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ABSTRACT 

Prognostics and Health Management (PHM) 
methods are incorporated into systems for the 
purpose of avoiding unanticipated failures that 
can impact system safety, result in additional 
life cycle cost, and/or adversely affect the 
availability of the system.  Availability is the 
probability that a system will be able to 
function when called upon to do so. 
Availability depends on the system’s 
reliability (how often it fails) and its 
maintainability (how efficiently and frequently 
it is pro-actively maintained, and how quickly 
it can be repaired and restored to operation 
when it does fail).  Availability is directly 
impacted by the success of PHM.  
Increasingly, customers of critical systems are 
entering into “availability contracts” in which 
the customer either buys the availability of the 
system (rather than actually purchasing the 
system itself) or the amount that the system 
developer/manufacturer/supplier is paid for 
the system is a function of the availability 
achieved by the customer. Predicting 
availability based on known or predicted 
system reliability, operational parameters, 
logistics, etc., is relatively straightforward and 
can be accomplished using existing methods.  
However, while determining the availability 
that results from a set of events is 
straightforward, determining the events that 
result in a desired availability is not, and 
prediction of a system’s attributes to meet an 
availability requirement can only be 
accomplished using “brute force” search-based 
methods that are not general and become 
quickly impractical for real systems and when 
uncertainties are introduced. This paper 
presents a “design for availability” approach 
that starts with an availability requirement and 
uses it to predict the required logistics, design 

and operation parameters.  The method is 
general and can be applied when the inputs to 
the problem are uncertain (even the 
availability requirement can be a probability 
distribution). The method is demonstrated on 
several examples with and without PHM. 

1 INTRODUCTION 

Availability is the ability of a service or a system to be 
functional when it is requested for use or operation. 
The availability of an item is a function of its reliability 
and logistics management (including repairs, 
replacements and inventory management). Availability 
accounts for both the frequency of the failure 
(reliability) and the ability to restore the service or 
system to operation after a failure (maintainability). 
The maintenance ramifications generally translate into 
how quickly the system can be repaired upon failure, 
which is usually driven by the logistics management 
and is directly influenced by Prognostics and Health 
Management (PHM) approaches that may be used. The 
frequency of the failure is related to the reliability of 
the system, i.e., how long it will be operational (or 
“up”) before it fails. 
 Many real world systems are significantly 
impacted by availability. A failure, i.e., a decrease of 
availability, of an ATM machine causes inconvenience 
to customers; the unavailability of a point-of-sale 
system to retail outlets can generate a huge financial 
loss; the failure of a medical device or of hospital 
equipment can result in loss of life; and failures of 
aircraft cause airlines to cancel or delay flights and 
military missions to be canceled. In these systems, 
insuring the availability of the system is important and 
the owners of the systems may be willing to pay a 
premium for higher availability. 
 Several different types of availability can be 
measured (e.g., inherent, achieved, operational, etc.) 
(Kececioglu, 1995). This paper is focused on the 
operational availability since it implicitly incorporates 
other forms of availability and it is the most commonly 
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used form of availability specified in availability 
contracts.  
 Operational availability is the probability that a 
system or piece of equipment operates ordinarily, i.e. 
functional and available for operation when requested, 
over a specific period of time under stated conditions 
(Oliveto, 2001; Macheret, 2005). Operational 
availability (Ao) accounts for all types of maintenance 
and logistics downtimes. It is computed as the ratio of 
the accumulated uptime and the sum of the 
accumulated uptime and downtime:  

 
downtime+uptime

uptime
=A o

 (1) 

 

where uptime is the total accumulated operational time 
during which the system is up and running and able to 
perform the tasks that are expected from it. Downtime 
is generated when the system is down and not operating 
when requested due to repair, replacement, waiting for 
spares or any other logistics delay time. The summation 
of the accumulated uptimes and downtimes represents 
the total operation time for the system. 
 “Availability-based” contracting originated 
because customers with high availability requirements 
are in many cases interested in buying the availability 
of a system, instead of actually buying the system itself. 
Availability based contracts are a subset of outcome 
based contracts (Ng et al., 2009); where the customer 
pays for the delivered outcome, instead of paying for 
specific logistics activities, system reliability 
management or other tasks. Basically, in this type of 
contract, the customer pays the service or system 
provider to ensure a specific availability requirement is 
met.  Examples of availability and outcome-based 
contracts include the Availability Transformation: 
Tornado Aircraft Contract–ATTAC (BAE, 2008) and 
PBL – Performance Based Logistics (Beanum, 2006; 
Hyman, 2009). Availability contracts, and most 
outcome-based contacting, include cost penalties that 
could be assessed for failing to fulfill a specified 
availability requirement in a defined time frame. 

