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ABSTRACT
Printed pages from industrial printers can exhibit a num-
ber of defects. One of the common defects and a key
driver of maintenance costs is the line streak. This pa-
per describes an efficient streak characterization method
for automatically interpreting scanned images using the
matching pursuit algorithm. This method progressively
finds dominant streaks in signal profiles. It uses wavelet
decomposition to speed up the element selection pro-
cess and reduce computation complexity. Previous ap-
proaches require the design engineer to pre-specify the
characteristics for each possible streak that could be de-
tected – an approach which is practically limited to de-
tecting a few streak types in specific locations. The
Matching Pursuit algorithm, inc contrast, fully charac-
terizes any and all streaks found on the scanned page
permitting a generic analysis of a broad range of defects
found in the field.

1. INTRODUCTION
Printers are highly complex electro-mechanical systems.
Hundreds of components are involved in the printing
process, which in turn has multiple stages: charging,
exposure, development, transfer, fusing, and cleaning
(Duke, Noolandi, & Thieret, 2002). Printers are de-
signed with remarkable reliability with failure rates mea-
sured in incidents per millions of impressions; how-
ever, modern printing applications print huge volumes of
sheets so diagnosis remains an important step in main-
taining asset availability. Diagnosing a printer to iso-
late a defective component is often a difficult task due to
the printer’s formidable complexity. Experienced tech-
nicians learn to recognize signature defects in order to
quickly narrow down the responsible components. In our
project, we aim to automate defect diagnosis. Automa-
tion would allow the printer to suggest required parts be-
fore the technician departs for the site, speed up the diag-
nostic process for less experienced technicians and allow
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more sophisticated and demanding customers to take on
more of the maintenance tasks on site and without the
delays associated with service calls.

We propose the use of iterative diagnosis, in which
three steps are interleaved and performed in each itera-
tion:

1. printed pages are scanned and their image quality
features are computed and characterized;

2. image quality features are used to update the health
state of the machine and refine diagnostic hypothe-
ses;

3. the set of hypotheses is used to recommend further
tests to rule out ambiguities or repair actions to cor-
rect problems found so far

The process repeats until the problem with the machine
has been diagnosed.

There is a body of literature on fault diagnosis (the
second step in iterative diagnosis). Various techniques
ranging from qualitative to statistical inference have
been proposed. The third step in iterative diagnosis is es-
sentially evidence seeking. A few information-drivenap-
proaches (e.g., (Liu et al., 2008), (de Kleer & Williams,
1987)) have been suggested to find informative evidence.
We will not address these two problems in this paper. In-
stead, we focus on the first step of the iterative diagnosis
process, namely characterization of image quality prob-
lems. This can be considered as a pre-processing stage,
or equivalently feature extraction. Printout data are dis-
tilled into concise features, which are then fed to a diag-
noser that classifies faults.

Banding and streaking are two typical image quality
problems (Rasmussen, Dalal, & Hoffman, 2001). Band-
ing is often caused by defects in rotational components
such as the rotating mirror used to raster-scan an image.
It exhibits periodicity along the process direction of the
paper. This periodicity makes it easy to detect and char-
acterize. Since the periodicity correlates with the cir-
cumference of the part causing the banding, diagnosis is
straight forward. On the other hand, streaks appear as
stripes whose major axis is along the process direction
and are caused by defects or degradation in a variety of
components related to the xerographic process. Streaks
typically do not exhibit periodicity and vary considerably
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in appearance. In this paper, we focus on the complexi-
ties of streak characterization.

Streak characterization has its own value even when
detached from fault diagnosis. Currently, experienced
technicians describe streaks using descriptions such as
“light narrow streaks” or “dark medium streaks”. This
is highly subjective, varying with individual perception,
and hence inaccurate. The algorithm that we propose
eliminates the subjective nature of streak description and
can be used as an automated tool for assisting techni-
cians in assessing image quality problems and providing
objective measures of whether or not a printer is meeting
performance standards.

