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ABSTRACT 

This paper reports on analytical as well as computer 

simulation of waves propagating in sandwich-type 

composite structures. Sandwich-type composites are being 

studied for use in NASA’s new heavy lift launch vehicle, 

and flaw detection is crucial for safety and for failure 

prognostics. Theoretical analysis, as well as numerical 

modeling, is needed for benchmarking of available 

technologies for structural health monitoring (SHM) 

sensors and sensor systems. This benchmarking activity is 

important for answering the basic question of what 

minimum flaw size can be detected by the existing SHM 

based monitoring methods.  

Sandwich panels with foam, WebCore and honeycomb 

structures were considered for use in this study. 

Eigenmode frequency analysis and Frequency Response 

Analysis of the panels were made to understand 

fundamental properties of the panel physics and limitations 

that may affect the application of current SHM sensors and 

methods. An analytical study of the transient wave 

propagation is considered based on Mindlin plate theory. 

The mathematical model, accompanied by numerical 

simulations, shows that small size defects can be 

recognized but the frequency of waves should be suffi-

ciently high. It is concluded that a combination of 

analytical results coupled with the high-fidelity simula-

tions should make it possible to analyze experimental data 

and to predict the applicability of SHM methods for this 

type of structure. 
*
 

                                                 

 
*  This is an open-access article distributed under the terms of the 

Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

1. INTRODUCTION 

As the size and complexity of space hardware 

grows, structural weight control becomes crucial. 

This is the case for NASA’s new heavy lift launch 

vehicle. Weight control usually involves the use of 

lighter weight structures such as composites. 

Whether it be hat stiffened, corrugated sandwich, 

honeycomb sandwich, or foam filled sandwich, all 

composite structures have one basic handicap in 

common: they all share a failure mechanism that is 

so insidious as to make it difficult to impossible to 

discern when and where a serious flaw may occur. 

The reason is that structural failures will occur 

internally, out of view of normal visual means of 

inspection.  Internal de-bonds, de-laminations, 

cracks, and/or buckles are typical failure modes. For 

faults such as these, which may be caused during 

fabrication, a normal non-destructive inspection 

technique (NDE) such as X-Ray, Thermography, or 

Sherography is useful, although very labor 

intensive.   

For heavily loaded composites, such as the 

heavy lift launcher will undoubtedly employ, this 

type of damage represents a major safety concern, 

especially for man rated vehicles.  Therefore the 

application of structural health monitoring (SHM) is 

an important consideration. For this purpose, several 

types of SHM sensors and application techniques 

have been developed and are finding wide spread 

use in commercial structures as well as aerospace 

systems. The prognostics associated with SHM 

involve modeling of the structure/sensor 

combination and running simulations that assume 

different levels of strain and vibration loads. To 

prognosticate the specific type and location of a 
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Figure 1: Sketch of the typical sandwich panel. 

potential, critical failure mechanism is the name of the 

game. To this end, the advanced composite technology 

(ACT) program of NASA has put in place a team to 

evaluate the state of the art of SHM and to make 

recommendations to the heavy lift launch program. 

NASA’s ACT Project is evaluating the performance of 

many different sensors and sensor systems for heavy lift 

vehicle (HLV) bulky structures: the Payload Shroud, the 

Interstage, the Core Intertank, the Storage Fuel Tank, the 

Crew Composite Modulus, and so forth. Some of the 

peculiarities of these structures be found in reports (e.g., B. 

Bednarcyk, et al., 2007), (B. Bednarcyk, et al., 2010), (D. 

W. Sleight et al., 2008).  

These papers discuss one of the many tasks associated 

with development and benchmarking of SHM methods and 

provides an estimate and conclusions about the application 

of SHM in the domain of highly loaded composite 

structures. The use of a WebCore test panel is now being 

subjected to structurally damaging tests at MSFC. This 

paper presents the results of an analytical estimation and 

modeling of wave propagation in the WebCore sandwich 

along with the development of the mathematical model. It 

also compares the model predictions with the SHM 

sensors’ empirical findings.  

The bulky HLV structures are estimated to be 33 feet 

in diameter at the base. From the modeling point of view 

such large area structures could be considered as infinite, 

so the approach was developed for an infinite plate. This 

analytical approach makes it possible to predict acoustic 

fields in such composite structures with the view of using 

them in SHM. This paper focuses on simulation of 

transient waves in the composite structure using the 

framework of Mindlin shell theory. The matter is that for 

developing SHM of large composite panels we need to 

have some analytical approach that makes it possible to 

play with parameters to optimize the detected procedure. 

