Injecting Semantics into Diagnosis of Discrete-Event Systems

Gianfranco Lamperti !, Marina Zanella !

L Dipartimento di Ingegneria dell’ Informazione, Brescia, 25123, Italy
lamperti@ing.unibs.it, zanella@ing.unibs.it

ABSTRACT

Most modern approaches to diagnosis of discrete-
event systems (DESs) are syntax-oriented. DESs
are modeled as networks of communicating au-
tomata, where each automaton defines both nor-
mal and faulty behavior of one component: the
syntax of its regular language. Faulty behav-
ior is associated with a subset of transitions (or
events) of the automaton. An evolution of the
system (conforming to the observation) is classi-
fied as faulty when it involves at least one of such
faulty transitions (or events). Consequently, the
nature of the system behavior (normal or faulty)
strictly conforms to the nature of the behavior of
its components. This paper claims that syntax-
oriented diagnosis suffers from limited expres-
siveness when applied to complex DESs. Since
a complex DES is topologically organized in a
hierarchy of subsystems, different (possibly in-
dependent) abstraction levels of diagnosis are re-
quired. To overcome the limitations of syntax-
oriented diagnosis, a new approach is proposed,
based on semantics. A set of semantic rules is
specified on a semantic domain (the set of sub-
systems relevant to diagnosis). Each rule defines
the faulty behavior of a subsystem, possibly de-
pending on the behavior of other subsystems. The
diagnostic output is a set of candidate diagnoses,
which account for the faults of every subsystem
in the semantic domain.

1 INTRODUCTION

Most modern approaches to diagnosis of discrete-
event systems (DESs) stem from the pioneer work
of (Sampath et al., 1996). Basically, the diagnos-
tic approach is to model the DES as a network of
communicating automata, with each automaton rep-
resenting the behavior of one component. The syn-
chronous composition of these automata gives rise to
the system model (and, eventually, to the diagnoser)
which guides the diagnosis of the system based on
the given observation. A considerable amount of re-
lated research on diagnosis of DESs has been flourish-
ing since then, including (Baroni et al., 1998; 1999;
Debouk et al., 2000a; 2000b; Pencolé et al., 2001;

Lamperti and Zanella, 2003; Pencolé and Cordier,
2005). Despite the different goals of these works
(asynchronism, incrementality, decentralization, dis-
tribution, uncertainty, etc.), all of them retained the
syntax-oriented nature of diagnosis. Since the system
model is a (possibly huge) automaton, the set of pos-
sible trajectories of the system (called histories from
now on) is in fact a regular language (Aho et al., 2006)
whose syntax is specified by the communicating au-
tomata and the mode in which they are connected to
one another in the topological network of the system.
Assuming a-posteriori diagnosis, and without loss of
generality, the diagnosis problem ultimately reduces to
finding out all possible histories of the system which
are consistent with the given observation. Depending
on the approach, a candidate diagnosis is either the set
of faults associated with faulty transitions (or events)
of a history, or the history itself. At any rate, the nature
of diagnosis is syntax-oriented because it is the syntax
(communicating automata and system topology) that
defines faults at component level. The claim of this pa-
per is that associating faults with transitions (or events)
at component level is too a restrictive approach when
complex DESs are involved. This claim is consistent
with the approach in (Jéron et al., 2006), where the
notion of supervision pattern is proposed, which al-
lows for a flexible specification of the diagnosis prob-
lem, and for an elegant and uniform solution of several
classes of problems defined in the literature, including
permanent faults, intermittent faults, multiple faults,
and sequences of faults. A comparison with (Jéron et
al., 2006) is outlined in Section 5.

2 COMPLEX DISCRETE-EVENT SYSTEMS

A complex DES is organized as a hierarchy of subsys-
tems, where the root corresponds to the whole system,
leaves to components, and intermediate nodes to sub-
systems. Since in syntax-oriented diagnosis faults are
defined at component level, there is no possibility to
provide a hierarchy of diagnoses adhering to the hier-
archy of the system. Trivially, a subsystem is faulty iff
it includes a faulty component. While this approach
may be adequate for simple systems, it is not at all sat-
isfactory when applied to complex systems. In fact,
the behavior of a complex system can be regarded as

normal even when some components in it are faulty
(we call this scenario positive paradox). Conversely,
the system can be regarded as faulty even when all its
components behave normally (negative paradox).

2.1 Positive Paradox
To understand positive paradox, consider Example 1.

P,

Figure 1: Protected power transmission line.

