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ABSTRACT

The complex behaviour of large discrete event
systems makes such systems difficult to diagnose.
Using decentralised techniques helps limit com-
binatorial explosion but is not sufficient. Often,
the complexity of the diagnosis is dependent on
how components in the system are connected and
the number of connections between them. We
propose to augment a decentralised junction tree-
based approach by ignoring some connections on
the system. This helps reduce the complexity,
and hence the cost, of the diagnostic reasoning
required. However accuracy of the diagnosis is
also reduced. We get around this problem by per-
forming an off-line analysis to determine which
connections can be safely ignored.

1 INTRODUCTION
The supervision of large decentralised systems, such as
telecommunication networks, web services and elec-
tricity networks, is a complex task. One malfunction
in the system can cause a series of cascading events
and alarms that are difficult to interpret and potentially
dangerous for the system. We are interested in dis-
crete event systems(Cassandras and Lafortune, 1999).
To allow for flexibility, we consider model-based di-
agnosis. In practice, this means that observations on
the system are compared to the model to determine
whether faults have occurred in the system.

The complexity of reasoning on a model increases
exponentially with respect to the number of compo-
nents in the system. This implies that it is not possible
to employ simple diagnosis techniques when the sys-
tem is made up of tens of components. To be able to
handle systems with hundreds, or even thousands, of
components, a range of techniques have been devel-
oped to get over this hurdle;e.g. (Schumannet al.,
2004),(Pencoĺe and Cordier, 2005).

∗NICTA is funded by the Australian Government as rep-
resented by theDepartment of Broadband, Communication
and the Digital Economyandthe Autralian Research Coun-
cil through the ICT Centre of Excellence program.

The components of a system are physically and log-
ically linked byconnectionsthat restrict their individ-
ual behaviours and cause them to display complex col-
lective behaviour. Thus, for a system of low connec-
tivity, it is sufficient to reason locally on small subsys-
tems, whereas for a system with high connectivity, this
does not apply, making if difficult to track the global
behaviour.

We implement a diagnosis algorithm that decom-
poses the network into a junction tree(Kan John and
Grastien, 2008). The latter representation allows us to
deduce the complexity of the diagnosis which depends
on the number of connections between components of
the system and how they are connected.

The idea presented in this paper is to ignore cer-
tain connections in the system. This makes it possi-
ble to reason on smaller subsystems such that diag-
nosis can be obtained in reasonable time. However,
this could lead to a loss of accuracy of the diagnosis.
This results from not taking into account information
from the ignored connections that could have helped
in eliminating certain diagnostic scenarios. Therefore,
we perform a prioraccuracy analysison the model to
determine which connections can be ignored without
having a negative impact on the global accuracy of the
diagnoser. In(Pencoĺe et al., 2006) only diagnosis on
subsystems is considered.

The rest of the paper is divided as follows. Notations
are presented in the next section. Diagnosis is then de-
fined and distributed approaches are presented. Diag-
nosis on a subconfiguration is defined and finally the
determination of the optimal subconfiguration is dis-
cussed.

2 PRELIMINARIES
We are interested in Discrete Event Systems (DES,
(Cassandras and Lafortune, 1999)) and we use the no-
tation of languages to model such systems and to de-
fine diagnosis.

We noteΣ a set ofsymbols(modeling events on the
system). A wordσ is a finite sequence of sets of sym-
bols s1. · · · .sn such that∀i, si ⊆ Σ, si 6= ∅. So, if
Σ = {a, b, c, d}, then{a}.{b, c}.{d}.{a} is a word on
Σ whereb and c appear simultaneously.Generally, a
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word is defined simply as a sequence of symbols; we
use an augmented notation so that we can represent the
occurrence of simultaneous events and gain more flex-
ibility to describe the main contribution of the paper
that is about the relaxation of connections. The empty
sequence is denotedε. We abuse notation and write
si ∈ σ to denote thatsi ⊆ Σ is in the sequenceσ.
w(Σ) = ((2Σ)⋆ − {∅}) is the set of words onΣ. A
languageL onΣ is a subset of wordsL ⊆ w(Σ). The
projectionoperation can be used to focus on specific
events ofΣ′ ⊆ Σ.

Definition 1 (Projection) The projection onΣ′ of a
word σ on Σ ⊇ Σ′, denotedPΣ→Σ′(σ), or simply
PΣ′(σ), is the word onΣ′ that only retains the symbols
of Σ′ and removes empty symbol sets. Formally,
PΣ→Σ′(σ) =
{

ε if σ = ε,
PΣ→Σ′(σ′) if (σ = s.σ′) ∧ (s ∩ Σ′ = ∅),
s ∩ Σ′.PΣ→Σ′(σ′) if s ∩ Σ′ 6= ∅.

