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ABSTRACT
Model-based prognostics captures system knowledge in
the form of physics-based models of components, and
how they fail, in order to obtain accurate predictions of
end of life (EOL). EOL is predicted based on the esti-
mated current state distribution of a component and ex-
pected profiles of future usage. In general, this requires
simulations of the component using the underlying mod-
els. In this paper, we develop a simulation-based pre-
diction methodology that achieves computational effi-
ciency by performing only the minimal number of sim-
ulations needed in order to accurately approximate the
mean and variance of the complete EOL distribution.
This is performed through the use of the unscented trans-
form, which predicts the means and covariances of a
distribution passed through a nonlinear transformation.
In this case, the EOL simulation acts as that nonlinear
transformation. In this paper, we review the unscented
transform, and describe how this concept is applied to
efficient EOL prediction. As a case study, we develop
a physics-based model of a solenoid valve, and perform
simulation experiments to demonstrate improved com-
putational efficiency without sacrificing prediction accu-
racy.

1. INTRODUCTION
Prognostics is an essential technology for improving sys-
tem safety, reliability, and availability. Prognostics deals
with determining the health state of components, and
projecting the evolution of the health into the future to
make end of life (EOL) and remaining useful life (RUL)
predictions. Model-based prognostics approaches per-
form these tasks with the aid of a model that captures
knowledge about the system, its components, and their
failures, typically in the form of a physics-based model
that is derived from first principles (Roemer, Byington,
Kacprzynski, & Vachtsevanos, 2005; Byington, Wat-
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son, Edwards, & Stoelting, 2004; Saha & Goebel, 2009;
Daigle & Goebel, 2010).

The expression of confidence in a prediction provides
important information to a decision maker. It is therefore
critical to properly represent and process various sources
of uncertainty. EOL and RUL can then be, for exam-
ple, embodied as probability distributions. These distri-
butions are often dominated by the uncertainty of future
usage. For the system considered here, we assume a sin-
gle trajectory of future usage, which, for a given fault
mode, makes the distribution unimodal (but not neces-
sarily Gaussian). In this case, the means and variances
of these distributions are the most important and use-
ful pieces of information, as they provide information
on both the accuracy and spread of the prediction. Of-
ten, the EOL distribution is obtained starting with a dis-
tribution describing the current state of the system, and
propagating that distribution forward to EOL. If the rep-
resentation of the distribution is sample-based, as with
particle filters, then this is straightforward, otherwise, in
general, a sample-based representation is needed, as of-
ten an analytical solution is unavailable or intractable.
Prediction is then performed by simulating each sample
forward to EOL. However, this task can be computation-
ally prohibitive due to the large number of samples often
needed to accurately represent the state distribution.

In this paper, we develop a novel method to increase
the efficiency of the prediction step. We do this us-
ing the unscented transform (Julier & Uhlmann, 1997),
which is a method to predict the mean and covariance of
a distribution that undergoes a nonlinear transformation.
In this case, the nonlinear transformation is the simula-
tion to EOL. The unscented transform approximates the
given distribution with deterministically selected sam-
ples, which are then transformed, and the mean and co-
variance of the EOL distribution may be computed from
the transformed samples. Effectively, only the minimal
amount of simulations are being performed, and the sam-
ples are chosen in such a way that the predicted mean
and covariance closely approximate the mean and co-
variance obtained by transforming the entire distribution,
thus achieving the same result at a fraction of the compu-
tational cost, both in time and memory. Since prediction
is the main goal of prognostics, computationally efficient
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Figure 1: Prognostics architecture.

prediction is of utmost importance. Efficient prediction
methods take less time, so, therefore, more predictions
can be made at a faster rate.

We review the common forms of the unscented trans-
form, and develop the new prediction methodology as
part of our model-based prognostics framework (Daigle
& Goebel, 2009, 2010). As a case study, we construct
a detailed physics-based model of a solenoid valve that
includes models of different damage mechanisms and
their progression. Solenoid valves have application in
many domains, and reliable performance of these valves
is crucial to many complex systems (Tansel, Perotti, Ye-
nilmez, & Chen, 2005). We run a set of simulation-
based prognostics experiments, using the solenoid valve
model, to demonstrate the application of the new pre-
diction methodology and compare it to the baseline ap-
proach.