Example 1. Shown in Fig. 1 is a simplified represen-
tation of a power transmission line. The line is pro-
tected on both sides by a redundant architecture in-
volving two protections and two breakers (for instance,
in the left-hand side these are py, p2, and by, by, re-
spectively). When a lightening strikes the line, a short
circuit may occur on the latter. The protection sys-
tem is designed to open the breakers in order to isolate
the line, which eventually causes the extinction of the
short. To this end, when detecting a short circuit, a
protection is expected to trigger both breakers to open.
A protection is faulty when either it does not detect
the short or, after the short detection, it does not trig-
ger the breakers. A breaker is faulty when, after re-
ceiving the triggering command from the protection, it
does not open. A minimal (non redundant) architec-
ture would incorporate a single protection and a sin-
gle breaker for each side of the line. Therefore, when
one of the two devices is faulty, the line cannot be iso-
lated. By contrast, in the redundant architecture shown
in Fig. 1, it suffices the normal behavior of one protec-
tion and one breaker (for each side) to guarantee the
isolation of the line. Consider the following scenario.
On the left-hand side, p; and b; are faulty, while p,
and b, are normal. On the right-hand side, py is faulty,
while ps, b3, and b4 are normal. What is the actual di-
agnosis of the system? In the syntax-based approach,
this is the set of components {p1, b1, p4}. Note how,
owing to redundancy, the behavior of the whole sys-
tem is in fact normal, as the line is isolated, despite
the faulty behavior of a number of components. Now
consider a second scenario, where the faulty compo-
nents are by, by, and p4. In this case, the left-hand
side fails to open, thereby causing the failure of the
protected line. The relevant syntax-oriented diagno-
sis is {b1, by, p4}. Albeit the two diagnoses differs in
one component only (p; vs. by), the behavior of the
protected line in the first scenario is normal, while it
is faulty in the second one. However, the given di-
agnoses do not explicitly account for such distinction.
More generally, we can consider several subsystems
of the protected line and require for each of them a
relevant diagnosis. For instance, we can define the fol-
lowing hierarchy: X' is the whole protected line, oy is
the protection hardware on the left-hand side, and o,
is the protection hardware on the right-hand side. In
a semantics-oriented setting, the diagnosis of the first

scenario is {p1, b1, p4}, while in the second scenario
the diagnosis is {h1, b2, ps,0y, X}. Comparing the
two diagnoses, we conclude that in the first scenario
three components are faulty but their misbehavior is
not propagated to higher subsystems. Instead, in the
second scenario, besides the three faulty components,
oy and X are faulty too. |

What makes semantic diagnosis possible in the pre-
vious example is some inference rule that establishes
when a (sub)system is to be considered faulty based on
the behavior of some other subsystems.

Example 2. The set of inference rules for Example 1
is the following:

og < (p1 A p2) vV (by Ab3)
or < (p3 A pa) V (b3 A by))
Y «<—oyVo,

where the head (left-hand side) of each rule is the iden-
tifier of a subsystem, while the tail (right-hand side)
is a formula of predicate calculus involving Boolean
variables whose value is true iff the corresponding sub-
system is faulty. For instance, the last rule establishes
that X' is faulty when either oy or o, is faulty. a

2.2 Negative Paradox

Now we turn our attention to the negative paradox: a
complex system can be faulty despite the normal be-
havior of all its components. A software system can be
faulty even if all its software components are bug-free.
A society can be bound to dictatorship notwithstand-
ing all its democratic institutions. This apparent para-
dox stems from complexity itself: generally speaking,
the behavior of a complex system is uncertain in na-
ture and cannot be completely foreseen based on the
behavior of its components.

Considering to the domain of formal languages (to
which regular languages belong), we can instantiate
the negative paradox borrowing the notion of seman-
tic analysis performed in compilers (Aho et al., 2006).
Typically, the syntax of a programming language is de-
fined by a context-free grammar in BNF notation.

Example 3. To specify the if-then statement of an im-
perative language, the following syntax rule can be de-
fined:

if-stat — if expression then block

where expression and block are nonterminal symbols
(language abstractions) representing a Boolean condi-
tion and a list of statements, respectively. However,
since the grammar is context-free, a sentence of the
language can be correct from the syntax viewpoint, but
faulty in its semantics. For instance, we can write:

if v then x =y

where v is a variable. If v is not of Boolean type (e.g.,
a vector of strings), the above sentence is faulty despite
its being syntactically correct. |

The point is, there exist several language constraints
that cannot be captured by the syntax. For example, it
is impossible to force the calling of a function having
the actual parameters that comply (in number, order,
and type) with the corresponding formal parameters.
Thinking of it in terms of diagnosis, we conclude that a

sentence may be faulty even if all its components (sub-
sentences) are correct on their own. In terms of the reg-
ular language of a DES, this translates to the claim that
a sentence (history) of the DES can be faulty even if
all its subsentences (histories of components) are nor-
mal. To cope with negative paradoxes of DESs, we
need to enrich the specification of the faulty behavior
by means of some fault patterns, each one relevant to
a subsystem of the semantic domain. A fault pattern is
a regular expression on the alphabet composed of the
transitions of components included in the subsystem.
Since a regular expression can be always represented
as a deterministic finite automaton, fault patterns are
in fact automata with one initial state and a set of final
states. Each path (phrase) within the automaton repre-
sents a possible way in which the subsystem may mis-
behave. Each fault pattern is associated with a fault. If
the subsystem performs a history belonging to the reg-
ular language of the fault pattern, it is considered as
faulty in terms of the associated fault. Once fault pat-
terns are defined (this is performed off-line, at system
specification), solving a diagnosis problem (based on
the actual temporal observation) requires some sort of
pattern recognition, aimed at uncovering fault patterns
in the reconstructed system behavior. Therefore, two
phases are envisaged for the diagnostic process:

e Semantic specification (off-line) : semantic rules
are defined (pattern rules and inference rules);

e Semantic analysis (on-line) : fault patterns are de-
tected and, possibly, inference rules applied for
each subsystem in the semantic domain.