The projection onΣ′ of the languageL on Σ ⊃ Σ′,
denotedPΣ→Σ′(L), is the set of words inL projected
onto Σ′: PΣ→Σ′(L) = {PΣ→Σ′(σ) | σ ∈ L}.
The inverse operation gives the set of words onΣ
whose projection onΣ′ is included in the language of
origin:P−1

Σ→Σ′(L) = {σ ∈ w(Σ) | PΣ→Σ′(σ) ∈ L}.

Synchronisation
Each local entity has its own specific language to rep-
resent its behaviour. When several entities are con-
cerned, we need tosynchronisetheir languages to gen-
erate a globally consistent language. Each language
has its own symbol set, disjoint from the symbol sets
of other languages. However, some symbols from dif-
ferent local sets could be different representations of
the same physical reality. The synchronisation oper-
ation coordinates these equivalent symbols by forc-
ing their simultaneity. Equivalent symbols on different
languages are represented by synchronous sets.

Definition 2 (Synchronous Set)Given two disjoint
sets of symbolsΣ1 andΣ2, a synchronous setS is a
set of symbol pairs coming from the two sets:S ⊆
Σ1 × Σ2.

An element〈a, b〉 ∈ S indicates thata andb are de-
scribing the same physical reality and we have to en-
sure that they are considered simultaneously.

Definition 3 (Language Synchronisation)Given
two languagesL1 on Σ1 and L2 on Σ2, and a
synchronous setS defined onΣ1 and Σ2. The
synchronous product ofL1 and L2 on S, denoted
L1

⊗

S

L2,is defined as the set of words on(Σ1 ∪ Σ2)

whose projection on each local symbol set is the local
language, and satisfies the constraint of simultaneity
introduced byS. Formally: {σ ∈ (Σ1 ∪ Σ2) |

(

∀i ∈

{1, 2}, PΣ1∪Σ2→Σi
(σ) ∈ Li

)

∧
(

∀〈a, b〉 ∈ S, ∀s ∈

σ, a ∈ s⇔ b ∈ s
)

}.

It is possible to prove that these notations preserve
the properties of commutativity and associativity of

the more traditional notations (although this would im-
ply redefining synchronous sets). For simplicity and
where it is obvious, the setS can be dropped from the
notation:L1 ⊗ L2.

We introduce one last notion here:local consis-
tency. The local consistency operation between two
languagesL1 and L2 builds the smallest language
L′
1 ⊂ L1 that maintainsL′

1⊗L2 = L1⊗L2. This op-
eration can be implemented by:L′

1 = PΣ1
(L1 ⊗ L2).
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Figure 1: Example of network

Example Figure 1 gives an example of language rep-
resented in a distributed fashion. The languageL is
defined by four languagesLA toLD that are synchro-
nised through five set of simultaneous events〈a1, b1〉
to 〈a5, b5〉; each local language is represented by an
automaton. The synchronisation of languagesLB and
LD is represented on Figure 2.

3 FAULT DIAGNOSIS IN DES

Diagnosis is the reasoning process that determines
what happened on a system from observing its be-
haviour. It helps detecting and identifying faults in a
system. We consider model-based diagnosis.

Model We suppose we have a complete model of a
systemΓ captured by a languageMod on a finite set of
eventsΣ ( i.e. Mod ⊆ w(Σ)). The set of faulty events
is denotedΣF ⊆ Σ.

Some events generate the emission of an observa-
tion. Theseobservableevents are denotedΣo ⊆ Σ.
The observations are represented by a languageObs ⊆
w(Σo). We consider there is no noise on the obser-
vations, so thatObs contains only one element that
is a sequence of observable events (see(Cordier and
Grastien, 2007)).
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Figure 2: Synchronisation ofLB andLD (we omit
curly braces around single symbols for clarity)

Diagnoser A diagnoser is an agent in charge of mon-
itoring the observations generated by a system to pro-
vide diagnosis reports. A diagnoser dedicated to a spe-
cific faultF ∈ ΣF , denoted∆F , may return one of the
three following results:

1. F-sure: the fault occurrence is asserted;

2. F-safe: the fault occurrence is disproved;

3. F-ambiguous: the fault occurrence is unknown.
By definition, the faultF is considered permanent. For
each faultF ∈ ΣF , we define an agent∆F responsible
for the detection ofF . The rest of the article focusses
on a single fault eventF and we therefore simplify the
notation∆F to∆.

Explanatory language The explanatory language is
the set of behaviours accepted by the model and con-
sistent with the observations. It can be defined as fol-
lows:

Expl= Mod ⊗Obs . (1)
From Expl, it is possible to compute the globalF -
diagnoser∆Mod associated withF : that is, for any
Obs, ∆Mod(Obs) =
{

F-sure if ∀σ ∈ Expl, ∃s ∈ σ : F ∈ s
F-safe if ∀σ ∈ Expl, ∃s ∈ σ : F /∈ s
F-ambiguous otherwise.