The paper is organized as follows. Section 2. describes
the prognostics approach. Section 3. presents the model-
ing methodology and develops the model of the solenoid
valve. Section 4. discusses the damage estimation ap-
proach. Section 5. overviews the unscented transform
and develops the new prediction procedure. Section 6.
presents comprehensive simulation experiments apply-
ing the framework to the solenoid valve case study. Sec-
tion 7. concludes the paper.

2. PROGNOSTICS APPROACH
The problem of prognostics is to predict the EOL and/or
the RUL of a component. In this section, we first
formally define the problem of model-based prognos-
tics. We then describe a general model-based architec-
ture within which a prognostics solution may be imple-
mented.

2.1 Problem Formulation
In a general model-based prognostics approach, the sys-
tem model may be given by

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is
the parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, f is the state
equation, y(t) ∈ Rny is the output vector, n(t) ∈ Rnn is
the measurement noise vector, and h is the output equa-
tion. The parameters θ(t) evolve by some unknown pro-
cess, but, in practice, are typically considered to be con-
stant.

Our goal is to predict EOL at a given time point tP
using the discrete sequence of observations up to time
tP , denoted as y0:tP . EOL is defined as the time point
at which the component no longer meets a functional re-
quirement (e.g., a valve does not open in the required
amount of time). This point is often linked to a damage

threshold, beyond which the component fails to func-
tion properly. In general, we may express this thresh-
old as a function of the system state and parameters,
TEOL(x(t),θ(t)), which determines whether EOL has
been reached, where

TEOL(x(t),θ(t)) =
{

1, if EOL is reached
0, otherwise.

Using this function, we can formally define EOL with

EOL(tP ) , arg min
t≥tP

TEOL(x(t),θ(t)) = 1,

and RUL with

RUL(tP ) , EOL(tP )− tP .
Due to the many sources of uncertainty that exist in the

prediction problem, it is much more useful to compute a
probability distribution of the EOL or RUL, rather than
a single prediction point. The goal, then, is to compute,
at time tP , p(EOL(tp)|y0:tP ) or p(RUL(tP )|y0:tP ).

2.2 Prognostics Architecture
We adopt a model-based approach, wherein we develop
detailed physics-based models of components and sys-
tems that include descriptions of how fault parameters
evolve in time. These models depend on unknown and
possibly time-varying wear parameters, θ(t). Therefore,
our solution to the prognostics problem takes the per-
spective of joint state-parameter estimation. In discrete
time k, we estimate xk and θk, and use these estimates
to predict EOL and RUL at desired time points. Using
p(xkP ,θkP |y0:kP ) at prediction time kP , we compute
p(EOLkP |y0:kP ) and p(RULkP |y0:kP ).

We employ the prognostics architecture in Fig. 1
(Daigle & Goebel, 2010). The system is provided with
inputs uk and provides measured outputs yk. The fault
detection, isolation, and identification (FDII) module de-
termines a fault set F, which is used by the damage es-
timation module to determine estimates of the states and
unknown parameters, represented as a probability dis-
tribution p(xk,θk|y0:k). The prediction module uses
this distribution, along with hypothesized future inputs,
to compute EOL and RUL as probability distributions
p(EOLkP |y0:kP ) and p(RULkP |y0:kP ). In this paper,
we focus on the damage estimation and prediction mod-
ules, and assume a solution to FDII.

3. SOLENOID VALVE MODELING
We apply our prognostics approach to a solenoid valve,
and develop a physics-based model of its nominal and
faulty behavior. A typical three-way, two-position
solenoid valve for controlling gas flow is shown in Fig. 2.
The valve is held in its de-energized position by the re-
turn spring, as shown in the figure. In this position, gas is
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Figure 2: Three-way two-position solenoid valve.

allowed to pass between the normally open port and the
cylinder port. To energize the valve, a voltage is applied
to the solenoid, which produces an electromagnetic force
that moves the valve stem towards its energized position
until it contacts the seat. In this position, gas is allowed
to pass between the normally closed port and the cylinder
port. We refer to the de-energized position as the closed
position, and the energized position as the open position.

The state x of the solenoid valve is given by

x(t) =

[
x(t)
v(t)
i(t)

]
,

where x(t) is the valve position, v(t) is the valve veloc-
ity, and i(t) is the solenoid current. We define x = 0
as the position of the valve when in the closed (de-
energized) position, and x = Ls as the position of the
valve when in the open (energized) position, where Ls is
the length of the valve stroke.