The objective of this work is to develop an algorithm
that automatically characterizes streaks in printed pages.
Such an algorithm needs to be:

• intuitive: the algorithm produces a representation of
streaks consistent with artifacts identified by human
operators;

• concise: streak characterization is clear and suc-
cinct.

• flexible: the algorithm can successfully character-
ize a wide variety of streaks.

Prior work in this area has focused on streak detection
(Rasmussen et al., 2001). For instance, if the systems en-
gineer anticipates that paper running through the system
could create media edge wear on a roller at a particu-
lar spot, the engineer could specify a specific filter that
would fire when a streak appears in the expected loca-
tion with the expected width and polarity. This approach
is often implemented using matched filters, in which a
filterbank is built based on the specified streak charac-
teristics. The detection is straightforward and reliable.
However, it is limited in flexibility because it requires
pre-specification of streak patterns. Unfortunately, it is
impractical for engineers to prespecify specific filters for
all streaks observed in the field. In this paper, we seek to
broaden the scope from streak detection to streak char-
acterization, in the sense that we describe features of
any and all prominent streaks that can be observed on
a printed sheet. Increased flexibility comes at the cost of
increased computation complexity. However, we show
that discrete wavelet transform like techniques can make
these algorithms tractable for use in real systems.

2. EXAMPLE STREAKS
Figure 1 shows a few representative streaks. As shown in
the figure, streaks vary in appearance. A streak could be
narrow or wide, light or dark. It may occur at a fixed lo-
cation over different pages, or occur at random locations.
A streak defect could take the form of a single isolated
streak (Figure 1 a, b, and d), or it could be a cluster of
streaks (Figure 1 c).

Failure in various printer components can cause
streaks. For instance, the streaks in Figure 1 a and d
are caused by defects in the charging process (creating a
high voltage field on a photoreceptor which is sculpted
by the laser to make an electrostatic image). They tend
to be fuzzy and occur in clusters. The streaks in Fig-
ure 1c are due to defects in the cleaner blade (which
scrapes residual toner off the drum once the image has
been transferred). They tend to be sharper edged and ex-
tend outside the printable area. Other defects such as the

failure to properly develop (distribute toner based on the
electrostatic image) or to transfer (move toner from the
machine to paper) result in streaks with specific charac-
teristics. Being able to precisely quantify such charac-
teristics is crucial to diagnosis.

3. FORMULATION AS A SIGNAL
DECOMPOSITION PROBLEM

Ideally, a streak characterization algorithm would start
with a customer image. Due to the highly variable na-
ture of these images, it is difficult to accurate identify
all streak types in such an image. We therefore assume
that the operator can print a preprogrammed test sheet
with homogeneous half-toned color test patches. Since
test patches are homogeneous, and streaks generally run
across the entire patch in the process direction, we can
project the streak along the process direction via inte-
gration or averaging, and reduce printed images to 1-D
signal (see (Rosario, Saber, Wu, & Chandu, 2007)). The
collapsed 1-D signal is known as the “density profile”1

and captures variation along the cross-process direction.
In some cases, streaks can vary along their length. To ac-
curately isolate features related to this variability would
require analyzing the original unprojected 2-D intensity
field. We defer this to future work.

Key characteristics of streaks, include location, width,
intensity, length, and edge sharpness. In this work, we
capture a subset of these properties in terms of a simple
mathematical parameterization:(τ, α, h), whereτ de-
notes location,α denotes scale (inversely proportional to
streak width), andh denotes intensity. The goal is to ex-
tract a series of descriptor tuples{(τi, αi, hi)}i=1,2,···,N

from an 1-D profilef(t).
We formulate the problem as the following: given the

1-D profilef(t), we would like to decompose it as a se-
ries of superimposed streaks:

f(t) = c+
∑

i

hix(αit− τi), (1)