(2)
Whichever representation is chosen for languages

(automaton, Petri nets, etc.), diagnosis faces the prob-
lem of search-space explosion. The reasoning is expo-
nentially complex with the number of components in
the system, which makes trivial techniques impossible
to apply for systems with a few dozens components.
Distributed techniques aim at tackling this issue.

4 DISTRIBUTED APPROACH
Modern technical systems usually consist of compo-
nents that are each an individual system with sim-
ple behaviours, but interacts with other components to

produce an overall complex behaviour. We refer to the
overall system as a distributed system and model each
of its component separately. LetΓ be a distributed sys-
tem made up of a set of components:Γ = {Γ1 . . .Γn}.
Each componentΓi can be described by the language
Mod i defined on the alphabetΣi. The implicit as-
sumption of fairness is made, whereby components
cannot become silent in the long run: on an infinite
time-scale, the number of observations generated by a
given component is always infinite. Fault events are
intrinsic to a component’s physical set-up which is re-
sponsible for causing failures on the component itself
but also causing them to propagate over the system.
The occurrence of a fault of typeF is considered as
an event that can only happen on a componentΓi :
F ∈ Σi ∧ (i 6= j ⇒ F /∈ Σj). Components in a
system communicate throughconnections.

Definition 4 (Connection) A connectionKij exists be-
tween two componentsΓi andΓj if they have a phys-
ical or logical link between them that allows the ex-
change of information about the events occurring in
each of them. A synchronous setSij can be used as ab-
stract model for a connectionKij whereSij ⊆ Σi×Σj

andSij = Sji.

We make the assumption that an event can only be
shared by two components. The way in which the
components of a distributed system are connected de-
fines the globaltopologyof the system. The global
model of the system is implicitly defined by synchro-
nising the models for all components of the system
(Mod = Mod1⊗ · · · ⊗ Modn), hence it is unnec-
essary to calculate it explicitly. Observations on the
system can also be modeled in a decentralised fash-
ion: Obs = Obs1⊗ · · ·⊗Obsn (Cordier and Grastien,
2007).

The explanatory languageExpli on a componentΓi

is given byMod i⊗Obsi. The global explanatory lan-
guageExpl is calculated by obtaining the synchronous
product of the local languages:

Expl= (Mod1⊗ . . .⊗Modn)⊗ (Obs1⊗ . . .⊗Obsn)

= (Mod1⊗Obs1)⊗ . . .⊗ (Modn⊗Obsn)

= Expl1 ⊗ . . .⊗ Expln.

Calculating the languageExpl by synchronising all
components is often impossible if the system consists
of a large number of components.Distributedmethods
of diagnosis helps avoiding this calculation. We use
a junction-tree based implementation(Kan John and
Grastien, 2008).

Consider a graphG = 〈Γ,K〉 on the components of
systemΓ whereK is the set of all connections on the
system. A junction tree(Huang and Darwiche, 1996)
onG is a pair(J , C) whereJ is a tree andC is a func-
tion that associates each nodeN of J to a clusterof
componentsCi (see example figure 3). Moreover, for
each connection〈i, j〉, there exists a cluster containing
the nodes :{i, j} ⊆ C(N ). Finally, if two clusters of
the tree contains the same node, every cluster between
them will contain that node (see the nodeD between
the clustersCD andDB).

To obtain the diagnosis on a distributed system, it is
sufficient to calculate the local explanatory language
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ACD ABDAD

AC

CD

DB

C D

Figure 3: Junction Tree for whole system in Fig-
ure 1 (left) and same system with connections〈a1, b1〉,
〈a3, b3〉 removed (right)

of each cluster and to perform local consistency oper-
ations on the junction tree from the leaves to the root.
If the root of the tree is chosen to contain the com-
ponent on which an event occurs, the global diagnosis
of the fault is obtained using formula (2) on the local
explanatory language of the root.

This method allows us to circumvent the explicit
calculation ofExpl. However, calculating the explana-
tory language on each cluster is still necessary for each
cluster, and the complexity of the representation of this
language increases exponentially with the number of
components in the cluster. Thetree-widthof the topol-
ogy is the size of the biggest cluster of its junction tree
minus one. This value serves as ana priori estimate
of the algorithmic cost of diagnosis by this method.
Hence, if we limit the tree-width we are potentially
able to reduce the cost of diagnosis. We present in the
next section a proposed method to handle this.

