable y in the SSA
form. Let CONTC denote the constraints re-
sulted from converting the given test case. Then,
the CSP corresponding to the debugging problem
of a program Π is now represented by the tuple
(VπSSA , DSSA, CON ∪ CONTC)
In our implementation we model the CSP to rep-
resent the debugging problem in the language
of the MINION constraint solver (Gent et al.,
2006). MINION is an out of the box, open source
constraint solver. Its syntax requires little effort
in modeling the constraints than other constraint
solvers, e.g., it does not support different opera-
tors on the same constraint. Because of this draw-
back sometimes complex constraints have to be
split into two or three more simpler constraints.
However, because of this characteristic, MIN-
ION, unlike other constraint solver toolkits, does
not have to perform an intermediate transforma-
tion of the input constraint system.

After explaining the conversion of debugging prob-
lems into CSP, in the following section we discuss the
debugging algorithm and its extension with mutations
and distinguishing test cases.

4 DEBUGGING
The debugging approach presented in the paper com-
prises 3 steps. The first step comprises the compu-
tation of bug candidates, i.e., program statement that
might cause the revealed misbehavior, from the con-
straint representation of a program Π ∈ L. In the sec-
ond step, for each candidate a set of mutants is com-
puted that would lead to a new program passing all
previously failing test cases. If no such mutant can be
found the bug candidate is removed from the list of
potential candidates. In the third step, distinguishing
test cases are computed that allow choice between two
randomly selected bug candidates. The third step can
be executed several times to further reduce the number
of bug candidates. In this section, we explain each of
the debugging steps starting from the computation of
candidates using the CSP representation to the compu-
tation and use of distinguishing test cases.
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LetCONΠ be the constraint representation of a pro-
gram Π and CONT the constraint representation of a
failing test case T . The debugging problem formulated
as a CSP comprises CONΠ together with CONT .
Note that in CONΠ assumptions about correctness or
incorrectness of statements are given, which are rep-
resented by a variable AB assigned to each statement.
The algorithm for computing bug candidates calls the
CSP solver using the constraints and asks for a return
value of AB as a solution. The size of the solution
corresponds to the size of the bug, i.e., the number of
statements that must be changed together in order to
explain the misbehavior. We assume that single state-
ment bugs are more likely than bugs comprising more
statements. Hence, we ask the constraint solver for
smaller solutions first. If no solution of a particular
size is found, the algorithm increases the size of the so-
lutions to be searched for and iterates calling the con-
straint solver. This is done until either a solution is
found or the maximum size of a bug, which is equiva-
lent to the number of statements in Π, is reached.

Algorithm CSP Debugging (CONΠ, CONT )
Inputs: A constraint representation CONΠ of a pro-
gram Π, and a constraint representation CONT of a
failing test case T .
Outputs: A set of minimal bug candidates.

1. Let i be 1.
2. While i smaller or equal to the number of state-

ments in Π do:
(a) Call the constraint solver using CONΠ,

CONT to search for solutions regarding the
AB variables, where only i statements are
allowed simultaneously to be incorrect.

(b) If the constraint solver returns a non-empty
set of solution, then return this set as result
and leave the algorithm.

(c) Otherwise, let i be i+ 1.
3. Return the empty set as result.
For example, for the constraint system correspond-

ing to the program from Fig. 3 the constraint solver
MINION finds 5 possible explanations for the failing
test case I : (a 0 = 0, b 0 = −250), O : (result 7 =
0) in less the 0.1s. This result is very satisfactory, es-
pecially with respect to computation time. However,
further steps might be performed in order to reduce the
size of the bug candidates. For this purpose we suggest
to use mutations.

Assume a faulty program Π and a failing test case
(I, O). Let DAB be the set of bug candidates obtained
when calling CSP Debugging on the constraint rep-
resentation of Π and (I, O). The following algorithm
makes use of program mutations for further restricting
DAB .

Algorithm Filter TestCase (DAB,Π, T )
Inputs: A set of bug candidates DAB , the faulty pro-
gram Π, and the failing test case T .
Outputs: A set of mutants MutΠ of program Π.