wherec is a constant corresponding to the average inten-
sity of the solid color test patch, andx(t) is streak tem-
plate (e.g., raised cosine or block-wave function). The
streak templatex(t) is stretched or squeezed to proper
width by the scale parameterαi, and shifted to location
τi. Its intensity is modified by the intensity or height pa-
rameterhi. We would like to seek tuples(τi, αi, hi) such
that the summation on the right-hand side of (1) matches
with the observation profilef(t). Essentially, we have a
signal decomposition problem, where{x(αit− τi)} is a
set of basis functions, onto which the signalf(t) can be
projected. In practice, the profilef(t) is often contami-
nated by noise and other printing and scanning artifacts.
Hence, we would like to seek{(τi, αi, hi)}i=1,2,···,N to
minimize the discrepancy

E =

∫
t∈R

|f(t)− c−
∑

i

hix(αit− τi)|
2dt. (2)

The advantage of the signal decomposition approach
is that it is capable of describing complicated streak ar-
tifacts, for instance, two narrow streaks on top of a wide

1We use the convention that 1-D signal refers to a signal of
a single variable, e.g.,f(t), and 2-D signal/image/field to refer
to a signal of two variables, e.g.,f(x, y).
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Figure 1: Example streaks. From left to right — (a) light and dark wide streaks; (b) dark streak with medium width;
(c) clustered dark narrow streaks; (d) light wide streak.

streak. This can be easily expressed as the superimposi-
tion of three streaks, two with largeαi values, and one
with smallαi. Another advantage is its remarkable flex-
ibility. It only requires the engineer to specify a single
generic streak templatex(t). The algorithm looks for the
optimal set of instances{(τi, αi, hi)}i=1,2,···,N . There is
no need for engineer to specify detailed streak informa-
tion and pre-construction of any filterbanks.

This signal decomposition approach also has draw-
backs. The foremost problem is the non-uniqueness
in representation: the space of possible basis functions
{x(αt − τ), τ ∈ R, α ∈ R

+} is clearly over-complete,
(i.e., one member can be expressed as the linear combi-
nation of other members). To make the difficulty clear,
assume for a moment that we are using a block-wave
streak template. A block-wave function of width 1 can be
expressed as the sum of two adjacent block-wave func-
tions each with width 1/2, and likewise four block-wave
functions with width 1/4, and so on. This inherent over-
completeness will result in non-uniqueness in the signal
decomposition{(τi, αi, hi)}i=1,2,···,N . In theory, there
exist an infinite number of signal decompositions with
equal signal representation errorE . In our approach, we
use a matching pursuit method, described in Sec. 4., to
look for the most concise signal decomposition which
circumvents the uniqueness problem.

Another difficulty with the signal representation ap-
proach is the computation complexity. In principle,
we compute the projection off(t) onto the basis set
{x(αt − τ), τ ∈ R, α ∈ R

+}. This involves search-
ing for the best decomposition overτ ∈ R, α ∈ R

+.
In practice, our signal is sampled at finitely many points
on a finite extent so there will not be an infinite number
of decompositions, but there will still be an intractably
large set. Our solution to this problem is to use the dis-
crete wavelet transform (DWT) to speed up the search.
The use of DWT in signal decomposition is similar to
our signal decomposition problem in the sense that it
projects a signal onto a set of basis functions, but the
basis set in DWT is complete and structured (defined by
the wavelet function). Assuming that wavelet function

is similar to streak template, DWT could be used to ap-
proximately match locations and scales. This truncates
the search domain ofτ andα from the entire plane (or
half plane) to much smaller neighborhood which can be
searched directly. Furthermore, the DWT computation
can be implemented using efficient and readily available
algorithms. The DWT acceleration of matching pursuit
is described in more details in Sec. 5..

4. MATCHING PURSUIT

The previous section explains that signal decomposition
onto the streak template basis is inherently non-unique.
Given that multiple decompositions are equally good
in representing the original signalf(t), intuitively one
would like to favor the decomposition which is most
sparse, i.e., with the least number of basis functions.
This is well-aligned with the principle of parsimony: the
simplest explanation should be favored.

