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ABSTRACT
Model based diagnosis of large continuous dy-
namic systems requiring quantitative simulation
has a high computational cost, which can be re-
duced by distributing the computation. Distribu-
tion can be obtained partitioning the original di-
agnosis problem into the analysis of simpler sub-
problems. In this work, Possible Conflicts are
used to partition a system because they provide
a systematic way to decompose a system. How-
ever, a requirement of any decomposition method
is that the resulting subsystems are observable.
This paper focuses on structural observability, a
powerful concept because it allows analyzing the
observability of a system in terms of its config-
uration, i.e., independently of system parameter
values. However, the literature provides differ-
ent definitions of structural observability, adapted
to different modeling formalisms: equations, bi-
partite graphs and bond graphs. This paper shows
that definitions for these formalisms are equiv-
alent. The three tank system benchmark and a
spring-mass system are used to illustrate the def-
initions and their equivalence. Then, it will be
applied through Possible Conflicts to build inde-
pendent subsystems that can be used for monitor-
ing and diagnosis.

1 INTRODUCTION
Model-based diagnosis provides a formal framework
for systematic design, analysis, and implementation of
system diagnosers. However, model based diagnosis
of large continuous dynamic systems using quantita-
tive models has a high computational cost. A sensible
approach to reduce this complexity is distributing the
computation to achieve efficiency and to develop prac-
tical diagnosers. Distributing the computation requires
partitioning of the diagnosis problem so that analysis
of the original system can be performed by analysis of
its subsystems. However, subsystems interact, there-
fore, the computational savings obtained by decom-
position may be overwhelmed by the communication
overhead needed to generate consistent global results.

Therefore, the goal is to create partitions which mini-
mize the communication between subsystems.

(Roychoudhury et al., 2009) have proposed an ap-
proach to obtain factored Dynamic Bayesian Networks
(DBNs) to avoid simulation of the DBN of the whole
system. Another factoring proposal based on Possible
Conflicts( PCs) (Pulido and Alonso-Gonzalez, 2004)
is presented in (Alonso-Gonzalez et al., 2010).

The idea of decomposing a system using conflicts
like structures was first exploited by (Williams and
Millar, 1998), which introduced the concept of dis-
sent. A dissent is a minimal subsystem with analyti-
cal redundancy and it is, conceptually, equivalent to a
PC. Dissents were originally proposed for parameter
estimation using reduced models. PCs have also been
used for system decomposition in the context of fault
identification, to perform parameter estimation (Bre-
gon et al., 2009a) and to generate ensembles of clas-
sifiers based on system structure (Alonso-Gonzalez et
al., 2008). The advantage of using PCs for systems
decomposition is that they provide a systematic way
to create a unique decomposition of a dynamic system
into independent components.

As discussed earlier, a first issue to ensure effec-
tiveness of the decomposition is to establish the ob-
servability of each component and the independence
between the subsystems to avoid computational over-
head. A further advantage of independent components
is that it can form the basis for independent diagnosers.

Given that the structural notion of observability is
more general than the traditional definition (Ogata,
2001), we adopt this approach to establish the observ-
ability of the decomposed subsystems. Structural ob-
servability, has been defined for bi-partite graph rep-
resentations by (Blanke et al., 2006; Staroswiecki,
2007), and for Bond Graphs (BGs) (Samantaray and
Bouamama, 2008), by (Sueur and Dauphin-Tanguy,
1991). Structural observability is more general be-
cause it is independent of parameter values, i.e, it holds
for a configuration and not a particular set of parame-
ter values. Our focus in structural observability is also
due to the fact that we are interested in structural ap-
proaches to system decomposition, like PCs.

Additionally, (Sueur and Dauphin-Tanguy, 1991)
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compares definition of structural observability in bond
graphs with the definition of observability in state
space formulation (Ogata, 2001), showing their equiv-
alence, so we want to check whether the definitions of
(Blanke et al., 2006; Staroswiecki, 2007) are equiva-
lent to the Sueur and Dauphin-Tanguy definition. If
this were the case, then we can show that different
approaches used in different modeling formulations
are equivalent. Moreover, the observability properties
hold for different representations of a system model
(e.g., equations, bi-partite graphs, and bond graphs).