1. Let MutΠ be the empty set.
2. For all elements d ∈ DAB do:

(a) Generate all mutants of program Π with re-
spect to the statements stored in d and store
them in VMut.

(b) Add every program Π ′ ∈ VMut passing test
case T to MutΠ.

3. Return MutΠ.

The Filter TestCase algorithm returns for the
faulty program Π a set of repair possibilities MutΠ.
Due to the usage of the debugging algorithm
CSP Debugging, we compute the repair only for the
resulting bug candidates set DAB . A mutant is part of
MutΠ, i.e., a repair, if and only if it is able to pass the
failing test case T . Hence, we expect that the num-
ber of bug candidates can be reduced. Moreover, since
mutation is only applied for bug candidates we do not
need to compute all possible mutations even in the case
when they cannot explain the revealed misbehavior.

The number of repair possibilities for a statement of
the DAB set is strongly tied to the capabilities of the
used mutation operators and the used mutation tool.
Because of this fact this part of the approach is as
good as the available capability of the used mutation
tool. Note that after applying the Filter TestCase al-
gorithm, in our experiments we were able to eliminate
between 20% and 60% of the bug candidates, because
of the inability of the suggested repair to pass the test
case. Hence, filtering based on mutations was very
successful.

The last step of our algorithm comprises the inte-
gration of distinguishing test cases to further reduce
the bug candidate set. Let MutΠ be the set of mu-
tants for a program Π obtained after applying the Fil-
ter TestCase algorithm. And let CONMutΠ be the
constraint representation of the programs from MutΠ.

Algorithm TestCase Generator MutΠ, CONMutΠ
Inputs: A set of valid repair possibilities, MutΠ, for
a faulty program Π and their constraint representation
CONMutΠ .
Outputs: A subset of MutΠ.

1. Let Tested be empty.
2. If there exists mutants Π′,Π′′ ∈ MutΠ with

(Π′,Π′′) /∈ Tested, add (Π′,Π′′) to Tested and
proceed with the algorithm. Otherwise, return
MutΠ

3. Let CONΠ′ and CONΠ′′ ∈ CONMutΠ be the
constraint representation of programs Π ′ and Π′′
respectively.

4. Let CONTC be the constraints encoding
InputΠ′ = InputΠ′′ = I ∧OutputΠ′ �=
OutputΠ′′

5. Solve the CSP: CONΠ′ ∪ CONΠ′′ ∪ CONTC
using a constraint solver.

6. Let O be the correct output for the original pro-
gram Π on input I (derived from user interaction
or specifications).

7. If OutputΠ′ = O∧OutputΠ′′ �= O, then delete
Π′′ from MutΠ.

8. If OutputΠ′′ = O∧OutputΠ′ �= O, then delete
Π′ from MutΠ.

9. If OutputΠ′ �= O∧OutputΠ′′ �= O, delete Π′
and Π′′ from MutΠ.

10. If (CSP has no solution) go to step 1.
11. For all Π′ ∈ MutΠ do:
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(a) If Π′ fails on generated test case (I, O)
delete Π′ from MutΠ.

12. Return MutΠ.

The above algorithm searches for two mutants, dis-
tinguished via a test case. The algorithm in the current
form is restricted to search for only one pair of such
mutants but can be easily changed in order to compute
several different pairs where a distinguishing test case
is available. The only disadvantage of this algorithm
is that Step 6 requires an interaction with an oracle. If
no automated oracle is available user interactions are
required and prevent the approach from being com-
pletely automated. To solve the constraint system re-
sulted at step 5 we use the MINION constraint solver.
Another particularity of this approach is that, for the
CSP to be solvable, the name of the variables of the
two mutants should differ. This is however an encod-
ing problem which can be easily overcome by encap-
sulating in the name of each variable the name of the
mutant file. When using the above approach for the
example from 2 we are able to reduce the conflict set
to one element, which was also the correct one. For
more information regarding distinguishing test cases
and their computation using MINION, we refer the in-
terested reader to (Wotawa et al., 2010).