5 SUB-CONFIGURATION AND ACCURACY
The effectiveness of the diagnosis algorithm using
junction trees is directly dependent on the connections
between components in the system. We therefore pro-
pose to relax some of these connections with the goal
of generating a tree on which reasoning can be carried
out more effectively.

5.1 Relaxation of connections
The relaxation of connections is formalised with sub-
topology and sub-configuration notions.

Definition 5 (Sub-topology) A sub-topologyT on a
distributed systemΓ is a subset of connectionsY ⊆ K.

A sub-topologyT defines a languageL(T) that
corresponds to the synchronisation of local languages
on the connections of the setY. We illustrate this
using the example in Figure 1. This system con-
sists of four componentsA to D and five con-
nections 〈ai, bi〉. A possible word on the system
is {F}.{e3}.{a2, b2}.{a4, b4}.{a5, b5}.{o5} (we note
that eachai is synchronised with a corresponding
bi). We now consider the sub-topology where the
connection 〈a2, b2〉 is ignored. The language of
this sub-topology contains additional words, including
{e3}.{b2}.{a4, b4}.{a5, b5}.{o5} (hereb2 appears on
its own).
Lemma 1 Words defined on a sub-topologyT ⊆
T
′ need to satisfy less constraints than those of

A B

C D

〈a1, b1〉

〈a2, b2〉

〈a3, b3〉

〈a4, b4〉

〈a5, b5〉

A B

C D

〈a1, b1〉

〈a2, b2〉

〈a3, b3〉

〈a4, b4〉

〈a5, b5〉

Figure 4: Two different sub-topologies - solid lines
represent connections under consideration and dotted
lines represent connections that are ignored

T
′: L(T′) ⊆ L(T), whereL represents either the sys-

tem model or the explanatory language.

In practice, a sub-topology can isolate components
of the system. In that case, it becomes unnecessary
to keep track of the observations of those components
since the model indicates that they are functioning in-
dependently from the other components. This is en-
compassed by the notion of a sub-configuration.

Definition 6 (Sub-configuration) A sub-configura-
tion C is a tuple ({Γp1

, . . . ,Γpm
},YC,YC) where

{Γp1
, . . . ,Γpm

} is a set of components,YC is a set of
connections between the components ofC, andYC is
the set of connections between the components ofC

that are not found inYC.

Figure 4 illustrates two different sub-topologies
from the example of Figure 1 (on the left hand side the
sub topology is{〈a2, b2〉, 〈a4, b4〉, 〈a5, b5〉} and on the
right hand side the sub-topology is{〈a2, b2〉}). The
corresponding sub-configuration on the left hand side
(resp. on the right hand side) involves the components
{A,B,C,D} (resp.{A,C}).

5.2 Diagnosis within a sub-configuration

The basic idea of this paper is to perform diagnosis
based on a model (denotedMod

′ here) that is sim-
pler than the modelMod . Table 1 represents what
can be expected by doing so. Each cell indicates the
diagnosis result of model-based diagnosis using the
original modelMod compared to the simplified model
Mod

′. The diagonal (labelsX) represents the cases
where∆Mod ′ returns the same result as the original
diagnoser∆Mod . The cell labeledA shows an accu-
racy reduction: diagnoser∆Mod can decide whether a
fault occurred while∆Mod ′ cannot. The label× in-
dicates inconsistent cases: the simplified modelMod

′

is inconsistent with the modelMod which means the
diagnoser∆Mod ′ returns inconsistent results with re-
gards to∆Mod . Regarding this table, it is better to de-
termine simplified modelsMod

′ such that diagnostic
results correspond to cells labeled byX. Cells labeled
by A are acceptable in the sense that they only betray
loss of accuracy. However, the modelMod

′ should be
chosen such that the cells labelled× are unreachable.

It is easy to demonstrate that model-based diagnosis
using, as a simplified model, a sub-topologyT (or its
equivalent sub-configurationC) falls in the acceptable
category. Indeed, as stated in 1, the generated language
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∆Mod

F-sure F-safe F-amb

∆Mod ′

F-sure X × ×
F-safe × X ×
F-amb A A X

Table 1: Comparison between diagnosis results

byT always contains the initial language, so the corre-
sponding diagnoser cannot provide inconsistent results
but in the worst case less accurate results.

5.3 Accurate diagnoser onC
We define a diagnoser∆C on a sub-configurationC to
be the diagnosis result obtained by usingC as simpli-
fied modelMod

′. ∆C is obtained by synchronising the
language defined onC, L(C), with observationObs
on the system:∆C = L(C)⊗Obs.
The challenge is now to determine a sub-configuration
C based on which the diagnoser∆C maintains the
accuracy with respect to the global diagnoser∆Mod .
Formally,
Definition 7 (Accuracy) The diagnoser∆C is said
to be accurateif for every observableσo emitted
from the system such that∆Mod(σo) = F-sure, and
for every continuing observableσ′

o of the system,
there exists a boundn ∈ N such that|σ′

o| ≥ n,
∆C(PL(C)(σo.σ

′
o)) = F-sure (see Figure 5).