Besides, after semantic specification, a preprocessing
activity is performed (off-line), which generates fur-
ther graph-based information as a surrogate of seman-
tic rules, in order to speed up the (on-line) semantic
analysis when solving the diagnosis problem.

3 DIAGNOSIS PROBLEM

When reacting, an active system performs a sequence
of transitions (history) that moves the system from the
initial state to a final state. Since a number of such
transitions are perceived to the external observer as vis-
ible labels, such a history generates a sequence of la-
bels, called the trace of the history. A diagnosis prob-
lem g for a system X is a 4-tuple

(X)) =(20.7.0.3%) 2

where X, is the initial state of the system, V the
viewer, O the observation, and 8 the semantics. The
viewer maps each component transition to a visible la-
bel, thereby establishing how transitions are visible.
However, if the label is € (null label), it means that the
transition is invisible. The observation is a directed
acyclic graph where nodes are marked by observable
labels and arcs denote (partial) temporal precedence
between nodes.

Example 4. Displayed on the left-hand side of Fig. 2
is an observation (9 composed of three nodes and two
arcs. Node w, is uncertain because it includes two la-
bels, y and €. O

An observation implicitly embodies several candi-
date traces, denoted || @ ||, each one obtained by pick-
ing up a label from each node of the observation with-
out violating the temporal constraints imposed by arcs.

Figure 2: Observation @ and index space Isp(O).

Among such candidates is the (unknown) trace actu-
ally generated by the system history. For practical rea-
sons, an index space of the observation O is gener-
ated, denoted Isp(©). This is a deterministic automa-
ton, where arcs are marked by the visible labels of O
(e aside). The regular language of Isp(O) is ||O], in
other words, the set of paths in Isp(Q) equals the set
of candidate traces of .

Example 5. Shown on the right-hand side of Fig. 2
is the index space of observation () (displayed on the
left-hand side). The initial state of Isp(O) is J¢, while
two final states (in bold) are included: I3 and J5. The
language of Isp(OQ) is {xy, xyy, yxy}, in fact, |O|. O

The semantics & is a pair (D, R), where D is the
semantic domain, that is, the set of subsystems of X
which are relevant to diagnosis, while R is the se-
quence of semantic rules. Each rule R € R is a triple
(0,P,F), where 0 € D and F is a fault. P is either
a fault pattern or a fault inference, the latter being a
formula of predicate calculus. Correspondingly, R is
either a pattern rule or an inference rule.

Figure 3: System X', including subsystems o and o05.

Example 6. Outlined in Fig. 3 is the topology of a sys-
tem X embodying components C, C,, and C3. The
system is composed of two overlapping subsystems,
o1 and 0,, sharing component C3. We define the se-
mantic domain D = {X¥, 01,03} O

3.1 Pattern Rules

In a pattern rule (o, 2,), pattern & is specified as
a regular expression on the alphabet of transitions of
components in subsystem ¢.! Since a regular expres-
sion can be represented by a deterministic automaton
with the same language, for processing reasons, J# is
translated (off-line) to the equivalent automaton.

Example 7. With reference to the semantic domain
defined in Example 6 (Fig. 3), we specify one fault
pattern for oy, one for o,, and two fault patterns for
system X'. For the sake of simplicity, we assume that

IMore precisely, the fault pattern can be specified based

on a regular definition (Aho et al., 2006), namely a list of
pairs (N, E), where N is a name and E is a regular expres-
sion possibly involving names of previous pairs.

models of components Cq, C,, and C3 involve just one
transition each, namely 7T;, T», and T3, respectively.
Consequently, the alphabet of the regular expression of
01,02, and X' are {Tl, T3}, {Tz, T3}, and {Tl, Tz, T3},
respectively. For oy, the rule is (o1, #;,a), where
Pa = T5T5T; (notice how P, involves T3 only). For
03, the rule is (03, P, b), where P, = T3T,. For
X, the rules are (X, ., c), where . = T11,T),
and (X, Py,d), where Py = T1T5T. The equivalent
deterministic automata are displayed in Fig. 4 (where
states are identified by capital letters and final states
are marked by faults).