Such an analytical approach is developed here based on 

2D plate theory. Finite element (FE) 3D modeling of large 

panels is not always able to be done and use it for fault 

prediction. Therefore, combining analytical estimation 

with FE modeling is needed to deepen our understanding 

of how faults could be reliably detected. The modeling 

presented here is for the 1" thick panel manufactured for 

the express purpose of the SHM sensor benchmarking. We 

combined analytical approach with FE modeling to see 

where the simplified theoretical approach works. This type 

of model was needed to derive benchmark metrics. 

Experiments in benchmarking sensors were 

performed and experimental data will be analyzed 

letter on. It should be noted that prior to specific 

modeling and empirical data generation, the panel 

was evaluated by standard NDE techniques that 

determined initial conditions identified and located 

any intrinsic flaws. An initial objective of SHM 

sensor benchmarking was to detect a small 1/4" 

diameter hole and to rank PZT and FBG sensor 

types according to their ability to detect such a flaw.  

Other criteria used in the benchmarking rank were 

the accuracy of hole location and the repeatability of 

the observation. Therefore, the models of damage 

studied here involved the scattering of flexural 

waves by a 1/4" hole drilled near the center of the 

panel.  

Sandwich panels, to which we restrict our 

consideration here, are complex structural materials 

made from hard facesheets and soft cores and are 

usually referred to as sandwiches with soft cores. 

Soft-core (e.g., foam, WebCore, and honeycomb) 

sandwich structures’ dynamic behaviors are 

characterized by two different scales: one is 

described by classical theories for sandwich panels, 

which is valid for scales greater than the sandwich 

thickness (shell theories approximation), and the 

second scale emerges when studying local 

vibrations inside soft cores on scales of the 

sandwich thickness.  

The following section of the paper discusses 

sandwich panel parameters, the governing 

equations, and the properties of the sandwich panels. 

These were obtained from mathematical simulations 

based on FE modeling. The third section of the 

paper presents the solutions obtained and the 

analysis of the framework of the theory. A mathe-

matical model of simple flow is considered, as well 

as transient wave generation and wave packet 

propagation. High-fidelity simulations are employed 

to compare results of simulations with analytical 

results.   

 

2. SANDWICH  PANEL 

PARAMETERS AND MODELING 

2.1 Sandwich macroscopic characteristics 

A typical geometry of the sandwich composite panel 

is sketched in Figure 1. For modeling reasons, the 

size of the panel is 1.2m x 1.2m. Approximate 

parameters of the sandwich panel layers are given in 

Table 1, where Ex (Ey,Ey)  is the Young modulus in 

x(y,z) direction, ρ is the density of the layer, Gxy 

(Gxz,Gyz) is the shear modulus, and ν is a Poisson 

ratio. The exact parameters of the specific panels 

you can find in many books (See, for example, 
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Zenkert, 1997) as well as in manufacturer specifications.

These parameters (Table 1) were taken for computer 

simulation, estimation of the macroscopic shell properties

and determination of the sandwich behavior under local 

load. For computer simulation, we considered a hole 

located at the center of the plate to minimize boundary 

influence on the scattering procedure. 

  

Table 1. Characteristic parameters 

magnitude) of the materials used for estimation

 

 
Ex(Ey,Ey) 

GPa 

ρ, 

kg /m3
 

Gxy(G

GPa

E-TLX330 ∼10 ∼1000 ∼
PVC Foam ∼0.04 ∼60 ∼0.02

TYCOR ∼0.2 ∼300 ∼0.02

CFRP ∼100 ∼1500 ∼
Honeycomb ∼0.7 ∼100 ∼0.4

 
Let us determine four structural parameters of 

sandwich panel (Zenkert, 1997) starting from flexural 
rigidity D: 

3 23 ( )
= = 2 ,

6 12 2

f fc
f c

E t E t t cE c
D D D D

+
+ + + +

where Ef and Ec are Young module for face sheets and 

core, respectively, and t and c are the thicknesses of the 

sheets and core as shown in Figure 1. In this case, the 

sandwich plate has a thickness h = 2t + c

right hand side is denoted by its own capit

 