The position derivative is given by v(t), and the veloc-
ity derivative is determined from the forces acting on the
stem:
dv(t)
dt

=
1
m

(Fe(t)− k(x(t)− xo)− rv(t)− Fc(t)) ,

where Fe(t) is the electromagnetic force, k is the return
spring constant and xo is the amount of spring compres-
sion when the valve is in the closed position (where we
lump the armature and return spring into a single spring),
r is the kinetic friction coefficient, and Fc(t) is the con-
tact force with the seat, which may be described by

Fc(t) =

kc(−x), if x < 0,
0, if 0 ≤ x ≤ Ls,
−kc(x− Ls), if x > Ls,

where kc is the (large) spring constant associated with
the flexible seats. In general, we may also consider
forces from the gas flowing through the valve, however,
here, we assume a balanced design in which the pressure
forces always cancel.

The solenoid force is given by

Fe(t) =
1
2
i(t)2

∂L(x)
∂x

,

where L(x) is the inductance of the solenoid (Lyshevski,
Sinha, & Seger, 1999; Rahman, Cheung, & Lim, 1996).

The force acts to decrease the reluctance of the magnetic
circuit by decreasing the air gap, which is a function of
x, thus acting to open the valve. The solenoid current is
described by

di(t)
dt

=
1

L(x)

(
u(t)−Ri(t)− i(t)∂L(x)

∂x
v(t)

)
,

where u(t) is the applied voltage, and R is the coil re-
sistance (Lyshevski et al., 1999; Rahman et al., 1996;
Szente & Vad, 2001). The voltage u(t) is the only exter-
nal input considered here, i.e.,

u(t) = [u(t)] .

The inductance of a solenoid is given by

L(x) =
N2

R(x)
,

where N is the number of wire turns in the coil, and
R is the reluctance of the magnetic circuit. In general,
reluctance is given by

R =
l

µA
,

where l is the length of the magnetic circuit, A is the
cross-sectional area of the circuit, and µ is the magnetic
permeability of the material. If we define the maximum
air gap as g0, then the actual air gap is given by g0 − x.
The reluctance depends on the geometry of the solenoid.
We may assume a typical geometry in which reluctance
is described by

R(x) =
lc

µcAc
+
g0 − x
µ0Ag

,

where the c subscript denotes lumped parameters for
the core and armature, µ0 is the permeability of air,
and Ag is the effective cross-sectional area of the air
gap (Lyshevski et al., 1999). Therefore, the inductance
is given by

L(x) =
N2µ0AgµcAc

µ0Aglc + µcAc(g0 − x)
,

and its derivative with respect to x is

∂L(x)
∂x

=
N2µ0Agµ

2
cA

2
c

(µ0Aglc + µcAc(g0 − x))2
.

We select our complete measurement vector as

y(t) =

 x(t)
i(t)

open(t)
closed(t)

 ,
The open(t) and closed(t) measurements are discrete
sensors which output 1 if the valve is in the fully opened
or fully closed state:

open(t) =
{

1, if x(t) ≥ Ls

0, otherwise

closed(t) =
{

1, if x(t) ≤ 0
0, otherwise.
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Figure 3: Nominal solenoid valve operation

Fig. 3 shows a nominal valve cycle. The valve is com-
manded to open at 0 s. The current and magnetic field
build up in the solenoid, and soon, enough force is pro-
duced to overcome friction and the return spring. As the

valve moves, the i(t)
∂L(x)
∂x

v(t) term begins to domi-
nate, causing the current to decrease. When the valve
opens against the seat and stops moving, the current in-
creases again, resulting in the cusp observed in the cur-
rent just before 0.05 s. The current then increases to
its steady state, determined by the applied voltage and
the coil resistance. At 0.25 seconds, the valve is com-
manded to close by removing the applied voltage. The
current drains out of the solenoid, and soon, the electro-
magnetic force is no longer strong enough to keep the
valve in place. The valve begins to close, and, as the

i(t)
∂L(x)
∂x

v(t) term again comes to dominate, the cur-

rent increases briefly until the valve fully closes and v(t)
becomes 0, resulting in another cusp. The current then
decreases smoothly to 0.

3.1 Damage Modeling
In our modeling methodology, the nominal model is ex-
tended with damage models. These models describe how
parameters associated with the degree of valve damage
progress in time, and allow us to make predictions of
damage progression. From valve documentation and his-
torical maintenance records, we have identified the most
relevant faults for prognostics. The set of faults includes
friction damage, spring damage, and the accumulation of
debris on the valve seats.