(O o, >
Ts Ts T, T
Ts T, T, Ts
G
a b Cc T,
d

Figure 4: Fault patterns for 01, 02, and X

Once patterns are represented as deterministic au-
tomata, some preprocessing on them is worthwhile.
For each (sub)system in the semantic domain, a pat-
tern space is generated by merging all the fault pat-
terns relevant to the (sub)system. To this end, each au-
tomaton is extended by new empty transitions exiting
each non-initial state and entering each initial state of
all the automata relevant to the same (sub)system. The
purpose of this transformation is to allow the matching
of different patterns (of the same (sub)system) exploit-
ing a single automaton only. Specifically, each empty
transition entering the initial state of a pattern captures
the fact that any new pattern can start at any pattern-
matching state, as patterns are in general overlapping.

p)

Figure 5: Patterns extended with empty transitions.

Example 8. The extended patterns (automata) rele-
vant to Example 7 (Fig. 4) are displayed in Fig. 5.
Notice how empty transitions (represented by dashed

lines) are directed towards the initial states of the au-
tomata relevant to the same (sub)system. O

Since the introduction of empty transitions gives rise
to a nondeterministic automaton, the latter is eventu-
ally transformed into an equivalent deterministic au-
tomaton. According to the standard determinization
algorithm (Aho et al., 2006), each state of the de-
terministic automaton is identified by a subset of the
states of the nondeterministic automaton. The deter-
ministic automaton resulting from the determinization
of the fault patterns (extended with empty transitions)
relevant to (sub)system o is called the pattern space
of o, written Pts(o). Each final state S of Pts(o) is
marked by the faults associated with the states identi-
fying S that are final in the corresponding fault pattern.

Figure 6: Pattern spaces Pts(o1), Pts(02), and Pts(X).

Example 9. Depicted in Fig. 6 are the pattern spaces
generated from the nondeterministic automata dis-
played in Fig. 5, namely Pts(o1), Pts(02), and Pts(X).
The initial state of each pattern space is identified by
the initial states of the nondeterministic automata of
the same (sub)system. Since final states in the fault
patterns are C, F', I, and N, the relevant faults a, b, c,
and d, respectively, are associated with the final states
of the pattern spaces that include either C, F, I, or
N. For subsequent easy referencing, states of pattern
spaces are identified by numbers. |

The final goal of fault-pattern preprocessing is
building the pattern space (deterministic automaton)
relevant to the semantic domain £, namely Pts(D).
Notice that Pts(D) does not coincide with Pts(X'), as
the latter only refers to the fault patterns defined for
system X, while the former accounts for the fault pat-
terns of all the (sub)systems in the semantic domain
D of p(X). Each state S of Pts(D) is a record of
states (S1,S2,...,Sy), where each S;, i € [1..n], is
a state in the pattern space Pts(o;). The initial state
of Pts(D) is the record of initial states of the pattern
spaces Pts(o;). Denoting with «#A; the alphabet of o;,
a transition

(S1. 20, Sn) 5> (81, 85....S!)

is defined as follows (assuming i € [1..n]):

e T is the label marking (at least) one transition ex-
iting (at least) one state S; in Pts(0;).

o If T ¢ A;, then S = S; (as the state of the
pattern space Pts(o;) does not change).

T - _
o If S; — S; € Pts(0;), then S/ = S; (as the state
of the pattern space Pts(o;) changes).

T -

o If T € A; and S; — S; ¢ Pts(0;), then S/ is the

initial state of Pts(o;) (as the pattern recognition

relevant to Pts(o;) fails, thereby such recognition

must be restarted from the initial state of Pts(o;)).

A final state of Pts(D) is such that it includes at

least one state S; which is final in Pts(o;). Each final

state (S1, Sz, ..., Sp) is marked by the union of the set
of faults associated with the final states S; in Pts(o;).

Figure 7: Pattern space Pts(D).

Example 10. Shown in Fig. 7 is the pattern space
Pts(D) obtained from the pattern spaces Pts(oq),
Pts(02), and Pts(X) displayed in Fig. 6. Each state
of Pts(D) is a triple of numbers identifying a state in
Pts(01), Pts(03), and Pts(X), respectively. Accord-
ingly, the initial state is 000. Since the transitions ex-
iting the initial states of Pts(o), Pts(02), and Pts(X)
are marked by 77 and T3, we have two transitions ex-
iting the initial state of Pts(D), one marked by 73 and
the other by T5. Considering 77, the target state is
001. In fact, since 77 is in the alphabet of Pts(o) but
does not mark any transition exiting the initial state
of Pts(0y), it follows that S| is the initial state of
Pts(o1), namely 0. Then, since 77 is not in the al-
phabet of Pts(03), the target state S’ keeps being 0.
Finally, since 7} exits the initial state of Pts(X), S} is
the target state 1. Considering 73, which belongs to
the alphabet of all three pattern spaces, the target state
is 110, where 1 is the state reached in both Pts(oq)
and Pts(0,), while O is still the initial state of Prs(X),
as no transition exiting the initial state of the latter is
marked by 73. Once generated the complete pattern
space Pts(D), the final states are marked by faults as
specified above. For instance, state 220 is marked by
faults @ and b because these faults mark state 2 in pat-
tern spaces Pts(o1) and Pts(0,), respectively. |

Identifiers of states of Pts(D) will be referenced in
the reconstruction of the system behavior performed
by the semantic diagnostic engine, as formalized in
Section 4. The reconstruction of the system behav-
ior accounts for pattern-matching by associating with
each reconstructed system state a state of the pat-
tern space Pts(D). Since a state of Pts(D) indicates

the state of pattern recognition, when a final state of
Pts(D) is reached, at least one pattern is recognized.