This paper studies the notion of observability for
dynamic systems, and then applies the observability
principle through PCs to build independent subsystems
that can be used for monitoring and diagnosis. The
rest of the paper is organized as follows. Section 2 ex-
plains the general definition of structural observability
(Blanke et al., 2006; Staroswiecki, 2007). A running
example, the standard three tank system benchmark, is
also presented here to clarify and explain every defi-
nition used by the different approaches. In section 3
the definition of structural observability from the point
of view of the BG modeling is presented. Section 4
discusses Possible Conflicts’ (PCs) structural observ-
ability. In section 5 we explain the spring-mass system
as a case study. Section 6 shows the discussion and the
conclusions related with this piece of work.

2 STRUCTURAL OBSERVABILITY.
GENERAL DEFINITION

A general method to check the structural observabil-
ity for a dynamic system is to represent its model as a
bi-partite graph, with two sets of vertices (C of con-
straints and Z of variables) and a set of edges that
join nodes in C to nodes in Z. Bi-partite graphs are
undirected graphs which can be interpreted as ’All the
variables and parameters connected with a constraint
vertex have to satisfy the equation or rule this vertex
represents’.

A bi-partite graph can be expressed as an incidence
matrix, also named in some cases biadjacency ma-
trix, which rows and columns are the set of constraints
and variables respectively. Every edge (ci, zj) is repre-
sented by a ’1’ in the intersection of row ci and column
zj .

A subsystem is defined by a set of constraints to-
gether with the set of variables that occur in these con-
straints. The subgraph related with a subsystem is its
structure.

The set of variables can be divided in two subsets:
(1) known variables (their values are known or they
are measured) and (2) unknown variables (they are
not directly measured but there might exist ways in
which their value can be computed from the values of
other known variables.). Following the same division,
we have two types of constraints: (1) constraints that
only link known variables, and (2) constraints that in-
clude at least one unknown variable.

A matching in a bi-partite graph is a causal assign-
ment which associates unknown system variables with
the system constraint from which they can be calcu-
lated. Unknown variables that cannot be matched can-
not be calculated and the ones which can be matched
with several constraints can be determined in different

ways (redundancy).
A matching is a subset of edges such that any of

two edges have no common node (neither a constraint
nor a variable).

A matching is called maximal when no edge can be
added without violating the constraint of no common
nodes (any of two edges have no common node).

A matching can also be complete respect to the
variables, in case that each variable belongs to one
edge, or respect to the constraints, in case that each
constraint belongs to one edge. It is not guaranteed that
a complete matching exists, either to the constraints or
to the unknown variables.

A matching can be represented in the incidence ma-
trix by selecting at most one ’1’ in each row and each
column. We will show later how to check the structural
observability of a system using the incidence matrix.

A graph is over-constrained if there is a complete
matching on the variables but not on the constraints.
It is called just-constrained if there is a complete
matching on the variables and on the constraints. And
finally, it is under-constrained if there is a complete
matching on the constraints but not on the variables.

In this context a system is structurally observable
(Blanke et al., 2006; Staroswiecki, 2007) if there ex-
ists a complete matching on the unknown variables in
the bi-partite graph which represents its structure. In
a more formal way, it can be said that a necessary and
sufficient condition for a system to be structurally ob-
servable is that, under derivative causality:

1. All the unknown variables are reachable from the
known ones.

2. The over-constrained and the just-constrained
subsystems are causal.

3. The under-constrained subsystem is empty.
Basically, the first point of the formal definition is

the same as saying that the behaviour of the system is
reflected on the behaviour of the known variables, if an
unknown variable cannot be reached from the known
ones, its value cannot be calculated, so the behaviour
of the system will not be linked to the behaviour of the
known variables. The other two conditions mean that
all the subsystems we can get from the whole system
have a causal relation between its variables and we can
also match each variable with a different constraint or
equation to get a complete matching on the variables.