Matching pursuit is an efficient and intuitive method,
originally proposed by Mallat and Zhang (Mallat &
Zhang, 1993) for basis selection. It has the notion of
a dictionary, which is a collection of waveforms that
can be used to describe a signalf(t). For instance, the
Fourier basis is good at describing periodicity, and the
wavelet basis is good for describing locality. The dic-
tionary may contain one of the two, both, or even more.
The task is to select members from the dictionary in or-
der to best describef(t). This is very similar to our
streak characterization problem, where the dictionary is
{x(αt − τ), τ ∈ R, α ∈ R

+}. The dictionary is redun-
dant, and hence the same non-uniqueness problem needs
to be addressed. Matching pursuit proposes a greedy
strategy: it progressively builds up a signal representa-
tion by selecting an element that maximally improves the
representation accuracy in each iteration.

Matching pursuit starts with the original signalf(t),
and finds the elementg(t) in the dictionary which best
matches withf(t). Given a templateg(t), the best ap-
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Figure 2: Progression of matching pursuit: top row —
the 1st and 2nd iterations of matching pursuit; middle
row — the 3th and 7th iteration; bottom row — the 9th
and 30th iteration. The black curves are the 1-D profile
f(t). The green curves are the best template matched
signal (fproj(t)) in iterations. The red curves are recon-
structed signal by the end of each iteration.

proximation can be defined as

fproj(t) = 〈f(t),
g(t)

||g(t)||
〉 ·

g(t)

||g(t)||
. (3)

Here the notation〈f, g〉 stands for inner product; and
||g|| denotes Euclidean norm. The matching error is
Eg = ||f − fproj(t)||. We search over allg(t) to mini-
mize the matching error. The signalf(t) is updated by
the approximation residual, i.e.,

f(t) ← f(t)− fproj(t)

= f(t)− 〈f(t),
g(t)

||g(t)||
〉 ·

g(t)

||g(t)||

Then the matching pursuit iterates and looks for the next
best match. The iteration stops when a maximal num-
ber of iterations is reached, or when the remainder sig-
nalf(t) contains very little energy. The intuition behind
matching pursuit is that by progressively identifying the
most dominant match, the signal representation will be
sparse. While there is no guarantee of sparsity, match-
ing pursuit can successfully identify dominating basis,
is easily implemented, converges quickly, and produces
accurate representation.

Figure 2 illustrates the progression of matching pur-
suit, showing the optimal matched templates in iterations

Figure 3: Mexian hat (left) and Daubechies wavelet
(right).

1, 2, 3, 7, 9, and 30. The original curve is shown in black.
The green curve represents a greedy match of the best
single half-cosine basis function to the original curve.
The red curve shows the signal reconstruction in terms
of the basis curves identified so far. As we get to later
iterations, the red reconstruction curve comes to approx-
imate the original black signal and the identified streaks
are increasingly weak in terms of the energy the capture.
This matching pursuit method is capable in characteriz-
ing a variety of streak, wide (in the top row) or narrow (in
the bottom row). It allows us to describe artifacts such
as overlapping streaks.

While matching pursuit works efficiently, it does not
guarantee sparsity. There is a body of literature on the
optimal tradeoff between sparsity and representation ac-
curacy. Several heuristic methods have been developed
to improve matching pursuit. Interested readers may re-
fer to work on basis pursuit (Chen & Donoho, 1994;
Huggins & Zucker, 2007) for more elaborate techniques.

5. USING WAVELET DECOMPOSITION TO
SPEED UP

Matching pursuit is inherently computation-intense. In
each iteration, matching pursuit finds the best basis func-
tion in the dictionary. At each step it must scan the whole
dictionary. In our case, the directory is parametrized by
the discretized locationτ and scaleα parameters. For
each element(τ, α), computing the projection off(t)
ontox(αt− τ) isO(N) whereN is the number of sam-
ples inf(t). Therefore, the overall complexity for each
iteration isO(N · |τ | · |α|).