3.2 Inference Rules

Within an inference rule (o, #, ¥), & is a formula of
predicate calculus. Fault ¥ occurs for subsystem o
iff & evaluates to true based on the logic values of
variables in J°. These variables are represented by the
identifiers of faults ¥’ relevant to other pattern and in-
ference rules. A variable " is true iff fault ¥ occurs
in the corresponding subsystem.

Example 11. With reference to the diagnostic domain
defined in Example 6 and the fault patterns in Exam-
ple 7, we specify two inference rules for system X,
namely (X, P, e) and (¥, Pr, f), as follows:

e<—aAnbnd

3)

f<«<eve

This means that fault e occurs in X if faults a, b,
and ¢ occur altogether, while fault f is generated by
the occurrence of either e or c. O

In order to prevent circularity, inference rules are
supposed to be well-formed: for each variable ¥ in-
volved in the logic formula of a rule R there exists a
rule R’ = (o, P, F) defined before R.

A dependency graph is defined as follows. Since
each inference rule R = (o, #,) defines the logic
value of fault ¥ based on the logic values of the faults
involved in formula &, there exists a dependency of ¥
on all the faults involved in &. This can be represented
by an inference graph, where nodes are faults (¥ and
those in &) while arcs are directed from each fault in
P to F. The composition of the inference graphs of
all rules gives rise to the dependency graph of the se-
mantics §, namely Dgr(§).

Example 12. Considering the inference rules defined
in (3), the corresponding dependency graph is dis-
played in Fig. 8. |

/
T

c

d

e

1
a b
Figure 8: Dependency graph.

A dependency graph can be evaluated on a set of
faults 6, denoted Eval(Dgr(¥), §), as follows:

e A leaf node ¥ is assigned a Boolean value based
on its membership to §: if ¥ € § then ¥ is as-
signed to true, otherwise it is assigned to false.

e The assignment of each intermediate node ¥ can
be performed (based on the corresponding logic
formula) iff all its child nodes have been assigned.

e When all nodes have been assigned a value, the
result of the evaluation consists of the union of §
and the set of faults assigned to true in Dgr(8§).

Example 13. With reference to the dependency graph
outlined in Fig. 8, assuming § = {a, b, d}, we have
Eval(Dgr(8),6) = {a,b,d,e, f}, where e and f are
the derived faults. O

The evaluation of Dgr(&) based on a set of faults §
allows the diagnostic engine to provide the complete
set of faults of each candidate diagnosis starting from
the faults associated with pattern rules. In fact, uncov-
ering base faults associated with patterns requires the
diagnostic engine to reconstruct the system behavior,
which is not the case for derived faults.

3.3 Diagnosis-Problem Solution

Roughly, the solution of a diagnosis problem p(X') =
(Xo,V,0,8), written A(p(L)), is a set of candidate
diagnoses, where each candidate diagnosis is a (possi-
bly empty) set of faults specified in the semantic rules.

To define A(gp (X)), we need to introduce a few no-
tation. The automaton representing all possible histo-
ries of X' starting from Xy is the behavior space of X,
denoted Bsp(X, Xy). The trace of a history i of X
(based on viewer V) is written h[y). The projection of
h on a subsystem o, written /[4], is the subsequence
of transitions of & relevant to components in o. The
regular language of a fault pattern & is denoted ||P|.

Assuming R to be the semantic rules in § and &
a fault pattern, the solution of A(gp(X)) is defined by
the following set of diagnoses:

{ 8| heBsp(X. Zo). hyy) € 0.
§=1{F | (0, P.F)eR Pc|P|PChy
§ = § U Eval(Dgr(8),8) }. 4)

In other words, a candidate diagnosis § is the evalu-
ation of the diagnostic graph Dgr(&) based on §. The
latter is the set of faults ¥, associated with a fault pat-
tern & for subsystem o, such that there exists a path
P in P that is a subsequence of the projection on o of
a history & (formally, P C hi,)) whose trace h[y] is a
candidate trace of observation .

ay (T
Ve SR oy)

Figure 9: Behavior space Bsp(X, Xy).