Table 2. Values of characteristic parameters

of magnitude) of the structures

 

Sandwich 

Panel 
D, N⋅m 

×10
4 

ρ, 

kg/m
2
 MPa

WebCore 1 5
 

Honeycomb 10 10 

 

In the thin face sheet and weak core approximation, we 

have  
2= ( ) / 2.

f
D E t t c+

The shear stiffness of the sandwich panel in the same limit 

will be  
2= ( ) / .

c
G G c t c+

The surface density of the panel is  

= 2 ,f ct cρ ρ ρ+
                             

and the symmetrical sandwich panel rotatory inertia
3 2( )

= .
6 2 12

f f

t t t c
I ρ ρ

+
+ +

Expressions (4) and (1) are the same except 

substituted by ρf and ρc, respectively. In Table 2 you can 

find the order of magnitude for the 

Annual Conference of the Prognostics and Health Management Society, 2010

 

 

in manufacturer specifications. 

were taken for computer 

estimation of the macroscopic shell properties, 

behavior under local 

load. For computer simulation, we considered a hole 

located at the center of the plate to minimize boundary 

 (by an order of 

used for estimation 

Gxz,Gyz) 

GPa 
ν 

∼5 ∼0.3 

0.02 ∼0.2 

0.02 ∼0.3 

∼4 ∼0.3 

0.4 0 

Let us determine four structural parameters of the 
1997) starting from flexural 

0= = 2 ,f cD D D D+ + + +    (1)  

are Young module for face sheets and 

are the thicknesses of the 

sheets and core as shown in Figure 1. In this case, the 

h = 2t + c. Each term in the 

right hand side is denoted by its own capital letter D.  

parameters (by an order 

structures 

G, 

MPa⋅m 

I, kg 

×10
-4

 

1 5 

5 5 

In the thin face sheet and weak core approximation, we 

= ( ) / 2.  

The shear stiffness of the sandwich panel in the same limit 

= ( ) / .G G c t c
                        

 (2) 

= 2 ,
                             

(3) 

and the symmetrical sandwich panel rotatory inertia is  
3

= .
6 2 12

ccρ
+ +

                  

(4) 

Expressions (4) and (1) are the same except Ef and Ec are 

, respectively. In Table 2 you can 

order of magnitude for the parameters of the 

sandwich structure calculated above.

noted that WebCore panel parameters

the same as  calculated for a foam core structure.

2.2 Mindlin Plate Theory 

Parameters (1) - (4) are widely used for quasistatic 

modeling. These parameters can also be used for 

study of wave propagation.  For the low frequency 

region (upper bound limit is determined by the plate 

parameters), this approach can be used for i

gation of flexural waves (Rose & Wang

Mindlin plate theory is known to be sufficiently 

accurate to wavelengths comparable with the plate 

thickness, whereas classical plate theory is of 

acceptable accuracy only for wavelengths much 

greater than the plate thickness. Thus, Mindlin plate 

theory offers the prospect of 

damage size, relative to classical plate, whereas an 

analysis using the exact 3D-

would be quite intractable and could be realized 

only by direct computer simulation. That means 

Mindlin approach can be used as 

SHM modeling of the sandwich composite 

structures. 

 The displacements of a Mindlin plate are 

expressed as (Mindlin, 1951) 

 

ux =ψx(x,y), uy =ψy(x,y), uz =w

 

where w is the transverse displacement of the mid

plane and ψx and ψy are the rotations of vertical lines 

perpendicular to the mid-plane. 

simplicity we consider isotropic properties of the 

face-sheet and core materials 

Young module and similar Poisson ratios

result, variables w, ψx and ψy satisfy the gover

equations for the averaged values 

parameters D, G, ρ, I and coincide of with equation

for simple plate (Rose & Wang

1951): 

. 

Figure 2: Typical dependencies of speed of wave propa

gation for sandwich panels.
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calculated above. It should be 

noted that WebCore panel parameters in table 2 are 

calculated for a foam core structure.
 

 

(4) are widely used for quasistatic 

ling. These parameters can also be used for 

study of wave propagation.  For the low frequency 

region (upper bound limit is determined by the plate 

parameters), this approach can be used for investi-

Rose & Wang, 2004). 