2.1 Running example
To facilitate the comprehension of the previous defi-
nition we will provide a short example (see Figure 1)
which will be also used further in this paper.

The equations to define the system in Figure 1 are
Eq. 1 to Eq. 12:

ḣ1(t) = Fin(t)− F12(t) (1)
ḣ2(t) = F12(t)− F23(t) (2)
ḣ3(t) = F23(t)− Fout(t) (3)
Fin(t) = input flow (4)

F12(t) = R12 · sign(h1(t)− h2(t)) ·
√
|h1(t)− h2(t)| (5)

F23(t) = R23 · sign(h2(t)− h3(t)) ·
√
|h2(t)− h3(t)| (6)

Fout(t) = Rout ·
√
h3(t) (7)
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Figure 1: Three tanks system with two measurements
(pressures).

p1(t) = h1(t) · ρ · g (8)

p3(t) = h3(t) · ρ · g (9)

ḣ1(t) = dh1(t)/dt (10)

ḣ2(t) = dh2(t)/dt (11)

ḣ3(t) = dh3(t)/dt (12)

Equations 1, 2 and 3 are the mass balance equations
(in the BG, they will be the state transition model).
Equation 4 is the input flow, it is a known variable.
Equations 5, 6 and 7 are the equations to get the values
of the flows between tanks and the output flow. Equa-
tions 8 and 9 are the observational model. Equations
10, 11 and 12 are introduced to show that the variables
ḣ1(t) , ḣ2(t) and ḣ3(t) are the derivatives of h1(t), h2(t)

and h3(t). So, the known variables in this system are
the input flow and the two pressures.

Bond Graphs are a graphical method to model the
energy transfer in the system using efforts and flows,
which are associated with each bond. The system in
Figure 1 can be modeled as the BG in Figure 2. From
the BG, it can be derived automatically the Temporal
Causal Graph (TCG) (Mosterman and Biswas, 1999)
in Figure 3, which shows the relations between efforts
and flows in the BG.

Figure 2: Bond graph for the system in Figure 1.

To apply the previous definition of structural observ-
ability to the system in Figure 1 we have to build the
incidence matrix. In Table 1 there is that incidence
matrix and it also contains a complete matching on the
unknown variables. The matching has been found us-
ing one of the algorithms described in (Blanke et al.,
2006). Regarding to the definition explained previ-
ously in this section, the system in Figure 1 is struc-
turally observable.

Figure 3: Temporal causal graph for the system in Fig-
ure 1 derived from the BG in Figure 2.

Table 1: Incidence matrix of the system in Figure 1
with a complete matching on the unknown variables.

Finp1p3 F12 F23 Fout h1 ḣ1 h2 ḣ2 h3 ḣ3

1 1 1 1
2 1 1 1
3 1 1 1
5 1 1 1
6 1 1 1
7 1 1
8 1 1
9 1 1
10 1 1
11 1 1
12 1 1

3 STRUCTURAL OBSERVABILITY IN BOND
GRAPH MODELLING

The observability of a system using a state space ap-
proach can be checked with the rank of the observ-
ability matrix (Ogata, 2001) but it depends on the
value of the parameters, which is not robust enough
to measure the full-state observability. (Sueur and
Dauphin-Tanguy, 1991; Samantaray and Bouamama,
2008) have proposed extensions to determine system
observability analysing the system bond graph model.
We discuss this approach in this section, and then
demonstrate its applicability to the running example
presented in Figure 1. We follow this up by a compar-
ison of the two approaches.

A BG is structurally observable if it fulfills two
conditions (Sueur and Dauphin-Tanguy, 1991; Saman-
taray and Bouamama, 2008):

• Attainability/reachability condition: every stor-
age element (I and C) in the bond graph model
with preferred integral causality must have at
least one causal path to a sensor (De or Df ele-
ment).