Example 14. We focus on p(X) = (Xyp, V, 9, §) for
system X (Fig. 3). We assume viewer V such that
transitions 77 and 7, are visible via labels x and y,
respectively, while T3 is invisible. Observation O is
displayed in Fig. 2, while semantics & is specified in
Sections 3.1 and 3.2. We also assume the behavior
space displayed in Fig. 9, where visible transitions are
associated with relevant labels. The solution of go(X)
can be determined based on (4). First, we have to se-
lect the histories in Bsp(X, Xy) whose trace is in |9,
in other words, whose trace is a path in the index space
of O (Fig. 2). Of the three traces indicated in Exam-
ple 5, only xy is consistent with Bsp(X, X). How-
ever, trace xy can be generated by an infinite set of
histories, actually, all the histories ending in state X'
(with any number of iterations of transition 73). Then,
for the same histories /1, we have to determine the set
& of faults, where each fault ¥ is associated with a
fault pattern & for subsystem o such that a path in &
is contained in the projection of 4 on ¢. By making a
pattern-matching between the behavior space in Fig. 9
and the fault patterns in Fig. 4, we come up with the
following set of faults (base diagnoses):

e §; = {c}, generated by histories 717> T3? , where
operator ‘?’ (applied to 73) means optionality.

e 8, = {a, c}, generated by histories 71 T, 75757,
whose projections on oy and o, are 71737375
and T, T5 T3 TS, respectively.

e 83 = {a, b}, generated by histories T1 T3T5T>T5,
whose projections on o1 and o, are 117373 T3*
and T3 73T, T, respectively.

e §4 = {b,d}, by histories T1 13T, T3?, whose pro-
jection on 05 is T3 T T5.

o 85 = {Cl, b, d}, by histories T] T3 T2T3 T3 T3*,
whose projections on oy and 03 are 71 73737375
and T3 T, T3 T3 T, respectively.

The actual solution of gp(X') is determined by eval-
uating the dependency graph for each base diagnosis,
as shown in Example 12, thus obtaining the following
set of candidate diagnoses:

e, fida.c, fi.4a,by,{b,d}.{a. b, d, e, f}}

where e and f are the derived faults. O

The diagnostic engine is expected to provide the
same result by associating the reconstruction of the
system behavior with the semantic information incor-
porated in the pattern space of the diagnosis problem.

4 DIAGNOSTIC ENGINE

The diagnostic engine is required to take as input a
diagnosis problem p(X) = (Xy, V, O, §) and to out-
put the relevant solution A(p(X)), as defined in (4).
In so doing, it needs to reconstruct the behavior of X
that conforms to observation (9. We assume that, as
explained in Section 3, the pattern space Pts(D) (gen-
erated off-line) is available to the engine. Since a sort
of semantic analysis (pattern matching) is to be per-
formed, the states of the reconstructed behavior will
incorporate information not only on the observation
but also on the fault patterns merged in Pts(D). This is
why we call it the semantic behavior of the diagnosis
problem, written Sbh(p(X)).

Formally, let B denote the set of states of
Bsp(X, Xy), I the set of states of Isp(O), and P the
set of states of Pts(D). The semantic behavior

Sbh(p(X)) = (S, T, So, St) &)
is a deterministic automaton such that:

e § C B x [x P is the set of states;

e Sy = (Xo, Jo, Poy) is the initial state, where Jg
the initial state of Isp(©) and Py the initial state
of Pts(D);

St = {(B, ¢, P) | J¢is final in Isp(O9)} is the set
of final states;

e T is the transition function, defined as follows.
T
B.3,P)— (B,3,P)eTiff:

T . e
— B — p'is atransition in Bsp(X, Xy),
— if T is invisible then ¥’ = J else Y’ is the

.. ~ ¢ .
target state of transition I — I in Isp(O),
where £ is the label associated with 7 in V,

T -
- if P — P is a transition in Pts(D) then
P’ = Pelse P/ = Py.

In other words, each node of Sbh(p(X)) is a triple
involving a state of the behavior space, a state of the
index space of (9, and a state of the pattern space of
D. A transition marked by 7 is defined in Sbh(p(X))
iff a transition marked by T is defined between the cor-
responding states of the behavior space. The index ¥’
of the new state differs from the index < in the old state
only if 7 is visible (according to viewer V). Finally,
considering P’ in the new state, two cases are possible:
either there exists a transition exiting P in Pts(D) and
marked by T or there does not. If it exists, then P’ is
the state reached by such a transition in Pts(D), other-
wise P’ equals the initial state Py of Prs(D) (restarting
the recognition of any pattern, formally, P’ = Py).

{a,b},{a

Figure 10: Semantic behavior Sbh(p(X)).