Mindlin plate theory is known to be sufficiently 

accurate to wavelengths comparable with the plate 

thickness, whereas classical plate theory is of 

acceptable accuracy only for wavelengths much 

an the plate thickness. Thus, Mindlin plate 

theory offers the prospect of good resolution of 

damage size, relative to classical plate, whereas an 

-elasticity equations 

would be quite intractable and could be realized 

ct computer simulation. That means 

Mindlin approach can be used as starting point for 

SHM modeling of the sandwich composite 

ments of a Mindlin plate are 

=w(x,y),                 (5) 

is the transverse displacement of the mid-

are the rotations of vertical lines 

plane. For the sake of 

simplicity we consider isotropic properties of the 

 with corresponding 

Young module and similar Poisson ratios. As a 

satisfy the governing 

for the averaged values of sandwich 

and coincide of with equations 

Rose & Wang, 2004), (Mindlin, 

 

Typical dependencies of speed of wave propa-

gation for sandwich panels. 
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Figure 3: Finite element simulation of sandwich 

webcore structure used for benchmarking (1.2m x 

1.2m). PZT actuator generates flexural waves with 

frequency f = 50 kHz. The hole area is zoomed out to 

show geometric scale (on the top plot).

 

[ ]
2

2

(1 ) (1 ) ( ) = ,
2

( ) = ,

D
G w I

w
G w

t

ν ν

ρ

− ∆ + + ∇∇ − + ∇

∂
∆ + ∇

∂

ψ ψ ψ

ψ

where ν is a Poisson ratio and ψ = (ψx, ψ

In one dimension, w, ψx, ψy ∼ exp( )

have a system of three algebraic equations.  

it gives a dispersion relation. In the one

have two main branches that are described by the 

expression (Thompson et al. 1975) 

                
2 2= b b cω ± − , 

where 

              

2 41 1
= , = 4

2 2

G D G
b k c GDk

I Iρ

 
+ + 

 

Dispersion curves (Figure 2) for typical sandwich 

panels describe flexural waves (blue curve) 

to real ω and k and two branches of the 

become real starting from the cut-off frequency

green curves).   

The speed of flexural wave propagation in WebCore 

like structure is lower than in honeycomb structure. From 

the speed we can easily calculate the frequency required in 

order to have a wavelength comparable to the size of the 

hole: f = c /λ∼10
3
/6⋅10

-3 
s

-1
 ∼ 150kHz. Such a frequency 

for thick sandwich structure, particularly WebCore 

structure, is too hard to realize in real structures due to 

attenuation and stimulation of large numbers of local 

modes, which lead to dissipation of energy. To clarify this 

statement, let us start with finite element simulation.
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Finite element simulation of sandwich 

webcore structure used for benchmarking (1.2m x 

1.2m). PZT actuator generates flexural waves with 

hole area is zoomed out to 

show geometric scale (on the top plot). 

a b

c     d

e      

Figure 4: Shapes of eigenmodes

c, and honecomb sandwich panel 

frequencies (f ≥ 10 kHz, for foam core and 30 kHz 

honeycomb panel), practically all normal modes are 

localized in the core, and facesheets practically do not 

respond.

2

2
(1 ) (1 ) ( ) = ,G w I

t

∂
− ∆ + + ∇∇ − + ∇

∂

ψ

       (6)

 

, ψy). 

exp( )ikx i tω−  and we 

have a system of three algebraic equations.  Solvability of 

it gives a dispersion relation. In the one-dimensional case 

we 

have two main branches that are described by the 

2 4= , = 4b k c GDk

            (7)

 

for typical sandwich 

(blue curve) corresponding 

o branches of the ω,k relation that 

off frequency (red and 

The speed of flexural wave propagation in WebCore 

structure is lower than in honeycomb structure. From 

the speed we can easily calculate the frequency required in 

order to have a wavelength comparable to the size of the 

150kHz. Such a frequency 

for thick sandwich structure, particularly WebCore 

structure, is too hard to realize in real structures due to 

attenuation and stimulation of large numbers of local 

modes, which lead to dissipation of energy. To clarify this 

ment, let us start with finite element simulation. 

2.3 Finite element simulation 

  For benchmarking sensors, large panels

to find out which sensors are capable of detecting 

such flow size at the maximum distance

hole. A general sketch of compu

large WebCore (1.2m x 1.2m) panel is presented in 

Figure 3. You can see that for such 

visual scattering can be observed. 

are made in Mindlin plate theory appro

averaged structural parameters cor

WebCore of Table 2.   