Diagnoser accuracy is possible only under the as-
sumption of observability fairness in the system (see
section 4).

Figure 5: Accurate diagnoser∆C.

The main attraction of an accurate diagnoser∆C is
its ability to eventually obtain the same result, albeit
with a finite delay, as a global diagnoser∆Mod if the
fault F has occurred. In fact, as soon as a faultF
has occurred on the system,∆Mod has two possible
answers to explain the current sequenceσo of obser-
vations: either it respondsF-ambiguous or F-sure.
By the fairness property of the system,∆C also re-
sponds as soon as a new observationo is available
on C. Let σ′′

o .o be this finite continuation ofσo, if
∆Mod (σ) = F-ambiguous, there are two possible sce-
narios:

1. either the ambiguity is still present
∆Mod(σoσ

′′
o .o) = F-ambiguous, then by con-

struction,∆C(PC(σoσ
′′
o .o)) = F-ambiguous =

∆Mod(σoσ
′′
o .o);

2. or the ambiguity is no longer present
∆Mod(σoσ

′′
o .o) = F-sure and then, by wait-

ing a finite numbern of observationsσ′
o,

∆C(PC(σoσ
′′
o .oσ

′
o)) = F-sure, and therefore in

the end,∆C returns the same result as∆Mod but
by only observingC.

5.4 Characterisation of an accurate diagnoser

In order to determine whether the diagnoser∆C is ac-
curate or not for a given sub-configurationC, it is thus
sufficient to analysea priori if the sub-configurationC
contains the characteristics that are required to imple-
ment an accurate diagnoser on it. Before describing
these characteristics, some notations are introduced.

We consider a sub-configurationC =
{{Γp1

, . . . ,Γpm
},YC,YC}. We assume that the

fault F has to occur on one of the components
ΓF = Γpi

of C. We also introduce the sub-
configurationCmax = {{Γp1

, . . . ,Γpm
},YC ∪ YC, ∅}

that is associated withC in which no connection is
relaxed. Cmax therefore takes into consideration all
connections of the system that involve the compo-
nents {Γp1

, . . . ,Γpm
}. The language defining the

events generated by the sub-configurationC (resp.
Cmax) is denotedLC (resp. LCmax

). By definition,
LCmax

⊆ LC. In this section, to simplify,Σ is
constrained to the set of events ofC (and therefore
of Cmax). Among the events ofΣ we distinguish
in particular: the setΣo of observable events, the
set Σext

r of interactive events ofC associated with
external relaxed connections (i.e. a connection of the
system where only one of the components belong
to C). Finally, as it will be explained later on, the
characterisation of an accurate diagnoser relies on the
notion oftracesandobservable traces.

Definition 8 (Trace) Let F ∈ Σ be a fault andC a
sub-configuration, the set oftracesof F in C is the
language :

T (C, F ) = {τ = s1....sm ∈ LC, ∃si, F ∈ si}

with si ⊆ Σ, i ∈ {1, · · · ,m} .

Similarly, the complement ofT (C, F ) in LC (de-
notedT (C,¬F )) consists of the set of traces where the
faultF is not present. Figure 6 illustrates the traces as-
sociated to faultF in the sub-configuration consisting
only of the componentA of Figure 1.

Definition 9 (Observable Trace) Let F ∈ Σ be a
fault andC a sub-configuration, anobservable trace
of F in C is a sequence of observable events of the
language :

Obs(C, F ) = PΣ→Σo
(T (C, F )).

Similarly,Obs(C,¬F ) represents the set of observ-
able traces ofC whereF is not present (see Figure 6).

We first explore the reasons why the diagnoser∆C

is not accurate for a given sub-configurationC. We
then describe the necessary criteria for making∆C ac-
curate.
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Figure 6: TracesT (A,F ), T (A,¬F ) andObs(A,F ).

What are the sources of inaccuracy inC?
Let σo.o be an observable sequence of the system
which ends in the observable evento from C and for
which the global diagnoser returns∆Mod (σo.o) =
F-sure. Let σ′

o.o be the observable projection of
σo.o on C. Firstly, the answer∆C to the obser-
vation σ′

o.o can only beF-sure or F-ambiguous as
σ′
o.o has to be an observable trace ofF in C. Sec-

ondly, if ∆C(σ
′
o.o) = F-sure, there is no accuracy

problem. There only remains the problematic case
of ∆C(σ

′
o.o) = F-ambiguous while ∆Mod(σo.o) =

F-sure. In this case,σ′
o.o is an ambiguous observable

trace (σ′
o.o ∈ Obs(C, F ) ∩Obs(C,¬F )) and this am-

biguity is always due to the following situations.