• Inverted reachability condition: every integrally
causalled storage element (I and C) in the bond
graph model can be assigned derivative causal-
ity and produce a valid causal assignment for the
entire bond graph. If necessary, some sensor ele-
ments (De or Df) may be dualized to achieve the
valid assignment.
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So, to apply the previous definition of structural ob-
servability, we can look at the TCG in Figure 3 where
f1 is the input flow and the state variables are e2, e6
and e10. Checking the BG in Figure 2, the dynamical
elements are the three capacitances (C1, C2 and C3).

We have to look for a causal path in the TCG from
each state variables to a detector to check the attain-
ability/reachability condition. e2 and e10 are directly
measured, so we need to find a path from e6 to a de-
tector. The path from e6 to the detector e2 is marked in
bold in Figure 4.

Figure 4: Temporal causal graph for the system in Fig-
ure 1 derived from the BG in Figure 2 with a bold path
between the state variable e6 and the detector in e2.

The second condition, i.e., the inverted reachabil-
ity, is illustrated in Figure 5. The BG with the new
valid causal assignment using derivative causality in
the storage elements, implies that the system in Figure
1 is structurally observable.

Figure 5: Bond graph for the system in Figure 1 with
derivative causality in the integrally causalled storage
elements. There is a valid causal assigment.

Using the running example we will show the equiva-
lence between the two previous definitions. To do that,
we will start looking for the structure of the system
(Figure 1) represented as matrices equations:

Ẋ = AX +BU

Y = CX +DU

The matrix [
A B

C D

]
is the adjacency matrix of the system. With this ma-

trix it can be checked the observability as well as other
characteristics of the system.

When the system is represented as a bond graph
(Figure 2), there is a block diagram of its junc-
tion structure (Figure 6) and also an equation (Eq.
(13)) which represents the bond graph’s block diagram
(Sueur and Dauphin-Tanguy, 1991).

Figure 6: Block diagram of the junction structure of a
linear bond graph model.

 Ẋi

Din

Y

 =

S11S12S13S14

S21 0 S23S24

S31 0 S33S34



Zi

Ẋd

Dout

U

 (13)

Where the state vector Ẋi has the energy variables
in integral causality, Ẋd is the vector for the elements
in derivative causality and all the components follow
the laws in Eqs. 14.


Dout = LDin

Zi = FiXi

Zd = FdXd

with L, Fi and Fd diagonal matrices.

(14)
Using the previous information (Eqs. (13) and (14))

we can derive the system equation and how we can
calculate matrices A, B, C and D (Eq. (15))

Ẋi = AXi +BU

A = [I + S12F
−1
d St

12Fi]
−1[S11 + S13L(I − S23L)−1S21]Fi

B = [I + S12F
−1
d St

12Fi]
−1[S14 + S13L(I − S23L)−1S24]

Y = CXi +DU

C = [S31 + S33L(I − S23L)−1S21]Fi

D = [S34 + S33L(I − S23L)−1S24]
(15)

The junction structure matrix for the system in Fig-
ure 2 is in Eq. (16).



ė2
ė6
ė10
e4
e8
e12
e2
e10


=



0 0 0 −1 0 0 1

0 0 0 1 −1 0 0
0 0 0 0 1 −1 0

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0
0 0 1 0 0 0 0

1 0 0 0 0 0 0
0 0 1 0 0 0 0





e2
e6
e10
f4
f8
f12
f1


(16)

Matrices L and Fi are the ones in Eq. (17).
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L =

1/R12 0 0

0 1/R23 0
0 0 1/R3


Fi =

1/C1 0 0

0 1/C2 0
0 0 1/C3

 (17)

We can work out matrices A, B, C and D to get Eqs.
(18) and (19).

 ė2ė6
ė10

 = . . .