Two other mechanisms that include elements of 
availability contracting are Product Service Systems 
(PSS) and leasing models.  PSS provide both the 
product and its service/support based on the customer’s 
requirements, which may include an availability 
requirement. PSS involve the product’s specifications, 
the product manufacturing and support, and the product 
supply chain and parts management; i.e., PSS engage 
all customer, manufacturer and supplier (Bankole et al., 
2009). Lease contracts (Yeh and Chang, 2007) fall into 
the use-oriented class of PSS, where the ownership of 
the product is usually retained by the service provider. 
The lease contract may indicate not only the basic 
product and service provided but also other use and 
operation constraints such as the failure rate threshold 

and the availability of the product or system when 
requested for operation.  

The evaluation of an availability requirement is a 
challenging task for both suppliers and customers. 
From a suppliers’ perspective, it is not trivial to 
estimate the cost of delivering a specific availability.  
From customers’ perspective, the amount of money that 
should be spent on a specific availability contract is 
also a mysterious quantity.  

This paper presents a new methodology that uses 
an availability requirement as an input to the process of 
determining the optimal management of a system (as 
opposed to an availability output that is a consequence 
of system management and logistics inputs).   The next 
section describes the design for availability problem 
and our proposed approach and Section 3 provides 
simple case study examples that demonstrate the 
operation of the approach for systems with and without 
PHM. 

2 DESIGN FOR AVAILABILITY APPROACH 

Most availability and life cycle cost predictions used 
during the design and support of real systems are 
performed using discrete event simulators, e.g., (Juan et 

al., 2009; Bazargan and McGrath, 2003). In general, 
discrete event simulators order the failure and 
maintenance events for a system temporally, and the 
times associated with the failure and maintenance 
events can be readily accumulated to estimate 
availability. Thus, it is straightforward for a discrete 
event simulation to compute the availability based on a 
particular sequence of failures, logistics and 
maintenance events. 

Availability requirements can be satisfied by 
running discrete event simulators in the forward 
direction (forward in time) for many permutations of 
the system attributes and then selecting the inputs that 
generate the required availability output, e.g., 
(Janakiraman et al., 2004; Castro and Cavalca, 2006).  
These “brute force” search-based approaches are 
computationally impractical for real problems 
(particularly for real-time problems), are unable to deal 
with general uncertainties, and can’t accommodate an 
availability requirement that is represented as a 
probability distribution.   

In general, determining design parameters from an 
availability requirement is a stochastic reverse 
simulation problem. There have been attempts to 
perform reverse simulation (run discrete event 
simulators backwards in time) (Raffo and Setamanit, 
2003; Reynolds and McKeown, 2007), but this has only 
been demonstrated on extremely simple non-
availability analysis problems with no applicability to 
the real world systems. While determining the 
availability that results from a sequence of events is 



Annual Conference of the Prognostics and Health Management Society, 2010 

  

straightforward, determining the events that result in a 
desired availability is not, and has not in general been 
done. Alternatively stated, availability is 
straightforward to predict based on the system’s 
reliability, operation, sparing, etc., however, the general 
prediction of the system attributes to meet a required 
availability (“design for availability”) has never been 
done.   
 The goal of this work is to reverse the problem 
setup; this means, instead of solving for the availability 
that results from a specific set of system attributes, we 
will solve for system attributes that guarantee a specific 
availability. The design for availability model could be 
used to generate system reliability, operation, sparing, 
etc., for a specific availability, i.e., for a specific uptime 
(time that the system is up and running as requested) 
and downtime (time that the system is down 
undergoing a repair or waiting for spares). The 
approach presented here is not based on running 
backwards discrete event simulation, i.e., the proposed 
model runs a forward discrete event simulation, but, 
instead of using system attributes to compute uptimes 
or downtimes, the new model imposes the appropriate 
uptimes and downtimes based on the specified 
availability (input) to compute the system attributes 
(output).  

The proposed approach consists of the following 
four steps: 

1. Determine where (during the operation of the 
system) the availability requirement is imposed. 

2. Impose either a downtime or uptime requirement. 
3. Define a relationship between downtime (or 

uptime) and the system attributes. 
4. Update the downtime (or uptime) requirement, and 

compute other quantities of interest (e.g., life cycle 
cost), using the updated system attributes. 