1. The set of components ofC are not sufficiently
observable locally and only observations emitted
from components external toC can eliminate the
ambiguity (this problem is intrinsic toCmax).

2. There are too many relaxed connections inC. The
diagnosis is ambiguous because∆C assumes the
existence of behaviours that are not possible in
Cmax.

The difficulty now lies in determining a criterion on
the configurationC that guarantees that, if the diag-
nosis of∆C is ambiguous then that of∆Mod also is.
That criterion must guarantee that none of the two sit-
uations above hold in the sub-configurationC. As the
first situation is intrinsic toCmax and the second is due
to relaxation of connections, we first determine such a
criterion onCmax sub-configurations only.

Detection criterion of the accuracy ofCmax

The sequenceσo.o, introduced above, represents an
observable sequence ofΓ and therefore there exists at
least one traceτ of Γ such thatObs(τ) = σo.o. Let
τint = PΣext

r
(τ) be the interactive trace issued fromτ

and associated to the configurationCmax, the detection
criterion depends on the following results.

Property 1 If there exists inCmax two tracesτF and
τ¬F such that :

• PΣext
r

(τF ) = PΣext
r

(τ¬F ) = τint

• PΣo
(τF ) = PΣo

(τ¬F ) = σ′
o.o

• F ∈ τF ∧ F 6∈ τ¬F

then∆Mod(σo.o) = F-ambiguous.

Proof : the result is immediate. Considering that
τF forms part of a global trace that can explainσo.o,

the traceτ¬F necessarily forms part of another global
traceσo.o (since they have the same observable and
interactive projections). Finally, there indeed exist two
global traces that explainσo.o, one containingF and
one not. 2

Property 1 describes the favourable case where
there is no accuracy problem (i.e. ∆Cmax

(σ′
o.o) =

∆Mod (σo.o) = F-ambiguous).
Property 2 If ∆Mod (σo.o) = F-sure and
∆Cmax

(σ′
o.o) = F-ambiguous then there exists

in Cmax at least two tracesτF (F ∈ τF ) and τ¬F

(F 6∈ τ¬F ) such that :
• PΣo

(τF ) = PΣo
(τ¬F ) = σ′.o ,

• ∀τ ∈ T (Cmax)|PΣo
(τ) = σ′.o ∧ PΣext

r
(τ) =

PΣext
r

(τF ) =⇒ F ∈ τ .

Proof : The first condition stems from the fact that
∆Cmax

(σ′
o.o) = F-ambiguous if and only if there

exists at least two tracesτF (F ∈ τF ) and τ¬F

(F 6∈ τ¬F ) such thatPΣo
(τF ) = PΣo

(τ¬F ) = σ′
o.o.

The second condition directly stems from the property
1 by contraposition and that allows for the fact that
∆Mod (σo.o) can beF-sure. 2

Property 2 states that accuracy problems come from
both the presence of local faulty and non-faulty traces
that emit the same observable sequence but do not in-
teract with the neighbourhood ofCmax in the same
manner (second condition of Property 2). Hence the
following result, if such a problem occurs a finite num-
ber of time, the local diagnoser ofCmax is accurate.
Property 3 For ∆Cmax

to be accurate, it is sufficient
that the set of couples(τF , τ¬F ) defined by property 2
is finite.
Proof : Consider an observable sequenceσo.o with
o emitted from Cmax such that ∆Mod(σo.o) =
F-sure and let us suppose that∆Cmax

(PΣ→Σo
(σo)) =

F-ambiguous. If ∆Cmax
is not accurate, then there

exists at least one finite suite of observable con-
tinuations σo1o1, σo1o1σo2o2 . . . with oi emitted
from Cmax such that∆Cmax

(PΣ→Σo
(σooσo1o1)) =

F-ambiguous, ∆Cmax
(PΣ→Σo

(σooσo1o1σo2o2)) =
F-ambiguous . . . hence the presence of an infinite set
of couples(τF , τ¬F ) according to property 2. 2

Detection criterion of the accuracy ofC
The difference between any configurationC and the
associated configurationCmax is the relaxation of in-
ternal connections that leads the diagnoser∆C to con-
sider a set of traces that contains the set of traces of
Cmax. The consequence in terms of accuracy is the
following. Given that∆Mod(σo.o) = F-sure, there
necessarily exists a traceτF ∈ T (Cmax,¬F ) contain-
ing F that forms part of the explanation ofσo.o as de-
scribed previously. WhereC is concerned, the diag-
noser∆C answers not only in terms of the presence or
absence of tracesτ¬F of T (Cmax,¬F ), producing the
same observations asτF , but also in terms of the traces
τ¬F of T (C,¬F ) \T (Cmax,¬F ) producing the same
observations but coming from the relaxation of internal
connections ofC. The consequence is an accuracy cri-
terion for∆C that is identical to that for a configuration
Cmax (i.e. the property 3) but relies on the following
property 4 that extends property 2.