,ch,{a,b,d} la,b]

Example 15. Consider the diagnosis problem
P(X) = (Xo,V,0,8) defined in Example 14.
Depicted in Fig. 10 is the relevant semantic be-
havior Sbh(p(2')) (node decoration are explained
shortly). According to the definition, the initial state
is (X9, 30, Po), where Iy is the initial state of Isp(O)
(Fig. 2), while Py is the initial state of Pts(D) (Fig. 7).
Since the following conditions hold:

e Behavior space Bsp(gp(X)) (Fig. 9) includes a

T
transition Xy Ly 1 which is visible via label x,
- x - .
e A transition J9 — 37 is included in Isp(0O),
T
e A transition Py SN Py is included in Pts(D),

a transition (Xy, 3o, Po) i (X1, 31, P1) is gener-
ated in Sbh(p(X')). The construction of Shh(p(X))
continues until no new node is generated by the appli-
cation of the transition function. The semantic behav-
ior is composed of nine states, five of which are final
(in bold in Fig. 10). Furthermore, each state (8,3, P)
such that P is final in Pts(D) is decorated by the set of
base faults (from patterns) associated with state P in
Pts(D). For instance, (X,, I3, Pg) is decorated with
faults b and d because such faults are associated with
state Pg in Pts(D) (Fig. 7). |

Once constructed the semantic behavior of p(X),
the diagnosis engine is expected to generate the di-
agnostic solution A(gp(X')) by means of a sound and
complete (possibly efficient) technique. Following the
same schema adopted for the definition of A(p(X"))
given in Section 3.3, this is accomplished in two steps:

e Generation of the set of base diagnoses;

e Completion of each base diagnosis with the rele-
vant derived faults.

The first step is carried out by decorating the nodes
of the semantic behavior with sets of base diagnoses
as follows. We denote with §p the set of base faults
associated with state P in Pts(D). We also denote
with A(S) the set of base diagnoses decorating state S
in Sbh(p(X)). Each state in Sbh(gp(X)) is decorated
with a set of faults based on the following rules:

e The initial state So = (X, Jg, Po) is decorated
by A(So) = {p, }-

T
e For each transition S — S’ in Sbh(gp(X')), where
S =(,93,P), S = (8,3, P’), the decoration
of S’ is defined by the following set containment:

A(S) D18 |8 € A(S),8 =8USp}. (6)

The decoration algorithm starts by marking the ini-
tial state with a single diagnosis ép, including the set
of base faults associated with the initial state Py of
Pts(D). Then, starting from the decoration of the ini-
tial state, it continuously applies the second rule for
each transition exiting a state S whose decoration has
changed. The rationale of (6) is as follows. If the cur-
rent decoration of a state S of Sbh(p(X)) includes
diagnosis § and the reached state S’ involves pattern
state P’ with associated faults §p/, then the diagnosis
8’ associated with S’ will be the extension of § by &',
as the latter is the set of faults relevant to the set of
patterns recognized in state P’ of Prs(D). The deco-
ration algorithm stops when no further diagnoses are
associated with any node (the application of (6) will
no longer produce any changes). The set of candidate
base diagnoses is the union of the base diagnoses as-
sociated with the final nodes.

Example 16. With reference to the semantic behav-
ior in Fig. 10, consider, for instance, the decoration of
state (X5, I3, P7). This decoration includes three di-
agnoses: {a,b}, {a,c}, and {a,b,d}, each of which
is generated by propagating the decoration of the ini-
tial state through three different transition paths: {a, b}
by T1T313T,13,{a,c} by T1T,T5T3, and {a, b, d } by
T1T3T,T3. The actual set of base diagnoses is the
union of the decorations associated with final states
(shaded in Fig. 10), namely {c}, {a, c}, {a, b}, {b,d},
and {a, b, d }. Notice that this set equals the set of base
diagnoses determined in Example 14 in accordance
with the definition of diagnosis-problem solution. The
actual solution A(p(X)) is eventually generated by
extending each diagnosis § by the evaluation of the di-
agnostic graph relevant to §, namely Eval(Dgr(8), §).
Since each evaluation functionally depends on base di-
agnosis 4, the evaluation of the set of base diagnoses
gives rise to the same set of candidate diagnoses de-
termined in Example 14, in fact, the solution of the
diagnosis problem p(X). |

5 RELATED WORK

The approach to diagnosis of DESs introduced in this
paper shares a conceptual commonality with the ap-
proach proposed in (Jéron et al., 2006), namely the
idea of pattern.2 However, a number of differences
exist. First, a diagnosis in (Jéron er al., 2006) is a
trajectory (history) which involves specific events. In
our approach, a diagnosis is the set of faults entailed
by a history. Second, a supervision pattern specifies
which trajectories are to be considered as faulty (or,
more generally, significant to the supervision process),
based on specific occurrences of fault (and repair)
events. In our approach, a fault pattern specifies a fault,
not a relevant history. Besides, the formalisms adopted
for the specification of patters are regular expressions
and logic formulas rather than automata. Although
the two formalisms are equivalent from the expressive-
power point of view, using operators of regular expres-
sions and predicate calculus rather then composition
of automata (based on set-oriented operators of formal
languages) provides a considerable advantage to con-
ciseness, readability, and comprehension of patterns.
Third, and more importantly, (Jéron er al., 2006) do
not provide any hierarchical abstraction to diagnosis:
since a diagnosis is a trajectory identified by a super-
vision pattern, the notion of diagnosis invariably refers
to the system as a whole. In our approach, instead,
the interpretation of the system behavior is based on a
set of semantic rules that differentiate over a specific
hierarchy of subsystems (the semantic domain). The
essential question: “What is the meaning of the occur-
rence of a string of transitions for a given subsystem?”
is answered based on the semantics defined in the di-
agnosis problem.