2.1 Determine Where the Availability Requirement 

is Imposed 

Availability contracts specify an availability 
requirement at some defined time or in some defined 
time period. The time period in which (or after which) a 
specific availability must be met is dependent on the 
specific contract terms. Therefore, to generalize our 
design for availability model, we have adopted a 
conservative approach by fulfilling an availability 
requirement at all times during the entire support life. 
This means, the model satisfies any availability 
contract requirement, regardless of the specified 
availability evaluation time frame. However, if needed, 
the model could be adjusted to evaluate the availability 
requirement only at the contract’s defined times (which 
could be less conservative).  

For the remainder of this work we will assume that 
the availability requirement implies that the operational 

availability (Ao) should not drop below the availability 
requirement value at any time during the entire support 
life. Thus, whenever the Ao drops to a minimum value 
this value should be greater than or equal to the 
availability requirement. Based on (1) and Figure 1, 
where DT and UT represent the downtime and uptime 
durations respectively, the Ao reaches its local 
minimum values at the end of every downtime (e.g., 
points 1 and 2 in Figure 1).  Implicitly, if the 
availability requirement is satisfied at the end of every 
downtime, it will be satisfied at all times during the 
support life of the system, therefore our approach is to 
impose the availability requirement at the end of every 
downtime.  

Notice in this case, where the availability 
requirement is imposed at all times throughout the 
entire support life, that it doesn’t make sense to impose 
the availability requirement at the start of the system 
life if the system management is starting with a 
downtime (instead of an uptime); since starting with a 
downtime will keep the availability at zero (below the 
contract’s availability threshold) until the start of the 
first uptime. 

2.2 Impose Either a Downtime or Uptime 

Requirement 

The operational availability Ao is a function of 
accumulated uptimes and downtimes. Therefore, 
imposing an availability requirement means either 
imposing an uptime requirement while the downtime is 
automatically generated by the known set of system 
attributes (e.g., system’s reliability, operational profile, 
logistics, PHM parameters, etc); or imposing a 
downtime requirement while the uptime is 
automatically generated by the known set of system 
attributes. Note, either an uptime or a downtime 
requirement is imposed, not both. Since availability is a 
function of uptime and downtime, we need to know at 
least one of these two quantities to be able to impose 
the other one. For example, if the imposed quantity is 
the downtime; then the imposed downtimes are 
computed at defined times or events as a function of the 
required availability and the system generated uptimes. 
Then, the unknown set of system attributes is computed 

 
Figure 1:  Availability variations as a function of 

time. 
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based on the imposed downtime. The methodology 
described in this paper is applicable to system attributes 
that explicitly affect either uptime or downtime, but not 
both. 

The criteria of imposing either an uptime or 
downtime requirement is based on the unknown set of 
system attributes that we desire to determine to fulfill a 
specific availability requirement. For example, if the 
uptime remains constant while varying an unknown 
system attribute, meaning that the uptime is 
independent of the unknown parameter, then we must 
impose the downtime to meet the availability 
requirement; and vice versa.  

2.3 Define a Relationship Between Downtime (or 

Uptime) and the System Attributes 

Assume that the set of system attributes that we are 
interested in computing to meet the availability 
requirement is explicitly related to the downtimes 
(based on the criteria discussed in Section 2.2). Thus, 
we want to impose the downtime requirement. Then, 
we need to establish a relationship between the 
unknown set of system attributes and the imposed 
downtimes, so that the unknown set of system attributes 
can be computed based on the imposed downtimes.  

For example, to determine the appropriate inventory 
lead time (ILT) to ensure meeting a specific availability 
requirement we need to define a relationship between 
the downtime requirement and ILT. In this example, 
the ILT is the unknown system attribute, where ILT is 
the amount of time it takes to receive spare 
replenishment when additional spares are ordered at the 
inventory spares threshold (ST) value (i.e., minimum 
quantity of held spares); this example assumes that only 
when the maintenance event is a replacement (the unit 
cannot be repaired on-site) that there is a call for a 
spare from the inventory. Also, the inventory downtime 
(when the inventory runs out of spares, and the system 
is down waiting for replenishment spares) is assumed 
to be larger than the concurrent maintenance downtime. 
Thus, once the spares are received, the part can be 
immediately installed in the system. The ILT requires 
imposing a downtime requirement since varying the 
ILT only affects the downtime values, i.e., how long 

the system will be down waiting for spares to be 
replenished. 
 In this case (Figure 2), the decision to impose the 
inventory downtimes (IDT) to meet the availability 
requirement, instead of imposing uptimes, is based on 
the fact that the unknown system attribute, i.e., ILT, is 
only dependent on the downtimes; and it is independent 
of the uptimes. Varying the ILT generates different IDT 
values; however the uptime values remain constant 
since they are primarily a function of the inventory held 
spares and maintenance downtimes (MDT). Where the 
inventory held spares is a function of the quantity of 
initial spares (IS) and quantity of replenishment spares 
(RS). The ILT only defines the start of the next uptime, 
but it does not define the uptime duration. 
 Because, the IDT is purely a function of ILT and 
spares threshold time (STT), where STT is the 
corresponding period of time to use all remaining 
spares; the IDT only depends on how low the inventory 
level is allowed to drop before ordering additional 
spares and how long it will take to receive those spares,  
 