6



21st International Workshop on Principles of Diagnosis

Property 4 If ∆Mod (σo.o) = F-sure and
∆C(σ

′
o.o) = F-ambiguous then there exists in

Cmax at least one traceτF (F ∈ τF ) and inC one
traceτ¬F (F 6∈ τ¬F ) such that :
• PΣo

(τF ) = PΣo
(τ¬F ) = σ′

o.o ,

• ∀τ ∈ T (Cmax)|PΣo
(τ) = σ′

o.o ∧ PΣext
r

(τ) =
PΣext

r
(τF ) =⇒ F ∈ τ .

5.5 Verification Algorithm
We are now ready to describe an algorithm that checks
whether∆C is accurate or not which relies on the prop-
erties described in section 5.4. The first remark is
that the diagnoser∆C is only accurate if the diagnoser
∆Cmax

is itself accurate (this comes directly from the
definition). The proposed algorithm is described in
terms of languages and successively analyses the ac-
curacy of∆Cmax

, then of∆C. By consecutive opera-
tions of intersection and projection of languages, the
algorithm eliminates the traces that do not lead to a
problem of accuracy and retains at the end only traces
that present problems. If this number of traces is finite,
we conclude that∆C is accurate. As stated by proper-
ties 2-4, only interactive eventsΣext

r and observable
eventsΣo come into consideration in the verification
of accuracy. The other type of events are abstracted
by projection of tracesT (F ) andT (¬F ) (lines 2–3).
With lines 4–5, the objective is to calculate the sources
of ambiguity that do not present a problem of accuracy
(see property 1), by the intersectionT (F ) ∩ T (¬F )
and are thus eliminated fromT ′(F ). Then, the algo-
rithm checks that there does not exist in the remaining
traces ofT ′(F ) an infinite set of traces (loop detection)
whose observable projection is also the same as that of
traces coming fromT (¬F ) (line 6). To this end, we
calculate the set of observable projections common to
T (F ) andT (¬F ) and by inverse projection find the
traces ofT ′(F ) to preserve. Finally, ifT ′(F ) is finite
(lignes 7–11) then property 3 is verified and∆Cmax

is accurate. It is sufficient to iterate through the pro-
cess (lines 12–20) to deal with the non-faulty traces
of LC(¬F ) \ LCmax

(¬F ) and compare them with the
faulty traces ofLCmax

(F ) in order to establish if the
extension of property 3 is also verified.

5.6 Illustrative Example
Going back to the example in Figure 1, ifC only
contains componentA, then C = Cmax. In this
case,∆C still returns an ambiguous result. There ex-
ists an infinite number of traces for which the fault
F has occurred and whose interactive behaviour is
different from that of traces for whichF has not
occurred (these traces being with{F}.{a3}. · · · or
{F}.{a2}. · · · ), thus property 2 is verified an in-
finite number of times. Note also that the other
traces ofF beginning with{F}.{a1}. · · · have the
same interactive and observable projection as the
traces in whichF has not occurred. These traces
are intrinsically ambiguous (see line 4 of algo-
rithm 1). We now consider the sub-configuration
C = {{A,B,C,D}, {〈a2, b2〉, 〈a4, b4〉, 〈a5, b5〉},
{〈a1, b1〉, 〈a3, b3〉}} (see Figure 4).Cmax is necessar-
ily accurate here sinceCmax is the complete system in
this simple example,Σext

r = ∅, and in this caseT ′(F )

Algorithm 1 Verification of the accuracy of∆C

1: Input : Sub-configurationC, FaultF
2: T (F )← PΣ→Σo∪Σext

r
(LCmax

(F ))
3: T (¬F )← PΣ→Σo∪Σext

r
(LCmax

(¬F ))
4: Ambiguous(F )← T (F ) ∩ T (¬F )
5: T ′(F )← T (F ) \ (Ambiguous(F ))
6: T ′(F )← T ′(F )∩

P−1
Σo∪Σext

r

(PΣo∪Σext
r

→Σo
(T (F ))∩

PΣo∪Σext
r

→Σo
(T (¬F )))

7: if T ′(F ) is finite then
8: {Property 2 does not occur indefinitely.}
9: if C = Cmax then

10: The diagnoser∆C is accurate
11: else
12: T ′(¬F )← PΣ→Σo∪Σext

r
(LC(¬F )\

LCmax
(¬F ))