We can accelerate matching pursuit by using the dis-
crete wavelet decomposition (DWT). Wavelet decompo-
sition computes the projection off(t) onto a wavelet
functionψ(2k(t − τ)), wheret andτ are discrete, and
k is the decomposition level. The decomposition levelk
corresponds to a scale or width of2k. Two facts justify
the choice of DWT as an approximation to half-cosine
matching:

• The wavelet functionψ(t) is visually similar to
streak templatex(t). For instance, Figure 3 plots
the Mexican hat and Daubechies wavelet. Mexican
hat is similar to a raised cosine streak template, and
the dominant peak in Daubechies wavelet is similar
to a triangle template.

• DWT has fast algorithms. DWT is computed by
convolvingf(t) with filterbanks at dyadic scales.
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Listing 1: Matching pursuit iterations

xRec =0;
ma tch In fo= [ ] ; %matchInfo contains tuple [loc,scale,intensity]
f o r i t e r = 1 : maxIterNum

% compute the best match
% returns the projection signal optimalTemp, best match location, and scale
[ opt imalTemp , bestMatchLoc , o p t i m a l S c a l e ]= f i ndBes tTemp la teMatch ( XS igna l ) ;

% add the matched template to the reconstruction signal
xRec= xRec+ opt imalTemp ;
% record the descriptor (loc,scale,intensity)
match In fo= [ ma tch In fo ; bes tMatchLoc o p t i m a l S c a l e opt imalTemp ( bes tMatchLoc ) ] ;

% subtract the matched template from the original signal
XSigna l= XSignal− opt imalTemp ( : ) ;

i f ( norm ( XS igna l)> energyThresh ) % very little energy left
break ;

end
end
re tu rn ( ma tch In fo ) ;

Convolution can be efficiently implemented via fast
Fourier transform (FFT).

Peaks and valleys of DWT at decomposition levelk
and locationτ indicates that there is a good match be-
tweenf(t) and the wavelet basisψ(2k(t − τ)). Given
the similarity between the wavelet functionψ(t) and
streak templatex(t), it is also reasonable to assume that
the match is also good betweenf(t) andx(2k(t − τ)).
Hence DWT is indicative of potential streak locations
and scales. Rather than searching through all the pos-
sible elements in the(τ, α) domain, we can use DWT to
speed up for the optimal basis search: (1) first identifying
potential match locations and scales, and (2) restricting
the search to a much smaller neighborhood.

Furthermore, DWT also works well for pre-
processing, including denoising and baseline removal.
DWT is suitable for denoising due to its energy com-
paction property — energy in smooth signal is com-
pacted into only a few significant coefficients, while
noise energy is widely scattered. Baseline removal
comes in for free because the coarsest subband natu-
rally provides a low-pass approximation. We will discuss
these in more details in the algorithm section.

Peak detection using continuous wavelet transform
has been proposed in bioinformatics application in (Du,
Kibbe, & Lin, 2006). The basic idea is the same, but it
does not enjoy the fast computation as DWT does.

6. ALGORITHM

6.1 From images to 1-D profiles
As we have discussed in Sec. 3., we first reduce 2-D
images to 1-D profiles for streak characterization. This
is a non-trivial preparation step. In practice, when the
printed page is scanned, it is often subject to mild dis-
tortion such as translation, rotation, and skewing. We
have developed an image registration algorithm to cor-
rect such distortion. Each test page has fiducial marks
(three on the top, two on the bottom in each page in

Figure 1). These fiducial marks are detected automati-
cally. From the fiducial marks, the algorithm computes
an affine transform, which transforms the scanned image
to a standard coordinate frame where process direction
is perfectly aligned with the vertical axis of the image
coordinate. Once the image has been correct for distor-
tions, one can easily compute the 1-D profile, simply via
averaging the transformed image across the vertical di-
rection.