1IDT+STT=ILT  (2) 
 

For this example we assume that the MDT are given 
and cannot be modified, i.e., the maintenance lead time, 
replacement time and repair time are already specified 
as inputs.  To fulfill the availability requirement at the 
end of the first IDT; IDT1 should satisfy the Ao 
requirement (as defined in (1); where IS-MDT1 
corresponds to the accumulated uptime and IS+IDT1 
corresponds to the sum of the accumulated uptime and 
downtime), thus satisfy the following equation: 
 

 IS-
A

MDT-IS
=IDT

o

1
1

 (3) 

 

Once IDT1 is determined, the ILT can be computed by 
satisfying (2). 

Finally, the ILT is updated as the downtime 
requirement gets updated throughout the entire support 
life; which is presented in the next step (Section 2.4) in 
the proposed approach. In this simple example, we 
have defined a relationship between the ILT (the 
unknown system attribute) and the imposed downtimes, 
to satisfy an availability requirement. The approach can 

 
Figure 2:  Implication of the inventory model parameters on the timeline. 
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be generally applied to any set of system attributes that 
are explicitly related to either downtimes or uptimes, to 
fulfill an availability requirement. 

2.4 Update Downtime (or Uptime) Requirement 

In this section, for demonstration purposes, we will 
assume that the unknown set of system attributes is 
explicitly dependent on the required downtimes to 
satisfy the availability requirement, while the rest of the 
system attributes are given and responsible for 
generating the uptimes.  
 The challenge in this step is that the availability is 
not determined by a single downtime value, but rather a 
sequence of downtime values that are not necessarily 
identical; each resulting in different computed values 
for the system attribute. As a result, by the end of the 
simulation we could generate multiple values for the 
same system attribute with no way to determine which 
value to use to fulfill the availability requirement. 
 In the simplest case, if all downtimes were 
identical, the same value for the system attribute would 
have been generated at the conclusion of every 
downtime. To achieve this, we wish to select a single 
downtime value that is the maximum allowable 
downtime to meet a specific availability requirement, 
and then use this quantity as a constant downtime value 
that will fulfill the availability requirement at every 
point throughout the entire support life. To derive the 
maximum allowable downtime value, we have explored 
two scenarios. 
 The first scenario is illustrated in Figure 3a, where 
the first imposed downtime (DT1) duration is shorter 
than the second imposed downtime (DT2), where both 
downtimes have been imposed based on the same 
availability requirement. In this case, averaging the two 
downtimes would generate an average downtime 
(DTAverage) that is larger than DT1, thus if DT1 is 
substituted for DTAverage then the availability 
requirement will not be fulfilled at the end of DT1, as 
expressed in (4),  
 

 
11

1

Average1

1

DTUT

UT

DTUT

UT

+
<

+
 (4) 

 

In this situation the maximum allowable downtime 
duration that the system can accommodate without 
failing to satisfy the availability requirement is 
constrained by the value of DT1. Therefore, DT2 value 
should be substituted for DT1. 

The second scenario is illustrated in Figure 3b, 
where DT1 is larger than DT2. In this case, averaging 
the two downtimes would generate a DTAverage smaller 
than DT1, thus if DT1 is substituted for DTAverage then 
the availability requirement will be fulfilled at the end 
of DT1, as expressed in (5).  

 

 
11

1

Average1

1

DT+UT

UT
>

DT+UT

UT  (5) 

 

Notice in this case that the availability requirement at 
any specific time includes all accumulated previous 
downtimes. Thus, when using the average value at the 
end of DT2, the availability requirement will still be 
satisfied, 
 

 =
DT+DT+UT+UT

UT+UT

AverageAverage21

21  

 
2121

21

DT+DT+UT+UT

UT+UT  (6) 

 

Since the accumulated averages are just the 
accumulated downtimes, i.e., summation of DT1 and 
DT2.  Therefore, in this situation the maximum 
allowable downtime duration that the system can 
accommodate without negating the availability 
requirement is the average downtime. 