=

−
1

C1R12

1
C1R12

0
1

C2R12
−( 1

C2R12
+ 1

C2R23
) 1

C2R23
0 1

C3R23
−( 1

C3R23
+ 1

C3R3
)

 ·

·

 e2e6
e10

+


1

C1
0

0

 f1
(18)

[
e2
e10

]
=

[
1 0 0

0 0 1

] e2
e6
e10

+

[
0

0

]
f1 (19)

We can write matrix in 16 with the same shape of an
incidence matrix: Ẋi and Zi are the states variables (the
unknown), Y are the sensors (known variables) and U
is the input (known variable). The incidence matrix is
the one in Table 2.

Table 2: Incidence matrix derived from the structure
matrix (16) of the bond graph in Figure 2.

e2e10f1 e2 ė2 e6 ė6 e10 ė10
1 1 1
2 1
3 1
4 1 1
5 1 1
6 1
7 1 1
8 1 1

According to (Sueur and Dauphin-Tanguy, 1991)
the system is structurally observable, because there is
a causal path from each state variable to a detector.
e2 and e10 are measured, and it is represented in rela-
tions 7 and 8 from Table 2. e6 has a path to e2 and
this is relation 4 on Table 2. Then the matrix reflects
(rows 4, 7 and 8) the definition of structural observabil-
ity in (Sueur and Dauphin-Tanguy, 1991), each causal
path is reflected in a constraint. It has also a com-
plete matching on the unknown variables (definition
in (Blanke et al., 2006; Staroswiecki, 2007)).

Looking at both definitions it can be said that the
causal paths which might exist to have a structurally
observable system are equations or relations which ap-
pears in the matrix representing the junction structure
of the bond graph.

Taking this into account, the three conditions in sec-
tion 2 ((Blanke et al., 2006; Staroswiecki, 2007)) can
be matched with the definition in section 3 ((Sueur
and Dauphin-Tanguy, 1991)). The first one is the
same as having a path from the known variables to
the unknown ones under derivative causality. The sec-
ond and the third conditions in (Blanke et al., 2006;
Staroswiecki, 2007) means that all the subsystems we
can get from the whole system have a causal relation
between its variables and we can match each variable
with a different constraint or equation to get a com-
plete matching on the variables. Talking about the def-
inition in (Sueur and Dauphin-Tanguy, 1991), it de-
mands a causal path, so the relation between variable
must be causal and each path is a different constraint
(as it has been seen above), so each unknown variable
is matched with a different constraint.

4 POSSIBLE CONFLICTS AND
STRUCTURAL OBSERVABILITY

Possible Conflicts (Pulido and Alonso-Gonzalez,
2004) is a structural based compilation technique
which facilitates on line Consistency Based Diagnosis
(Reiter, 1987) of dynamic systems.

PCs are minimal over-constrained sets of equations
that have analytical redundancy. Moreover, they have
associated a causal assignment, which we will exploit
to show that PCs are structurally observable according
to (Blanke et al., 2006; Staroswiecki, 2007) definition.

In the state space formalism, computation of PCs
can be realized in three steps.

The first one represents the system as an hyper-
graph, HSD = {V,R}, where V is the set of variables
of the system and R = {r1, r2, . . . , rm} is a family of
sub-sets in V , where each rk represents a constraint in
the model.

The second step looks for minimal over-constrained
subsystems, call Minimal Evaluation Chains (MEC),
Hec = {Vec, Rec}, where Vec ⊆ V , Rec ⊆ R. Evaluation
chains are necessary conditions for a PC to exits. Ad-
ditionally, each MEC identifies, by definition, a sub-
system of HSD.

In the third step, extra knowledge is added to as-
sure that a MEC, Hec = {Vec, Rec}, may be solved
using local propagation criteria. When this is possi-
ble, a Minimal Evaluation Model (MEM) is defined,
Hmem = {Vmem, Rmem}, with Vmem = Vec and Rmem =
{r1k1

, r2k2
, . . . , rmkm

}. riki
is a casual constraint ob-

tained assigning a causality to ri ∈ Rec. The set of
relations of a MEM is called possible conflict.