To understand acoustic wave propagation 

through the 3D sandwich panel, eigenfrequencies 

and eigenfunctions were calculated for a smaller 

panel (0.3m x 0.3m) with 1in core 

facesheets, and a hole at the center

considered three different structures: 

sandwich panel, WebCore panel and honeycomb 

sandwich panel. From the theoretical point of view 

consideration of different panels 

identical, just values of the parameters are different 

(Table 2). Finite element modeling takes into 

account intrinsic structure of the core and therefore 

is much more precise in modeling acoustic waves 

needed for SHM.   

We started with investigation 
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    f  

eigenmodes for foam core panel – a-

, and honecomb sandwich panel – e,f. At higher 

, for foam core and 30 kHz 

), practically all normal modes are 

localized in the core, and facesheets practically do not 

respond. 

 

sensors, large panels were used 

to find out which sensors are capable of detecting 

the maximum distance from the 

. A general sketch of computer simulation of the 

panel is presented in 

. You can see that for such a small hole no 

visual scattering can be observed. The simulations 

dlin plate theory approach and 

arameters correspond to 

To understand acoustic wave propagation 

panel, eigenfrequencies 

tions were calculated for a smaller 

panel (0.3m x 0.3m) with 1in core thickness, 2mm 

facesheets, and a hole at the center (Figure 4). We 

considered three different structures: foam core 

sandwich panel, WebCore panel and honeycomb 

theoretical point of view 

of different panels is practically 

just values of the parameters are different 

(Table 2). Finite element modeling takes into 

account intrinsic structure of the core and therefore 

is much more precise in modeling acoustic waves 

We started with investigation of the shapes of 
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a b  

 c  d  

Figure 5: Finite Element model of the WebCore panel built 

in Comsol a), and b). Frequency response analysis pattern at 

f = 5kHz - c), and f = 10kHz  - d). 

the modes in each panel mentioned above. Some of the 

results for the foam core sandwich panel are presented in 

Fig. 4. We revealed that at relatively low frequencies (< 

3kHz), the sandwich structure vibrates as a whole with 

around 30 different modes (Fig. 4a). The average 

separation for the modes is approximately 100Hz for this 

size of panel. Around 10 kHz, some of the modes are only 

realized in the core. By sweeping the sample for higher 

eigenmodes, we revealed that the spectrum becomes 

quasicontinuous and the majority of eigenmodes are 

located in the sandwich core. This trend is much more 

pronounced for eigenfrequencies ∼ 50kHz, at which point 

practically all modes are localized in the core between 

facesheets (Fig. 4 c,d).  

This phenomenon is due to the fact that the foam core 

sandwich panel and WebCore panels have a core with a 

much lower Young modulus than the facesheets, and as a 

result, a large number of local modes are realized in the 

structure without stimulated facesheet vibration. It should 

be noted that webs between facesheets determine the shape 

of eigenmodes for only certain frequencies. The majority 

of the modes are determined by the core inside the cells, 

which are separated by webs. These modes at high 

frequencies will lead to damping, decreasing SHM 

options. In this case, we can state that macroscopic 

sandwich shell approximation is reasonable because it 

makes it possible to model the propagating wave stress 

strain distribution in WebCore, not taking into account the 

huge number of local modes that make SHM more 

difficult to realize. These local modes can be 

considered as an averaged field that determines 

attenuation for perturbation with the wavelength at 

least comparable to the thickness. 

The same situation takes place in Honecomb 

panels. From Figure 4e you can see that facesheets 

and core vibrate as a whole similar to shell structure 

and we do not see any intrinsic oscillations inside 

honeycomb core. At higher frequency oscillations 

are mainly localized inside soft hexagonal structure 

of Aluminum core (Fig. 4f).  