Figure 4 summarizes both cases in one general 
case. The model imposes the required downtime to 
meet the availability requirement, and then it evaluates 
the current downtime with respect to the previous one. 
If the currently imposed downtime is larger than the 
previous one, then the model substitutes the current 
downtime value for the previous one. But if the 
currently imposed downtime is shorter than the 

 
Figure 3:  Special cases of downtimes requirement. 
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previous one, then the model averages the current 
downtime value with all previous ones. The goal of this 
procedure is to generate one unique value of the 
maximum allowable downtime that meets the 
availability requirement. Note, during this procedure, 
the unknown system attribute that is determined based 
on the downtime requirement, gets updated as soon as 
the downtime values are updated.  

If the unknown system attributes are explicitly 
generating the uptime, instead of the downtime, then, 
by analogy, we can use a similar procedure to impose 
and update the uptimes to derive one unique value of 
the system attributes. In this case, we would derive the 
minimum allowable uptime that meets the availability 
requirement; then use the derived quantity to compute 
the corresponding system attributes. 

Finally, the proposed model derives and updates 
the required system attributes to meet the Ao 
requirement. Once these are determined, the model uses 
the final updated values of the system attributes to 
compute other quantities of interest (e.g., life cycle 
cost, investment cost, avoided failures, etc.). 

3 APPLICATION OF THE METHODOLOGY 

The design for availability methodology described in 
Section 2 has been implemented within a PHM Return 
on Investment (PHM ROI) tool, for demonstration and 
testing (i.e., verification).  

The PHM ROI tool (Sandborn and Wilkinson, 
2007; Feldman et al., 2009) is a discrete event 
simulation that follows a population of sockets (a 
socket is an instance of an installation location for an 
LRU) through their lifetime from the first line 
replaceable unit (LRU) installation in the socket to the 
retirement of the socket. In this tool a probabilistic 
model is implemented as a Monte Carlo simulation. It 
is a stochastic simulation of a timeline where specific 
events are added to the timeline and the resulting event 
order and timing can be used to analyze failure 
avoided, life cycle cost, availability (as an output), etc. 

The prediction of the remaining useful life (RUL) 
is determined by the sampling of both the time-to-
failure (TTF) values and the distributions that are used 
to model the effectiveness of a particular PHM 
approach. The sampling of the TTF values is defined 
differently for each PHM sustainment approach (e.g., 
data-driven, model-based, fixed interval scheduled 
maintenance and unscheduled maintenance), see 
(Sandborn and Wilkinson, 2007). The PHM ROI tool 
includes the modeling of other quantities as well (e.g., 
operational profile, false positives, cost of money, 
inventory management, etc). 

3.1 A Simple Demonstration of the Proposed 

Methodology for Unscheduled Maintenance 

In this subsection the proposed design for availability 
methodology will be demonstrated for two different 
availability distribution inputs assuming an 
unscheduled maintenance policy.  The objective in 
these example cases is to determine the maximum 
allowable spares replenishment lead time, i.e., 
inventory lead time (ILT), to fulfill a specified 
availability requirement (focusing on ILT prediction is 
only for example purposes, the approach can be applied 
to other parameters as well).  In order to use this 
demonstration as a qualitative verification of the 
methodology, we will perform the following steps:  

• Using the availability distribution requirement as 
an input, determine the distribution of maximum 
allowable ILTs.  

• Use the generated ILT distribution as an input to 
the existing PHM ROI simulation (described in the 
introduction to this section) to predict an 
availability distribution as an output. 

• Compare the availability distribution input 
requirement to the availability distribution 
determined as an output – they should be 
equivalent.  

 

The first step is sufficient to achieve the design for 
availability task, since the ILT will be determined for a 
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Figure 4: General case of downtimes requirement. 
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specific availability requirement. The second and third 
steps are performed as a verification of the 
methodology. 

A detailed description of all of the case study 
inputs is provided in the Appendix including reliability 
information, LRU description, implementation and 
maintenance costs, operational profile and inventory 
management parameters. 

The first availability distribution considered is 
shown on Figure 5a. This distribution could represent 
the requirement specified in an availability contract.* 
Note, availability contracts may specify the availability 
requirement as a single value (which can easily be 
accommodated by the methodology described in this 
paper), but, to accommodate more general problems, in 
this example we will use availability requirements that 
are represented as probability distributions. To generate 
a distribution of ILTs, the model samples the required 
availability distribution and other quantities that may be 
described as probability distributions (e.g., reliability), 
and then uses the quantities and the assumption of an 
unscheduled maintenance approach to solve for a value 
                                                           