To obtain the program’s set of mutants relative to
the set of fault candidates we rely on the JAVA mu-
tation tool MuJava (Yu-Seung Ma and Kwon., 2005).
MuJava is a Java based mutation tool, which was orig-
inally developed by Offut, Ma, and Kwon. Its main
three characteristics are:

1. Generation of mutants for a given program.

2. Analysis of the generated mutants.

3. Running of provided test cases.

Due to the new implemented add-ons, the tool sup-
ports a command line version for the mutation analysis
framework, which offers an easy integration of the tool
in the testing or debugging process.

Offutt proved that the computational cost for gener-
ating and executing a large number of mutants can be
expensive, and thus he proposed a selective mutation
operator set that is used by the MuJava tool. It works
with both types of mutation operators:

• Method level mutation operators (also called tra-
ditional), which modify the statements inside the
body of a method;

• Class level mutation operators, which try to simu-
late faults specific to the object oriented paradigm
(for example faults regarding the inheritance or
polymorphism).

For our experiments we take into account only the
traditional mutation operators. Moreover, we further
restrict the mutation operators to mutations on expres-
sions comprising deletion, replacement, and insertion
of primitive operators (arithmetic operators, relational
operators, conditional operators, etc.). Mutation by
deletion of operands or statements was proved to be
inefficient (A. J. Offutt and Zapf, 1996). Because of
the selected tools there are currently some limitations
of our implementation. If the bug is on the left side
of an assignment we cannot correct it. Another limita-
tion is with respect to constants. If the bug is due to an

initialization, MuJava is not able to generate any mu-
tants. Missing statements are another limitation of the
approach. We currently do not consider bugs because
of missing statements. Finally, there is a limitation re-
garding multiple bugs in one statement. In this case the
MuJava tool is not able to mutate more than one vari-
able or operator per statement and mutant, i.e., each
mutant contains only one change when compared with
the original program.

5 EMPIRICAL RESULTS

We tested our approach against a set of faulty pro-
grams. In each program we manually injected one sin-
gle fault. All the faults are found at the right side of the
assignment and with the exception of the tcsa03 pro-
gram all faults are functional faults. We used as test
oracle the original bug free version of each faulty pro-
gram. Using the output values of the original bug-free
program we were able to decide which of the mutants
are to be eliminated after computing the distinguishing
test cases. In the real life situation we cannot benefit
from the existence of such a program. Therefore, we
must rely on the user or a given formal specification to
determine the correct output for a given input.

The process of mutant generation, program to CSP
conversion, and the computation of the conflict set is
fully automated. However the generation of the distin-
guishing test cases was performed manually.

In order to obtain the empirical results, we applied
the following process. For each program we first per-
formed the conversion into its constraint representa-
tion. Then we computed the fault candidates. For
each fault candidate, i.e., faulty statement, we com-
puted all its possible mutants. We eliminated from
the generated set of mutants all mutants which were
not able to pass the error revealing test case. In ad-
dition, we tested the number of oracle-interactions re-
quired to obtain the minimal set of faulty components.
By an oracle-interaction we understand repeating the
TestCase Generator algorithm until no other distin-
guishing test case can be generated, i.e., each time
we applied the algorithm we asked the oracle, i.e., the
original fault free program in our case, to provide the
correct output for the generated test case.

The results of the empirical study are given in Ta-
ble 1. In most of the cases we were able to eliminate
more than half of the initial fault candidates set. Re-
ducing the diagnosis candidates by eliminating those
candidates where no mutant that passes the original
test suite can be found, is very effective. The use of
distinguishing test cases further reduces the number
of fault candidates. Thus finally, only one diagnosis
candidate remains, which was always the correct one.
When using larger programs like tcas a reduction to
one diagnosis candidate was not possible. However,
even in this case the approach lead to a reduction of
more than 60 percent regarding the computed diagno-
sis candidates.

Another factor, which influences the quality of the
obtained results, is the way of choosing the mutant
pairs for computing distinguishing test cases. There is
no way to predict if a certain pair of mutants will pro-
duce the best or worst distinguishing test case. There-
fore, we randomly selected the pair of mutants when
carrying out the empirical evaluation. For example, we
observed that after trying out all mutant pairs for the

6



DivATC V4 program the best distinguishing test case
would lead to 1 element in the conflict set contrary to
3 as given in Table 1.