We performed frequency response analysis of 

the panels. The result of 3D FE simulation of one of 

the panels is presented in Figure 5. The first two 

plots explain the geometry of the panel and how it is 

used for FE simulation. The two others are 

stationary responses of the WebCore panel for PZT 

excitation. Total displacement patterns on Figure 5c 

show that at low frequency (5kHz) we see 

pronounced spatial distribution along the plate 

modulated by the webs’ localization. Increase of the 

frequency leads to formation of the pattern shape 

with greater wave number. Due to sufficient 

difference in Young’s modulus of the core and the 

webs’, structural dynamics depends strongly on 

webs disdribution. We can see that even at low 

frequencies (5-10kHz) when the wavenumber is 

small Eigenmodes are modulated by the webs’ 

localization. These results are simulated without 

damping but taking into account damping just 

decreases the amplitude of the patterns. This can be 

seen from the Figure 6.   

The sandwich structure with foam core 

(without webs) was simulated for different 

frequencies (from 10Hz to 100kHz) to understand 

what frequency can be used for SHM. Figure 6 

presents as an example the total displacement field, 

for a frequency of 17.5kHz, without damping (left) 

and with damping (right). You can see the change in 

the spatial structure of the modes as well as in the 

amplitudes of the displacement, which decrease 

significantly and thus are an additional limiting 

factor in SHM of WebCore panels. Such mode 

behavior in real structures can lead to dissipation 

and to limitation of wave propagation in the 

structures.  One can find some attenuation data in 

the case of honeycomb structure, but there is 

practically no information on viscoelastic properties 

of sandwich panels in the case of a WebCore panel.  
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Figure 7: Spectrum G(ω) of the original signal (11) for 

f=60kHz 

Evidently the Mindlin plate theory approach 

considers waves that are determined by plate vibration as a 

whole and does not take into account intrinsic complex 

structure and local modes of the panel. 

The pronounced scattering pattern can be seen only for 

small distances (e.g. 10cm) from the sensor at high 

frequencies greater than 150kHz. Taking into account 

intrinsic inhomogeneities and large attenuation at high 

frequencies, we can state that SHM monitoring of 

WebCore and honeycomb panels is a challenge. The main 

factor that determines limitation of the SHM method is a 

structural noise, which is comparable to a scattered signal. 

This means that in order to have a high probability of 

detection (close to 100% for ¼ in), we have to have dense 

sensor location. 

 

3. ANALYTICAL SOLUTION 

Computer simulation of the 3D WebCore panel discussed 

above and the honeycomb structure panel made earlier 

show that shell approximation is good enough for long 

wavelengths. This section is devoted to the analytical 

solution and the major steps in developing this approach. 

First we consider stationary acoustics generated by a cylin-

drical source. Second, we solve the scattering problem in 

the stationary field, and finally, a transient wave packet is 

considered. These three steps make it possible to find an 

analytical solution in the Mindlin approach and use it in 

plate simulation.  

 

3.1 Source term of the cylindrical waves 

We will consider a circular-patch actuator on a Mindlin 

plate generating, via surface traction, plate waves in the 

form (Wang, Rose, & F.K. Chang, 2004): 

 

1 0 1 1 0 0 1

2 2

1 2

( ) ( )( )
( , ) = ,

4

k r J k r H k ri hp
w r

D k k

π ω
ω

−
          (8) 

where Jn and Hn are the Bessel and Hankel functions of the 

first kind, respectively, r0 is the radius of the PZT actuator, 

and p(ω) is the source function of frequency, ω =2π f.  The 

Hankel function H0 in the expression is the only function 

depending on radius vector r, and it can be represented as 

the series expansion (Morse & Feshbach, 1953) 

1

0

=0

( ) = ( 1) ( ) ( )cos( ), for  < ,n

n n n

n

H kr H kb J kr n r bε θ
∞

−∑  

1

0

=0

( ) = ( 1) ( ) ( ) cos( ), for  > ,n

n n n

n

H kr H kr J kb n r bε θ
∞

−∑
(9)

 

where εn is the Neumann factor (ε0 = 1, εn = 2, n = 1,2,3...), 

b is the distance from the source to the hole,  and k is the 

wavenumber equal to k1 or k2. Substituting Eq. (9) into Eq. 

(8), we get incident cylindrical waves represented by the 

series expansion. 

 

3.2  Cylindrical hole scatterer 

For theoretical investigation, we will consider that 

the circular hole distant from the source is located at 

the infinite plate. In this case, parameters of the 

plate outside the scatterer are determined by elastic 

properties of the medium, and the complete solution 

will be the sum of the propagations from the source 

signal and the scattered one. There are several 

models of the scatterers (Wang & F.K. Chang, 

2005), but we limit our consideration here to the 

simplest one. 