* The interpretation of an availability requirement as a 
probability distribution means that not every socket in the 
population has to have the same availability, but that as a 
population they must satisfy the required availability 
distribution. This is consistent with the fact that the reliability 
of the LRU is a probability distribution (each LRU fails at 
different times); thus using a logistics management plan that 
is common across the population, each socket will have a 
different availability value depending on the failure dates of 
the LRUs that occupy it and socket-to-socket operating 
profile variations. Note, an availability requirement that is a 
single value, could refer implicitly to the average value of the 
availability distribution of the population. 

of the ILT using the methodology in Section 2. This 
process is repeated for each socket of the population, 
resulting in a histogram of ILTs. Figure 5b shows the 
distribution of allowable ILTs that result from the 
availability requirement shown in Figure 5a. 
 In order to qualitatively verify the methodology, 
the ILT distribution (Figure 5b) was used as an input to 
the PHM ROI tool discussed in the introduction of this 
section.  The PHM ROI tool used the ILT distribution 
along with the other inputs in the Appendix and 
generated a resulting availability distribution.  Figure 
5c shows the availability prediction that resulted from 
the PHM ROI tool.  The two availability distributions 
(Figures 5a and 5c) are not expected to be absolutely 
identical (since this is a stochastic solution), but the 
mean and standard deviation are very similar. 
 Now consider a more challenging case. Figure 6a 
shows a different availability input distribution (we are 
not addressing the actual reason for requiring an 
availability distributed as shown in Figure 6a in this 
paper, it is only used as a verification exercise). The 
model generates the maximum allowable ILT to meet 
the availability requirement. The ILT distribution is 
shown in Figure 6b. 
 As in the first example, to verify the methodology, 
the ILT distribution (Figure 6b) was used as an input to 
the PHM ROI tool, along with the other inputs 
specified in the Appendix (and assuming unscheduled 
maintenance).  The PHM ROI tool used these inputs to 
generate a resulting availability distribution, Figure 6c. 
The shape of the distribution and its mean and standard 
deviation are well matched (comparison of Figures 6a 
and 6c). 

Required 
Availability 

(Input)

Computed 
Availability 
(Verification 

Output)

Required 
Availability 

(Input)

Computed 
Availability 
(Verification 

Output)

 
 

Figure 5: (a) Required availability distribution (input to the model). (b) Computed Inventory Lead Time (ILT) 
in calendar hours. (c) Availability probability distribution generated using the computed ILT (Figure 5b).  
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 The simple examples presented in this subsection 
demonstrate qualitatively that the design for availability 
approach is satisfying the input availability 
requirement.  

3.2 Use of Design for Availability with PHM 

In this subsection we compare the maximum allowable 
ILT for a specific availability requirement for 
unscheduled maintenance and a data-driven PHM 
approach.  

Determining the maximum allowable ILT for a 
specific availability requirement could be used to 
improve logistics management and potentially reduce 
life cycle cost. If the availability drops below a 
specified threshold value, a cost penalty could be 
assessed; determining upfront the appropriate ILT 
would avoid these potential cost penalties. Also, 
knowing the maximum allowable ILT information, 
customers could require their suppliers to deliver within 
a specific lead time.  

For the assumed set of system attributes and 
assumptions (see the Appendix) we want to determine 
the appropriate spares replenishment lead time, i.e., 
inventory lead time (ILT), to fulfill the availability 
requirement specified in Figure 5a for an unscheduled 
maintenance approach and a data-driven PHM 
approach applied to the same system (a detailed 
explanation of how the data-driven PHM approach is 
modeled is provided in Sandborn and Wilkinson, 
2007). 

Increasing the availability to meet the requirement 
implies reducing the delivery time (considered as the 
only variable input in this example). However, faster 
delivery requires larger investment cost. Basically, we 
want to generate an optimal solution that produces the 
maximum allowable ILT (i.e., to minimize cost) that 

keeps the availability value at or above the availability 
requirement. 

By running the simulation with the imposed 
availability (input) requirement shown in Figure 5a, the 
ILT (output) satisfying this requirement was 
determined for the unscheduled maintenance policy, 
and the generated ILT probability distribution is shown 
in Figure 7 (light gray histogram bars).  

We now need to apply the method to the data-
driven PHM approach.  Figure 8 shows the results of 
the analysis to determine the optimal (lowest life cycle 
cost) prognostic distance for the data-driven PHM 
approach used; where the prognostic distance is defined 
as the measure (e.g., operational hours) of how long the 
prognostic structures or prognostic cell is expected to 
indicate failure, before the system actually fails 
(Sandborn and Wilkinson, 2007). 

Small prognostic distances may miss failures while 
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Figure 6: (a) Required availability distribution (input to the model). (b) Computed Inventory Lead Time (ILT) 
in calendar hours. (c) Availability probability distribution generated using the computed ILT. 