A common damage mechanism present in valves is
sliding wear (Daigle & Goebel, 2009). The equation for
sliding wear takes on the following form:

V̇ (t) = w|F (t)v(t)|,
where V (t) is the wear volume, w is the wear coef-
ficient (which depends on material properties such as
hardness), F (t) is the sliding force, and v(t) is the slid-
ing velocity (Hutchings, 1992). Friction will increase
linearly with sliding wear, because the contact area be-
tween the sliding bodies becomes greater as surface as-
perities wear down (Hutchings, 1992). We characterize
friction damage by a change in the friction coefficient,
and model the damage progression in a form similar to
sliding wear (Daigle & Goebel, 2009):

ṙ(t) = wr|Ff (t)v(t)|

wherewr is the wear coefficient, and Ff (t) is the friction
force defined previously. The friction parameter only
grows when the valve is moving, so, the friction parame-
ter evolves in a step-wise fashion, with damage only oc-
curring during the valve’s opening and closing motions.
As the friction parameter increases, the friction force in-
creases, further increasing the rate at which the friction
parameter grows, resulting in a damage progression sim-
ilar to an exponential when viewed at large time scales.
We define r+ as the largest value of the friction coeffi-
cient at which the valve still actuates in the required time.
So, TEOL(x(t),θ(t)) = 1 if r(t) > r+.

We assume a similar equation form for spring dam-
age (Daigle & Goebel, 2009):

k̇(t) = −wk|Fs(t)v(t)|,

where wk is the spring wear coefficient and Fs(t) is the
spring force. The more the spring is used, the weaker it
becomes, characterized by the change in the spring con-
stant. As with friction damage, the spring constant only
decreases when the valve moves. As the spring becomes
damaged, the spring force will decrease, and so the rate
at which spring damage occurs will also decrease. We
define k− as the smallest value of the spring constant
at which the valve still closes in the required time. So,
TEOL(x(t),θ(t)) = 1 if k(t) < k−.

Another failure relates to the accumulation of partic-
ulate matter and other forms of debris at the seats. As
debris builds up, it impedes the valve’s travel and pre-
vents the valve from fully opening or closing, which, in
turn, causes leaks through the valve. We assume that the
accumulation of debris is due to sliding wear. It results
in a change in the boundary conditions of the valve mo-
tion. We define Lc as the boundary when the valve is
in the closed position (nominally 0, where Lc ≥ 0), and
Ls−Lo as the boundary when in the open position (nom-
inally Ls, where Lo ≥ 0). We assume that the rates of
change of the offsets Lc and Lo grow proportionally to
sliding wear:

L̇c(t) = wc|Ff (t)v(t)|
L̇o(t) = wo|Ff (t)v(t)|.

We define L+
c and L+

o as the largest allowable values of
the offsets. So, TEOL(x(t),θ(t)) = 1 if Lc(t) > L+

c or
Lo(t) > L+

o .
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Algorithm 1 SIR Filter
Inputs: {(xi

k−1, θ
i
k−1), w

i
k−1}Ni=1,uk−1:k,yk

Outputs: {(xi
k, θi

k), wi
k}Ni=1

for i = 1 to N do
θi

k ∼ p(θk|θi
k−1)

xi
k ∼ p(xk|xi

k−1, θ
i
k−1,uk−1)

wi
k ← p(yk|xi

k, θi
k,uk)

end for

W ←
N∑

i=1

wi
k

for i = 1 to N do
wi

k ← wi
k/W

end for
{(xi

k, θi
k), wi

k}Ni=1 ← Resample({(xi
k, θi

k), wi
k}Ni=1)

4. DAMAGE ESTIMATION
In the model-based paradigm, damage estimation re-
duces to joint state-parameter estimation, i.e., computa-
tion of p(xk,θk|y0:k). A general solution to this prob-
lem is the particle filter, which may be directly applied
to nonlinear systems with non-Gaussian noise terms.
Particle filters offer approximate (suboptimal) solutions
for systems where optimal solutions are unavailable or
intractable (Arulampalam, Maskell, Gordon, & Clapp,
2002; Cappe, Godsill, & Moulines, 2007). In particle
filters, the state distribution is approximated by a set of
discrete weighted samples, called particles. As the num-
ber of particles is increased, performance increases and
the optimal solution is approached.

With particle filters, the particle approximation to the
state distribution is given by

{(xi
k,θ

i
k), wi

k}Ni=1,

whereN denotes the number of particles, and for particle
i, xi

k denotes the state vector estimate, θi
k denotes the

parameter vector estimate, and wi
k denotes the weight.