Following the work of Pao & Chao, 1964, the 

boundary conditions can be fulfilled as an average 

over the plate thickness with 

= = = 0,rr r rM M Qθ  
which are considered at r = a, and 

1 1

=0

1 1 2 2

= { ( 1) ( ) ( )

( ) ( )}cos( )

n

n n n

n

n n n n

w H k b J k r

a H k r a H k r n

ε

θ

∞

−

+ +

∑

        

(10) 

where Hankel functions Hn of the first kind 

determine the influence of wavenumbers ki on the 

scattered field. The boundary conditions lead to a 

system of three linear algebraic equations for each 

value of n. These systems of equations relative to 

constants a1n and a2n can be solved numerically. It is 

.  

Figure 6: Stationary pattern of the total displacement of the 

WebCore panel at PZT frequency f=17.5kHz. The hole size 

¼ in is located at the center and PZT on a distance 10cm 

from the hole. Right plot is simulated for the same 

parameters but for 0.5 core loss factor. 



 Annual Conference of the Prognostics and Health Management Society, 2010

 

 

Figure 7: Analytical results of the real transverse displa

cement simulated by Matlab (Honeycomb panel para

meters are implemented).

found that the truncations of n at n = 50 in 

the same result at any desired wave frequencies. 

  

3.3 Transient Dynamics  

The expression for the transverse wave pulses 

plane  may be derived from the steady-

scatterer in the frequency domain by applying the Fourier 

transform technique. Any pulse of flexural 

expanded in the Fourier transform, which represents 

pulse as a series of the flat waves. 

Windowed signal:  

2
( ) = ( ) ( ) 1 cos sin( )

N t
g t H t H t t

π ω

ω

   
− − −     

where N is a parameter of the pulse, 

function. The Fourier spectrum of this signal will be 

1
( ) = ( )

2
g t G e dω ω

π

∞

−∞

∫

where G(ω)
 
is the frequency spectrum of the 

The analytical solution of the Mindlin wave propagation 

and scattering is given by 

1
( , , ) = ( ) ( , , )

2
w t r G w r e dθ ω ω θ ω

π

∞

−∞

∫

As a result, we have a distribution of 

parameters in 2D plate. This solution can be used for 

estimation stress-strain fields under any sensor mounted to 

the plate.   
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Figure 9: FE simulation of real honeycomb structure

 

Analytical results of the real transverse displa-

cement simulated by Matlab (Honeycomb panel para-

implemented). 

= 50 in Eq. (10) give 

the same result at any desired wave frequencies.  

The expression for the transverse wave pulses in the x,y -

-state solution of the 

in the frequency domain by applying the Fourier 

pulse of flexural waves can be 

which represents the 

. We used Hanning 

( ) = ( ) ( ) 1 cos sin( )
N t

g t H t H t t
N

π ω
ω

   
 

         (11)

 

, H(t) is a Heaviside 

he Fourier spectrum of this signal will be  

( ) = ( ) i t
g t G e d

ωω ω−

’

 

is the frequency spectrum of the input signal. 

nalytical solution of the Mindlin wave propagation 

( , , ) = ( ) ( , , ) i t
w t r G w r e d

ωθ ω ω θ ω−

      (12)

 

distribution of the mechanical 

his solution can be used for 

strain fields under any sensor mounted to 

3.4 Solution of the Mindlin wave propagation, 

scattering, and simulation

Solution of the transient dynamics is presented in 

Figure 8 for transverse displacement for different 

locations on the line connecting 

with the hole. Figure 8a corresponds to input signal, 

Figure 8b to Pulsed echo signal

pitch-catch technique. We can see in 

the left pulsed signal corresponds to

and similar second small amplitude pulse to

reflected from the hole. In Figure 

signal is blue and the red one is the theoretical 

signal calculated by taking into account scattering 

from the hole. We can conclude 

and scattered signals are pronounced when 

source term and a hole are located sufficiently close 

to each other. At large distances

simulation errors make it impossible to distinguish 

between the baseline signal and 

The obtained results show that analytical 

formulas expressed in Matlab simulation

main characteristic features of the SHM methods 

and that such modeling is a viable and reasonable 

approach for predication of 

propagating and scattering in stru

scale structure systems.  