 
 

 
Figure 7: Computed inventory lead time (ILT) for 
unscheduled maintenance policy, and for a data-

driven PHM approach. 
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large prognostic distances may throw away significant 
remaining useful life. Each prognostic distance 
generates a corresponding ILT and life cycle cost. 
Note, the ILT values shown in Figure 8 are the mean 
values of the generated ILT distributions. Large 
prognostic distances may provide additional time to 
order spares ahead of failures; however, they could also 
produce solutions that require more spares, which will 
increase the accumulated IDT (inventory downtime, 
i.e., time that the system is down waiting for spares) 
since every spares replenishment event generates an 
additional IDT. Therefore, to accommodate these 
downtimes, while fulfilling the availability 
requirement, the ILT has to be reduced (i.e., reduce the 
IDT, thus faster delivery). This is illustrated in Figure 
8; where large prognostic distances generate shorter 
ILT. 

Using the Appendix data with the data-driven 
PHM approach, an optimal prognostic distance of 600 
hours results in the minimum life cycle cost over the 
entire support life. Also, a symmetric triangular 
distribution with a width of 500 hours was assumed to 
represent the effectiveness of the data-driven PHM 
approach (see Sandborn and Wilkinson, 2007). 

After running the simulation with the imposed 
availability requirement shown in Figure 5a, the ILT 
satisfying the contract requirement was determined, and 
the generated ILT probability distribution is shown in 
Figure 7 (black histogram bars).  

In this example, the data-driven PHM approach 
allows for a larger ILT (mean = 13,936 calendar hours), 
compared to the unscheduled maintenance case (mean 
= 12,961 calendar hours). In other words, using a data-
driven PHM approach allows a given availability 
requirement to be met if ILTs are longer, or 
alternatively stated, the use of PHM would allow a 
supply chain with longer ILTs to be used. The use of a 
data-driven PHM approach has shifted the ILT 
distribution by approximately 1000 hours to the right. 
This result is due the fact that data-driven PHM has 

provided early warning of failures; therefore presenting 
the opportunity to switch maintenance actions from 
unscheduled to scheduled events reducing the 
accumulated operational downtime. For a fixed ILT, 
this would result in an improved operational 
availability of the system. However, since in this 
problem the availability was set at a fixed required 
value, thus the accumulated operational downtime was 
used as a fixed quantity (imposed by the availability 
requirement); then the avoided unscheduled 
maintenance downtime was added to the IDT, resulting 
in a larger allowed ILT. 

To summarize, our model was applied to the 
Appendix case study example, for two different 
maintenance approaches, to satisfy a specific contract 
availability requirement. For both approaches, 
unscheduled maintenance and data-driven PHM, we 
were able to determine the unknown system attribute 
(the allowed ILT in this case) satisfying the availability 
requirement. 

4 DISCUSSION AND CONCLUSION 

In this paper a new methodology for determining an 
unknown system attribute to fulfill a specific 
availability constraint has been presented. The 
proposed design for availability methodology is not a 
“search-based” approach and is capable of calculating 
unknown system parameters directly from the 
availability requirement even when the inputs are 
uncertain and the availability requirement is 
represented as a probability distribution.   

The proposed design for availability methodology 
provides the possibility for significant new capability 
to: a) perform (in conjunction with prognostics and 
health management) real-time pro-active availability 
analysis; b) determine requirements flow down for the 
development of prognostics and system health 
management and flow down to the supply chain; and c) 
perform pro-active reliability versus logistics tradeoffs, 
and assess the cost and resources required to deliver 
and support systems subject to availability contracts 
(e.g., Performance Based Logistics contracts). 

This method will enable the use of advances in the 
detection of performance anomalies and degradation of 
systems (including prognostics), to assess (and 
mitigate) logistics risks that result in system downtime.  
Providing health assessment and advanced warning of 
impending failure coupled with real-time design for 
availability control enables decision support actions 
that when communicated to maintenance and logistics 
operations will insure timely forecasting of 
maintenance and logistics actions that meet required 
availability levels. 

Simple unscheduled maintenance case study 
examples were presented to demonstrate the 

 
 

Figure 8: Variation of life cycle cost with data-driven 
PHM prognostic distance. 