The posterior density is approximated by

p(xk,θk|y0:k) ≈
N∑

i=1

wi
kδ(xik,θik)

(dxkdθk),

where δ(xik,θik)
(dxkdθk) denotes the Dirac delta func-

tion located at (xi
k,θ

i
k).

We employ the sampling importance resampling (SIR)
particle filter, and implement the resampling step us-
ing systematic resampling (Kitagawa, 1996). The pseu-
docode for a single step of the SIR filter is shown as Al-
gorithm 1. Each particle is propagated forward to time
k by first sampling new parameter values and sampling
new states. The particle weight is assigned using yk. The
weights are then normalized, followed by the resampling
step1.

Here, the parameters θk evolve by some unknown pro-
cess that is independent of the state xk. However, we
need to assign some type of evolution to the parameters.
The typical solution is to use a random walk, i.e., for pa-
rameter θ, θk = θk−1 + ξk−1, where ξk−1 is typically

1Pseudocode for the systematic resampling algorithm is
provided in (Arulampalam et al., 2002).

Gaussian noise. With this type of evolution, the particles
generated with parameter values closest to the true val-
ues should be assigned higher weight, thus allowing the
particle filter to converge to the true values. The selected
variance of the random walk noise determines both the
rate of this convergence and the estimation performance
once convergence is achieved.

Note that in a particle filter, a certain amount of sen-
sor noise must be assumed, but, in practice, the discrete
position sensors (open and closed) have no noise, there-
fore, a small amount of noise must be assumed within
the particle filter for those sensors.

5. PREDICTION
Prediction is initiated at a given time kP . Using the cur-
rent joint state-parameter estimate, p(xkP ,θkP |y0:kP ),
which represents the most up-to-date knowledge of
the system at time kP , the goal is to compute
p(EOLkP |y0:kP ) and p(RULkP |y0:kP ). As discussed
in Section 4., the particle filter computes

p(xkP ,θkP |y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP ,θikP

)(dxkP dθkP ).

We can approximate a prediction distribution n steps for-
ward as (Doucet, Godsill, & Andrieu, 2000)

p(xkP+n,θkP+n|y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP+n,θikP+n)(dxkP+ndθkP+n).

So, for a particle i propagated n steps forward without
new data, we may take its weight as wi

kP
. Similarly, we

can approximate the EOL as

p(EOLkP |y0:kP ) ≈
N∑

i=1

wi
kP δEOLikP

(dEOLkP ).

To compute EOL, then, we propagate each particle for-
ward to its own EOL and use that particle’s weight at kP
for the weight of its EOL prediction.

If an analytical solution exists for the prediction, this
may be directly used to obtain the prediction from the
state-parameter distribution. An analytical solution is
rarely available, so the general approach to solving the
prediction problem is through simulation. Each parti-
cle is simulated forward to EOL to obtain the complete
EOL distribution. The pseudocode for the baseline pre-
diction procedure is given as Algorithm 2 (Daigle &
Goebel, 2010). Each particle i is propagated forward
until TEOL(xi

k,θ
i
k) evaluates to 1; at this point EOL has

been reached for this particle.
Note that, in general, we may sample new parameter

values θ, however, the noise considered here should typ-
ically be considerably less than the noise used for the
random walk during the estimation phase, as we usu-
ally assume these parameters are either constant or only
exhibit very small deviations. Note also that prediction
requires hypothesizing future inputs of the system, ûk,
because damage progression is rarely independent of the
system inputs. For this reason the inputs must be cho-
sen carefully. Here, we assume only a single future input
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Algorithm 2 EOL Prediction
Inputs: {(xi

kP
, θi

kP
), wi

kP
}Ni=1

Outputs: {EOLi
kP

, wi
kP
}Ni=1

for i = 1 to N do
k ← kP

xi
k ← xi

kP

θi
k ← θi

kP

while TEOL(xi
k, θi

k) = 0 do
Predict ûk

θi
k+1 ∼ p(θk+1|θi

k)

xi
k+1 ∼ p(xk+1|xi

k, θi
k, ûk)

k ← k + 1
xi

k ← xi
k+1

θi
k ← θi

k+1

end while
EOLi

kP
← k

end for

trajectory, i.e., ûk is defined uniquely for all values of
k. This is a practical assumption for the solenoid valve,
because the valve is always fully opened or fully closed,
and a single voltage value u(t) is consistently applied
for opening the valve. Since damage occurs only when
the valve is moving, then for the purposes of prediction,
we may produce an input sequence that represents a full
valve cycle (e.g., that of Fig. 3) repeated indefinitely,
and, using this, we may obtain EOL and RUL predic-
tions in the number of valve cycles.