6 CONCLUSION

Confining diagnosis to faults defined at component
level is too a limiting approach when complex sys-
tems are involved. A complex system is organized
in a hierarchy of subsystems, corresponding to differ-
ent abstraction levels. The behavioral nature of each
subsystem does not necessarily depends on the misbe-
havior of its components. Somewhat paradoxically, a
complex system may be normal even when some of its
components are faulty. It can also be faulty when all
its components are normal. As happens in program-
ming languages, where context-free syntax rules lack
expressive power in constraining the correct sentences
of the language, the syntax of regular languages speci-
fied by communicating automata may be inadequate to
capture the faulty behavior of the whole system. Thus,
shifting the diagnosis paradigm of DESs from syntax
to semantics is bound to considerable advantages. In
the approach proposed in this paper, this shift con-
sists in extending the diagnosis problem by a semantics
& = (A, R). For each subsystem in the semantic do-
main O, a number of semantic rules are defined in R.
Pattern rules associate fault patterns with base faults.
Inference rules specify derived faults by means of for-
mulas of predicate calculus. The two classes of rules
allow for negative and positive paradoxes. However,
we do not consider the proposed notation for semantic

2The notion of supervision pattern introduced in (Jéron
et al., 2006) was subsequently adopted by (Ye et al., 2009)
to cope with diagnosability by distributed techniques.

specification as final. On the contrary, different seman-
tic formalisms can be envisaged to fit different classes
of DESs. Even for the single class of active systems,
for which the proposed approach has been conceived,
additional investigation in semantic-oriented diagnosis
seems worthwhile for future research.

REFERENCES

(Aho et al., 2006) A. Aho, M.S. Lam, R. Sethi, and
J.D. Ullman. Compilers — Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA, second
edition, 2006.

(Baroni et al., 1998) P. Baroni, G. Lamperti,
P. Pogliano, and M. Zanella. Diagnosis of
active systems. In Thirteenth European Confer-
ence on Artificial Intelligence — ECAI’98, pages
274-278, Brighton, UK, 1998.

(Baroni et al., 1999) P. Baroni, G. Lamperti,
P. Pogliano, and M. Zanella. Diagnosis of
large active systems. Artificial Intelligence,
110(1):135-183, 1999.

(Debouk et al., 2000a) R. Debouk, S. Lafortune, and
D. Teneketzis. Coordinated decentralized proto-
cols for failure diagnosis of discrete-event systems.
Journal of Discrete Event Dynamic Systems: The-
ory and Applications, 10:33-86, 2000.

(Debouk et al., 2000b) R. Debouk, S. Lafortune, and
D. Teneketzis. A diagnostic protocol for discrete-
event systems with decentralized information. In
Eleventh International Workshop on Principles of
Diagnosis — DX’00, pages 41-48, Morelia, MX,
2000.

(Jéron et al., 2006) T. Jéron, H. Marchand, S. Pinchi-
nat, and M.O. Cordier. Supervision patterns in dis-
crete event systems diagnosis. In Seventeenth In-
ternational Workshop on Principles of Diagnosis
— Dé('06, pages 117-124, Pefiaranda de Duero, E,
2006.

(Lamperti and Zanella, 2003) G. Lamperti and
M. Zanella. Diagnosis of Active Systems — Prin-
ciples and Techniques, volume 741 of The Kluwer
International Series in Engineering and Computer
Science. Kluwer Academic Publisher, Dordrecht,
NL, 2003.

(Pencolé and Cordier, 2005) Y. Pencolé and M.O.
Cordier. A formal framework for the decentralized
diagnosis of large scale discrete event systems and
its application to telecommunication networks. Ar-
tificial Intelligence, 164:121-170, 2005.

(Pencolé et al., 2001) Y. Pencolé, M.O. Cordier, and
L. Rozé. Incremental decentralized diagnosis ap-
proach for the supervision of a telecommunication
network. In Twelfth International Workshop on
Principles of Diagnosis — DX 01, pages 151158,
San Sicario, I, 2001.

(Sampath er al., 1996) M. Sampath, R. Sengupta,
S. Lafortune, K. Sinnamohideen, and D.C. Teneket-
zis. Failure diagnosis using discrete-event models.

IEEE Transactions on Control Systems Technology,
4(2):105-124, 1996.

(Ye et al., 2009) L. Ye, P. Dague, and Y. Yan. A dis-
tributed approach for pattern diagnosability. In 20th

International Workshop on Principles of Diagnosis
- DX’09, pages 179-186, Stockholm, S, 2009.