Annual Conference of the Prognostics and Health Management Society, 2010 

  

methodology, as well as providing a means for 
verification and qualitative validation purposes. Then, 
specific case study results for an example system 
managed using both unscheduled maintenance and a 
data-driven PHM approach were also included.  The 
model predicted a larger allowable ILT for the data-
driven PHM case for the same availability requirement. 
Note, the conclusions in this paper about the ILT 
associated with PHM and unscheduled maintenance 
approaches are specific to the example data assumed 
and should not be interpreted as a general conclusion.  
However, the example demonstrates that the use of 
PHM in cases where availability requirements are 
imposed, can provide value beyond the commonly 
articulated failure avoidance and minimization of lost 
remaining useful life. 

The methodology in this paper is part of a 
disciplined supportability analysis strategy that could 
be applied early in the system development process, 
thus exerting influence on the system (and system 
supportability) design by suggesting where appropriate 
PHM monitors and data collection mechanisms should 
be included in the design.   

The determination of ILT (used as an example in 
this paper) for a specific availability requirement was 
provided as a demonstration of the design for 
availability model operation. The model can be applied 
to determine any system attributes that can be explicitly 
related to the timeline downtimes or uptimes, for a 
contract availability requirement.  Current research 
work is focused on extending the methodology to 
system attributes that explicitly affect both uptime and 
downtime. 

This methodology could be extended to address the 
concurrent determination of multiple design variables 
that are dependent, i.e., if a relationship between the 
unknown design variables is known. However, when 
the unknown design variables are independent, the 
inclusion of an optimization approach may be required 
at the conclusion of the 3rd step (Section 2.3) of the 
methodology; since the relationship between the 
imposed downtime (or uptime) and the unknown design 
variables could accept more than one unique solution. 
But, even in this case (i.e., multiple independent 
unknown design variables), the methodology is still 
efficient in terms of reducing the large and complex 
optimization problem, i.e., determining the unknown 
design parameters for multiple non-identical downtime 
(or uptime) values that generate different availability 
quantities, which may or may not satisfy the 
availability requirement; to determining the unknown 
design parameters for a single downtime (or uptime) 
value that has been imposed to satisfy the availability 
requirement.  

APPENDIX – DATA SUMMARY FOR CASE 

STUDIES 

This Appendix provides model inputs and assumptions 
that are used for the example analyses presented in 
Section 3.  The example in this Appendix represents a 
simplified version of the case study that appeared in 
(Feldman et al., 2009). Only the most relevant inputs 
for this specific application of our design for 
availability model are provided here; for a more 
detailed inputs data refer to (Feldman et al., 2009). The 
LRU used in this example is an avionics multifunction 
display (MFD). The implementation costs are 
summarized in Table A.1. The discount rate on money 
used is 0.07.  

The cost per hour out of service is $500 for 
scheduled maintenance and $5092 for unscheduled 
maintenance assuming during mission failures.  

Table A.1: Implementation Costs 

Frequency Type Value 

Recurring 
Costs 

Base cost of an 
LRU 

(without PHM) 

$25,000 per 
LRU 

Recurring 
Costs 

Recurring PHM 
cost 

$155 per LRU 
$90 per socket 

(CREC) 

Recurring 
Costs 

Annual 
Infrastructure 

$450 per socket 
(CINF) 

Non-
Recurring 

Engineering 
PHM cost 

$700 per LRU 
(CNRE) 

 
The operational profile is summarized in Table A.2 

(Feldman et al., 2009; Henkle et al., 2002), and a 20 
years support life was chosen based on (Federal 
Aviation Administration, 2001). 

Table A.2: Operational Profile 

Factor Multiplier Total 

Support life: 20 
years 

2,429 flights 
per year  

48,580 flights 
over support 

life 

7 flights per day 
125 minutes 

per flight 
875 minutes in 
flight per day 

45 minutes 
turnaround 

between flights 
(Henkle et al., 

2002) 

6  preparation 
periods per 

day (between 
flights) 

270 minutes 
between 

flights/day 

 
Table A.3 summarizes the spares inventory (per 

socket) assumptions. Also, note that a spares carrying 
costs are incorporated into the LRU recurring costs. 
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Table A.3: Spares Inventory 

Factor Quantity 

Initial spares purchased for 
each socket 

5 

Threshold for spare 
replenishment 

≤ 1 spares in the 
inventory per socket 

Number of spares to 
purchase per socket at 

replenishment 
4 

Spare replenishment lead 

time 

Solved for in Section 

3 case studies 

Spares carrying cost 
10% of the beginning 

of year inventory 
value per year 

Billing due date when 
ordering additional spares 

2 years from 
purchase date 

 
Figure A.1 shows the assumed reliability, i.e., 

time-to-failure (TTF), of the LRU based on (Scanff et 

al., 2007; Kumar et al., 2000), which provides Weibull 
and exponential reliability distributions commonly used 
to model avionics. 
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