PCs method find every MEC that has a globally
valid causal assignment, that is, a MEM . Hence PCs
induce a unique decomposition of the system model
and can be used to systematically decompose a sys-
tem.

The three tanks system in Figure 1 has two possible
conflicts, one of them is shown in Figure 7.

In textual notation, the MEM1 in Fig-
ure 7 is given by MEM1 = {VMEM , RMEM}
where VMEM is the set of variables in the PC
(VMEM =

{
ḣ1, ḣ2, h1, h2, h3, Fin, F12, F23, p1, p3

}
) and

RMEM is the set of relations in the PC (RMEM =

{ec11, ec21, ec51, ec61, ec82, ec92, ec102, ec112}). Each
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Figure 7: MEM1 of PC 1 of system in Figure 1.

relation in RMEM is defined as the variables appearing
in the equation with a causal assignment, for instance:

ec11 =< ḣ1 ← Fin, F12 >

ec92 =< h3 ← p3 >

Each relation of MEM1 can be written as a row in an
incidence matrix, in Table 3 there is the incidence ma-
trix of PC 1 and the shaded cells represent the causal
assignment. Those cells are a complete matching on
the unknown variables, as it has been previously de-
scribed in section 2. This complete matching on the
unknown variables, obtained from MEM1, fulfills the
definition of structural observability in (Blanke et al.,
2006; Staroswiecki, 2007). Hence PC1 is structurally
observable. Given that the same procedure can be ap-
plied to every PC, we can conclude that Possible Con-
flicts are structurally observable.

Table 3: Incidence matrix of PC in Figure 7.
Finp1p3 F12 F23 h1 ḣ1 h2 ḣ2 h3

1 (ec1) 1 1 1
2 (ec2) 1 1 1
5 (ec5) 1 1 1
6 (ec6) 1 1 1
8 (ec8) 1 1
9 (ec9) 1 1

10 (ec10) 1 1
11 (ec11) 1 1

Interesting, PCs can be derived from the TCG of the
system (Bregon et al., 2009b). In (Bregon, 2010) a
hint of their observability is also included.

5 CASE STUDY
In this section we apply the observability concepts to
the Spring-Mass system (Figure 8).

The system can be modeled as the BG in Figure 9
and we can automatically derive the TCG in Figure 10.

We are working with three sensors (see Figure 9):
two effort detectors to measure the force of each mass
and a flow detector to measure the velocity of the first
spring. The state variables of the system are e11, e12,
f5 and f9. The three sensors previously described cor-
respond to variables e11, e12 and f5, so, to check the

Figure 8: Spring mass system.

Figure 9: Bond graph for the system in Figure 8.

reachability condition we need to find a path from f9 to
a detector. Looking at the TCG in Figure 10 we can see
a causal path between f9 and e2, which is a detector, so
the first condition is fulfilled. To check the inverted
reachability condition we have inverted the causality
of the storage elements and we have gotten the causal
assigment in Figure 11.

Working with the other definition of structural ob-
servability (Blanke et al., 2006; Staroswiecki, 2007)
we have obtained the junction structure matrix for the
spring-mass system (Eq. (20)) where we can identify
the vectors in Eq. (21). In Table 4 we show the inci-
dence matrix derived from Eq. (20) with a complete
matching on the unknown variables.

Looking at Ẋi in Eq. (21) can be seen that the state
variables are ḟ11, ė5, ḟ12 and ė9 which is the same as
e11, f5, e12 and f9, the ones we have said previously.