6.2 Preprocessing
The purpose of preprocessing is to prepare data for
matching pursuit. For instance, profile signals obtained
from real-world images are often contaminated by non-
streak noise in the printing/scanning process. Denois-
ing is needed to reduce noise while preserving signif-
icant streaks. This can be done effectively using the
DWT. Like Karhunen-Loeve transform, DWT compacts
energy into just a few wavelet coefficients. In con-
trast, white noise affects all coefficients. We uses a
hard-thresholding scheme for denoising (Liu & Moulin,
1997): if a wavelet coefficient’s amplitude is small with
respect to a threshold, it is considered to be due to noise
and is set to zero. Wavelet coefficients with large ampli-
tude are considered signal and are preserved. In our im-
plementation, the threshold is set to3σ, whereσ is the
nominal standard deviation of noise, which is assumed
known a priori, or can be learned from a set of observa-
tion samples. Figure 4a shows the raw 1-D profile (in
black) and its denoised version (in red). Visually the red
signal is much smoother but still preserves fine-level de-
tails.

In addition to streaks which appear as stripes, there is
often slow variation from one margin to the other due
to, for example, the uneven nature of ROS power in the
cross-processing direction. This is known as the inboard-
outboard variation, also referred to as the “baseline”. Re-
moval of the baseline is necessary because it has a sig-
nificant magnitude but the variation has different char-
acteristics than streaks. The baseline is slowly varying
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Figure 4: Removal of (a) non-streak scanning and print-
ing noise and (b) inboard-outboard variation. Black is
the raw 1-D profile; red is the denoised profile; blue is the
identified baseline characterizing the inboard-outboard
variation, and green is the profile after noise/baseline re-
moval.

and has wide support (often the whole page). It is some-
what surprising that end users generally do not perceive
the baseline as problematic, but it is spread out over a
large enough area that it is not perceptually salient to
humans. In contrast, streaks are also smooth, but have
much smaller support (in the millimeter range). On the
other hand, the difference between baseline and streaks
are purely qualitative. It is hard to precisely define what
part of the profile is due to baseline and which part is
due to streaks. Perfect separation is impossible. This is
an area that remains as our on-going research.

In our algorithm, with aN -level DWT, the signal is
decomposed intoN + 1 coarse-to-fine subbands. The
coarsest subband is a low-pass version off(t), while
the finer subbands are the projection off(t) onto the
wavelet basisψ(2k(t − τ)) for k = 1, · · · , N . The pro-
jections have a finite support proportional to2k. This
subband structure provides a natural separation between
baseline and streaks. In our implementation, we choose
N so that2N is roughly the support of the widest streaks.
For instance, the 1-D profile in Figure 4b is 4096 pixel
long, we chooseN = 10 which corresponds to streaks
of width 1024. Anything wider than that is considered
baseline instead of streaks. The baseline is obtained
by reconstructing from the coarsest subband only. Fig-
ure 4b shows the denoised 1-D profile in red and the
baseline in blue. The blue curve captures the general
trend of inboard-outboard variation very well. The dif-
ference between the two is shown in green. It removes
the low-frequency baseline fromf(t) but preserves the
high-frequency variations. This is the input signal to the
matching pursuit algorithm.

6.3 Combining DWT with matching pursuit

As we have discussed in Sec. 5., the purpose of DWT
is to find potential streak candidates, in particular, the
approximate scale and location(α, τ), so that we can
search over a small neighborhood instead of searching
over the whole domain(α, τ) ∈ R

2. This greatly saves
computation time. Figure 5 shows the 1-D streak pro-
file, from which we identify 5 candidates for the most
dominant streaks. The candidate match locations are
marked with squares. The candidate identification pro-
cess is straightforward — the location with a large am-
plitude in the wavelet decomposition is identified as a po-

tential candidate. The figure shows that dominant streaks
are located, but there are two problems: (1) the locations
may not be accurate due to the fact that DWT uses dis-
crete resolution (integer multiplier of2k, wherek is the
wavelet decomposition level) hence is incapable of pre-
cisely identifying location in between, and (2) the candi-
dates could be repetitive, for instance, the top five candi-
dates actually identifies three streaks in the profile. Both
problems are not critical, since the matching pursuit al-
gorithm will perform refined match to further improve
location accuracy and remove redundancies.