Finite element modeling of t

makes it possible to compare 3D waves with the 

results obtained analytically. Th

show that at the initial stage signals coincide

when the generated signal reaches the boundaries 

these signals are quite different. The 

caused by reflection of waves from the boundaries 

arising in FE simulation of finite size structures. 

the theoretical approach we consider infinite 

structure where waves do not have any boundaries. 

For sandwich honeycomb structure

element model was developed 

account all characteristic features of the panel: 

honeycomb periodic cells, interface layer, 

laminate structure of facesheets 

such modeling was made by 

Hudson, 2009.  Main analyses are performed in the 

time domain in ABAQUS/Explicit for investigation 

of the signal propagation in the

frequency range of interest was between 10 and 100
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FE simulation of real honeycomb structure 

Solution of the Mindlin wave propagation, 

 

Solution of the transient dynamics is presented in 

for transverse displacement for different 

on the line connecting the PZT actuator 

a corresponds to input signal, 

to Pulsed echo signal, and Figure 8c to 

We can see in Figure 8c that 

the left pulsed signal corresponds to a pristine signal 

and similar second small amplitude pulse to  a signal 

igure 8c the pristine 

d one is the theoretical 

signal calculated by taking into account scattering 

We can conclude that those reflected 

and scattered signals are pronounced when the 

source term and a hole are located sufficiently close 

tances, the computer 

possible to distinguish 

baseline signal and the damaged one.  

The obtained results show that analytical 

simulation grasp the 

main characteristic features of the SHM methods 

such modeling is a viable and reasonable 

of acoustic field 

propagating and scattering in structures in large-

Finite element modeling of these structures 

makes it possible to compare 3D waves with the 

analytically. These simulations 

initial stage signals coincide, but 

ignal reaches the boundaries 

signals are quite different. The difference is 

from the boundaries 

arising in FE simulation of finite size structures. In 

the theoretical approach we consider infinite 

structure where waves do not have any boundaries.  

For sandwich honeycomb structure, a finite 

element model was developed that takes into 

account all characteristic features of the panel: 

cells, interface layer, and 

 (Figure 9). The first 

ling was made by Song, Huang, & 

analyses are performed in the 

/Explicit for investigation 

of the signal propagation in the structure. The 

frequency range of interest was between 10 and 100 
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kHz. The signal that was taken as Hanning windowed was 

generated by the PZT sensor mounted on the surface. The 

form of the wave propagating through the structure is 

shown in Figure 8a. The generated signal in the low fre-

quency region coincides with signals obtained analytically. 

The comparison of these signals shows that only the first 

couple of oscillations coincide and that reflections from 

the boundaries in FE simulation change the signal 

completely, increasing the amplitude significantly similar 

to WebCore panel simulation. This means that for bench-

marking sensors for Space vehicles, we have to use long-

sided panels just to eliminate reflection. 

 

4. CONCLUSION  

 This paper discussed several different analyses each of 

which was designed to model and examine acoustic waves 

propagating in sandwich panels from the point of using 

acoustic based methods for SHM. Accordingly, the goal of 

this work was to analyze systematically elastic wave 

propagation and scattering in sandwich composite panels 

and figure out main characteristic features of this 

propagation in the framework of theoretical 2D and 

numerical 3D theory of elasticity. It may be concluded that 

acoustic wave propagation realized during pulsed echo and 

pitch catch techniques provide an attractive approach for 

SHM. In order to accomplish the goal of using these 

techniques for Space Vehicles (detect small-size defects 

for a minimum set of sensors), extensive experimental and 

theoretical work should be done in the near future. 

 
 NOMENCLATURE 
 

w transverse displacement 

D bending stiffness  

G Shear stiffness 

c core thickness 

t face sheet thickness 

ρf face sheet density 

ρc core density  

ρ density per area 

r,θ polar coordinates 

ψx,ψy rotation about z axis, ψ = (ψx, ψy).  

k wavenumbers, k1 k2 k3 

εn the Neumann factor 

ν Poisson ratio 

f frequency of the PZT excitation 

Jn the Bessel function of the first kind  

Hn the Hankel function of the first kind 

a radius of the hole 

r0 radius of the PZT actuator 

g(t) input signal  

G(ω) Fourier transform of the input signal 

H(t) the Heaviside function 

N number of oscillations in input signal 

n number of modes used for modeling  

h thickness of the plate 
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