ḟ11
ė5
ḟ12
ė9
f6
f10
e11
e12
f5


=



0 −1 0 0 1 0 1
1 0 −1 0 0 0 0

0 1 0 −1 −1 −1 0
0 0 1 0 0 0 0

1 0 −1 0 0 0 0

0 0 1 0 0 0 0
0 −1 0 0 1 0 1
0 1 0 −1 −1 −1 0

1 0 −1 0 0 0 0





f11
e5
f12
e9
e6
e10
e1


(20)

Ẋi =


ḟ11
ė5
ḟ12
ė9

Din =

[
f6
f10

]
Y =

e11e12
f5



Zi =


f11
e5
f12
e9

Dout =

[
e6
e10

]
U =

[
e1
]

(21)
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Figure 10: Temporal causal graph for the system in
Figure 8 derived from the BG in Figure 9.

From the system in Figure 8 we can derived its pos-
sible conflicts using its TCG. One of the PCs can be
derived starting in the observation e11 and going back-
wards in the TCG until reach measurements, inputs or
variables which have already been visited. In Figure
10 there is the possible conflict 1 derived as it has been
explained before.

The PC1 (Figure 12) can also be written as an inci-
dence matrix, in this case, we have the matrix in Table
5 (it is a submatrix of the matrix in Table 4, the in-
cidence matriz for the complete system). In shaded
cells it is highlighted a complete matching on the un-
known variables to proof the structural observability of
the system.

Figure 11: Bond graph for the system in Figure 8 with
derivative causality in the integrally causalled storage
elements (C and I). There is a valid causal assigment.

Table 4: Incidence matrix derived from the structure
matrix (20) of the bond graph in Figure 9.

e11e12f5e1 f11 ḟ11 e5 ė5 f12 ḟ12 e9 ė9
1 1 1 1
2 1 1 1
3 1 1 1
4 1 1
5 1 1
6 1
7 1 1 1
8 1 1 1
9 1 1 1

Figure 12: Possible Conflict 1 of the system in Figure
8 derived from the TCG in Figure 10.

6 DISCUSSION AND CONCLUSIONS

This work provides a deep analysis with different def-
initions of structural observability. These definitions
has been applied to two systems, the standard three
tank system benchmark that allows to easily illustrate
the concepts, and a spring mass system, a more general
system because it includes capacitance and inductance
elements.

The equivalence of the definitions by (Blanke et al.,
2006; Staroswiecki, 2007) and the definition by (Sueur
and Dauphin-Tanguy, 1991) has been proved showing
that the structural requirements of each of them im-
plies that the system satisfies the requirements of the
other. This equivalence is important because it war-
ranties that, except for parameter values of a concrete
system, both definitions are equivalent to the standard
definition of observability in the state space formula-
tion. Consequently, we can use whatever definition
adapts to our modeling formalism and we are sure that
observability property holds when we change the mod-
eling formalism. The study on structural observability
was motivated because of the need to decompose a sys-
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Table 5: Incidence matrix derived from the possible
conflict in Figure 12.

e11e12f5e1 f11 ḟ11 e5 f12
1 1 1 1
6 1
7 1 1 1
9 1 1 1

tem into observable subsystems to facilitate diagnosis
of complex systems. Decomposition looks for obtain-
ing simpler subsystems, and observability allows an
independent analysis of the subsystems. Possible Con-
flicts has been selected because they provide a system-
atic approach to system decomposition. The paper has
shown that the subsystem associated to a possible con-
flict is always observable. Hence, PCs are an adequate
tool to systematically decompose a system into observ-
able subsystem, providing the existence of at least one
possible conflict, which only depends of system struc-
ture and available observations.

This work has presented the theoretical basis to jus-
tified system decomposition with PCs. The compan-
ion work (Alonso-Gonzalez et al., 2010) shows how
PCs decomposition may be used to obtain factored
DBNs from observable subsystems. There are other
approaches to system decomposition for distribute di-
agnosis. In (Roychoudhury et al., 2009) a method
is proposed to obtain Factored DBNs based on con-
ditional independence. But observability issues need
to be considered once they have the initial factors, in
case of having unobservable factors they merge two or
more of them to get an observable one. Further work
requires comparing both approaches on a complex sys-
tem.
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