The identified candidates{(αi, τi)} are then used to
define search neighborhood for the matching pursuit al-
gorithm. The bottom panel of Figure 5 shows the streak
characterization result. Each streak is marked with a hor-
izontal bar. The center location of the horizontal bar in-
dicates the streak locationτi; the vertical location indi-
cates the intensity of the streakhi; the length of the bar
indicates the streak width1/αi. The top 5 streaks are
labeled with numbers. From the figure we see that the
streaks are identified correctly.

6.4 Finding correlated streaks across page or
across color separations

In some cases, a single component may generate a streak
in multiple separations. For instance, the fuser fuses the
toner for all colors and therefore defects in the fuser roll
create artifacts in all separations. To properly isolated
the cause of these failures from image defects, it is nec-
essary to compare streak characteristics between multi-
ple pages.

The implication on streak characterization is that
when it comes to streak detection over multiple channels
(page or color), we should not treat each channelfj(t)
separately. Iffj=1(t) has a strong streak at(α, τ), we
should examinefj=2,···,J(t) in the(α, τ) neighborhood
for potential streak presence. This has been implemented
as the following in our algorithm:

• For each channel profilefj(t), use DWT to find
streak candidate setLj = {(α, τ)}j ;

• Generate an augmented signal as the Euclidean
norm across all channels, i.e.,faug(t) = ||fj(t)||,
and then compute the candidate listLaug =
{(α, τ)}j=J+1 for faug(t);

• Augment each channel’s candidate list asLnew
j ←

(Lj ∪ Laug);

• For each channel profilefj(t), perform matching
pursuit based on the augmented candidate listLnew

j .

The augmented channelfaug is a new 2-D profile, which
captures dominant streaks in any of the channels. Hence
the candidate listLaug identifies potential streaks across
channels.

Figure 6 shows the streak characterization result for
a test page with four color separations. The correlated
streaks are located roughly 2/3 of the paper width from
the left margin. The algorithm correctly identifies streaks
in the cyan, black, and magenta separations.

7. FUTURE WORK
The initial work here demonstrates the potential of
matching pursuit and discrete wavelet transform in char-
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Figure 5: Top panel: red boxes show locations within
1-D profile identified as match candidates using DWT;
bottom panel: streak characterization result overlayed on
original scanned image
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Figure 6: Example of a printed image with streaks (top
patch, three strips due to scorotron fault). The 2-D pro-
files are plotted in red for all test patches.

acterizing streaks. The present method only returns lo-
cation, scale and intensity. Extensions of the algorithm
to identify additional features of streaks highlighted by
subject matter experts as important for diagnosis repre-
sent natural starting points for future work. A more am-
bitious project would be the extension of the method to
streaks which vary across the page. Such streaks would
require methods that operate efficiently on 2-D intensity
fields which we expect will be a challenge for some time
to come.

8. CONCLUSIONS
The automated identification of streaks holds consider-
able promise for improving diagnosis and health man-
agement in printing systems but has proven difficult to
formulate computationally. Prior methods have provided
the ability to identify specific types of streaks in pre-
viously anticipated locations. In this paper we demon-
strate a novel streak detector that dynamically identifiers
a broad family of streaks anywhere on the page. A key
component to making this technology practical is to use

7
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the discrete wavelet transform as an approximate match-
ing heuristic to focus search for analytically intractable
basis functions (half-cosines). The result is a robust and
practical mechanism that will enable new levels image
quality reliability throughout the printing industry.
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