13: T ′(F )← T (F ) \ (Ambiguous(F ))
14: T ′(F )← T ′(F )∩

P−1
Σo∪Σext

r

(PΣo∪Σext
r

→Σo
(T (F ))∩

PΣo∪Σext
r

→Σo
(T ′(¬F )))

15: if T ′(F ) is finite then
16: {Property 4 does not occur.}
17: The diagnoser∆C is accurate
18: else
19: Problem of inaccuracy of∆C to occur due

to relaxed internal connections
20: end if
21: end if
22: else
23: The accuracy of∆C cannot be demonstrated at

this stage
24: end if

(line 7) that results from this algorithm is empty by
construction. It remains to see if the relaxation of con-
nections{〈a1, b1〉, 〈a3, b3〉} induces an accuracy prob-
lem. It then becomes sufficient to note that the relax-
ation does not cause an increase in the number of ob-
servable traces of¬F and therefore that the remaining
setT ′(F ) is also empty (line 15). Relaxing connec-
tions {〈a1, b1〉, 〈a3, b3〉} is thus interesting as∆C is
accurate.

6 CHOOSING A SUB-CONFIGURATION

We discuss now how to choose a sub-configuration
minimizing the cost of diagnosis (defined by the tree
width) while ensuring an accurate diagnosis. A sub-
topologyT is better than another topologyT′ if the
accuracy associated withT is stronger than the accu-
racy associated withT′, or both accuracies are identi-
cal but the tree width ofT is smaller than inT′. To find
an optimal sub-topology, we have to explore the set of
sub-topologiesΥ = 2K defined as the power set of the
connectionsK in the system. The partially-ordered set
〈Υ,⊆,⊇〉 forms a lattice. The cost and the accuracy
have monotonicity properties in this lattice. Indeed, if
T ⊆ T

′, then

• sinceT′ is a sub-topology ofT, the diagnosis with
T is equal to or more accurate than the one with

7
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T
′, and

• any junction tree ofT is also a junction tree ofT′,
and the tree width ofT′ is equal to or smaller than
that ofT.

These properties allow for an efficient search inΥ. A
possible approach is to start from the physical topol-
ogy and to remove connections as long as the accuracy
is not affected. We work in a context with a huge num-
ber of components – possibly thousands – and expect
to build sub-topologies with very small tree width –
several units at most. Therefore, we recommend to
start from the empty topologyT⊥ = ∅ and incremen-
tally add connections; when an accurate sub-topology
was determined, it is possible to refine it by remov-
ing connections that were added unnecessarily. This is
illustrated Algorithm 2.

Algorithm 2 Exploration ofΥ
1: Input: Γ, F
2: T := ∅
3: while T is not accurate,do
4: Add a connection toT.
5: end while
6: while ∃c ∈ T s.t.T \ {c} is accurate,do
7: Removec in T.
8: end while
9: Return T

It is possible to improve the exploration ofΥ as fol-
lows:

• The accuracy testing may generate an explanation
for non accuracy, and indicate which connections
of K \ T are responsible for non accuracy. The
connection added line 4 may be chosen in this set
of connections.

• When the junction tree ofT is also a junction tree
for T′ ⊇ T, it is possible to test the accuracy im-
mediately onT′ since the cost associated withT
andT′ are identical.

The algorithm proposed here leads to a local opti-
mal if the accuracy testing (line 3) is correct; if the
condition for accuracy is sufficient but not necessary,
the result may be not locally optimal.

7 CONCLUSION

This article proposes an original approach to reduce
the complexity of the diagnosis of large discrete event
systems by ignoring some connections in the system.
Our work can be seen as a particular case of abstrac-
tion, similar to what is presented in(Sachenbacher and
Struss, 2005).

We note that to choose a sub-configuration minimis-
ing the cost of diagnosis, we do not put a bound on the
delay required for the sub-configuration to become ac-
curate. The fairness assumption allows us to predict
that in most cases it will be a reasonable delay. A way
around the problem is to introduce a bounded delay
in the definition of accuracy. This would imply that
the sub-configuration to choose might be bigger, thus
needing a trade-off between sub-configuration size and
delay. This is part of future extensions.

Other future works include refining the cost func-
tion with additional factors such as the total number
of nodes in the junction tree, the tree shape, the pro-
portion of observable events in nodes, the longest line
in the tree, etc. The accuracy criterion could also be
improved, with the Boolean result replaced by a real
value that could allow for a trade-off between accu-
racy and cost. Another interesting improvement is to
consider several faults. Each fault can be diagnosed
by a junction tree, but those trees may include identi-
cal nodes. The question is then how to combine these
trees.
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(Pencoĺe and Cordier, 2005) Y. Pencoĺe and M.-O.
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