It is also worth noting that computing the diagnosis
candidates and the distinguishing test cases using the
CSP solver MINION was very fast. For all examples,
the necessary time never exceeded 0.3 seconds using a
Pentium 4 Dual core 2 GHz with 4 GB of RAM com-
puter. Hence, for smaller programs or program parts
that can be separately analyzed like methods, the pro-
posed approach is feasible.

6 RELATED RESEARCH
Our work is mainly based on model-based diagnosis
(Reiter, 1987) and its application to debugging (Mayer,
2007; Mayer and Stumptner, 2003). In contrast to pre-
vious work we are not using logic-based models of
programs but a constraint representation and a gen-
eral constraint solver. The most similar work in this
respect is (Ceballos et al., 2006; Nica et al., 2009;
Wotawa and Nica, 2008). Instead of focusing only on
constraint-based debugging, we combine fault local-
ization with mutations and testing.

In (Weimer et al., 2009) and more recently (Debroy
and Wong, 2010) the authors describe the application
of mutations and genetics programming to software
debugging. In order to avoid computing too many mu-
tants the authors use focusing techniques based on de-
pendencies and spectrum-based methods respectively.
The use of mutations is similar to our work. The differ-
ence is that we are using constraint-based debugging
for focusing and integration of testing for reducing the
size of the conflict set, which, to the best of our knowl-
edge, has not been introduced before.

Other more recent approaches of debugging in-
clude delta debugging (Zeller and Hildebrandt, 2002),
spectrum-based debugging (Jones and Harrold, 2005;
Abreu et al., 2009), and slicing based methods like
(Kusumoto et al., 2002; Binkley and Harman, 2004;
Zhang et al., 2005). The focus of our approach is on
generating automated tests for distinguishing diagno-
sis candidates and thus to further make automated de-
bugging more accessible and useful in practice.

7 CONCLUSION
In this paper we presented an approach for restrict-
ing the number of potential diagnosis candidates by
providing distinguishing test cases. A distinguishing
test case for two diagnosis candidates is characterized
by a set of inputs that reveal different executions for
both diagnosis candidates such that they can be dis-
tinguished with respect to their output behavior. Just
using the distinguishing test case alone we are not
able to decide which diagnosis candidates to remove
or if we should eliminate both from the list of candi-
dates. This can only be done after consulting a test
oracle, e.g., the user or a formal specification, for the
expected output of the distinguishing test case. Can-
didates where the computed output is not equivalent
to the expected one can be eliminated. The advantage
of this approach is that only the input-output behavior
of a program is used for distinguishing diagnosis can-
didates. Moreover, the approach computes additional
test cases based on their discriminating power for dis-
tinguishing diagnosis candidates. Usually, test cases
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Table 1: Each program Name, has associated a num-
ber of iterations It, the number of variables Varπ , its
size given in lines of code LOCΠ, the number of in-
puts Inputs, number of outputs Outputs, the size of its
SSA representation given as lines of codeLOCSSA,
the number of MINION constraints |CO|, the num-
ber of MINION variables over which the constraint
system is defined VarCO, the number of fault can-
didates |Diag|, the size of the conflict set resulted af-
ter applying Filter T estCase algorithm, |Diagfilt|,
the number of calls to the TestCaseGenerator algo-
rithm, #UI to obtain the number of fault candidates
|DiagTC|.
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are generated for fulfilling coverage criteria like state-
ment coverage or branch coverage.

Beside the theoretical contribution we present first
empirical results of the proposed approach. The re-
sults indicate that the approach allows a substantial re-
duction of the diagnosis candidates. For smaller pro-
grams we were able to reduce the diagnosis candidates
to the real bug. Obviously, this was not always the
case. For larger programs more diagnosis candidates
remain. This has been somehow expected because pro-
grams cannot be usually corrected only by replacing
one statement with another. Instead the right repair ac-
tions might comprise changes at different positions in
the program. In future work we want to extend the em-
pirical study. This includes to use more and larger pro-
grams as well as example programs comprising multi-
ple faults.
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