5.1 Computationally Efficient Prediction
The computational complexity of the prediction proce-
dure presented as Algorithm 2 is linear in the number
of particles, however, each particle may take a variable
amount of time to simulate to EOL. Particles that predict
quickly progressing wear will complete quickly, while
particles that predict slowly progressing wear will com-
plete slowly, because many more simulation steps will be
needed to reach EOL. This problem is exacerbated with
models that require very small sampling periods. In fact,
particles with very poor wear parameter estimates, i.e.,
close to 0, which correspond to very large EOL predic-
tions, may take an exceedingly long time. Also, these
particles may correspond to outliers, and, as such, con-
tribute little to the prediction distribution.

The only way to reduce the computational effort is to
reduce the number of particles that are used in the pre-
diction step. One approach is to randomly select an arbi-
trary number of particles from the original distribution,
but the statistics of the original distribution may not be
preserved. A better approach is to sample from the distri-
bution in such a way that the important statistical infor-
mation is preserved, and the EOL distribution computed
from this limited sample set closely approximates the
statistical properties of the EOL distribution computed
from the complete set of samples.

The unscented transform solves this problem. It takes
a random variable x ∈ Rnx , with mean x̄ and covari-
ance Pxx, which is related to a second random vari-
able y by some nonlinear function y = g(x), and com-
putes the mean ȳ and covariance Pyy using a (small) set
of deterministically selected weighted samples, called
sigma points (Julier & Uhlmann, 1997). For the task

of EOL prediction, x is simply the joint state-parameter
distribution represented by {(xi

kP
,θi

kP ), wi
kP
}Ni=1, g is

the function that computes EOL (i.e., simulates a par-
ticle to EOL), and y is the EOL. The required mean x̄
and covariance Pxx may be computed from the particle
distributions using the formulas for weighted mean and
weighted covariance.

The statistics of y are computed by selecting a set of
weighted sigma points from x, where X i denotes the ith
point and wi denotes its weight. The sigma points are
always chosen such that the mean and covariance match
those of the original distribution, x̄ and Pxx. Each sigma
point is passed through g to obtain new sigma points Y ,
i.e.,

Yi = g(X i)
with mean and covariance calculated as

ȳ =
∑

i

wiYi

Pyy =
∑

i

wi(Yi − ȳ)(Yi − ȳ)T .

The underlying idea of the unscented transform is that
it is easier to approximate the distribution x than to
approximate the nonlinear function g. This is the
idea behind the unscented Kalman filter, where the un-
scented transform is exploited for nonlinear state estima-
tion (Julier & Uhlmann, 1997, 2004). At each step, the
unscented transform is applied to the state estimate and
is used for a single step prediction. In contrast, here, we
apply the transform to the state-parameter distribution at
given single time point kP , and use this for multi-step
predictions to EOL.

Several methods exist for selecting sigma points. In
the following sections, we briefly review three common
unscented transforms, and compare their fidelity on an
example EOL prediction problem. Detailed performance
results will be presented in Section 6. for fault prognosis
of the solenoid valve.

Symmetric Unscented Transform
In the symmetric unscented transform, 2nx + 1 sigma
points are selected symmetrically about the mean in the
following way (Julier & Uhlmann, 2004):

wi =


κ

(nx + κ)
, i = 0

1
2(nx + κ)

, i = 1, . . . , 2nx

X i =


x̄, i = 0
x̄+
(√

(nx+κ)Pxx

)
i
,i = 1, . . . , nx

x̄−
(√

(nx+κ)Pxx

)
i
,i = nx+1, . . . , 2nx

,

where
(√

(nx + κ)Pxx

)
i

refers to the ith column of the

matrix square root of (nx + κ)Pxx (e.g., computed us-
ing the Cholesky decomposition). The number κ is a
free parameter that can be used to tune the higher order
moments of the distribution. If x is assumed Gaussian,
then selecting κ = 3 − nx is recommended (Julier &
Uhlmann, 1997). A smaller value of κ will bring the
sigma points closer together. Note that the sigma point
weights do not directly represent probabilities, so are not
restricted to the interval [0, 1].
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Figure 4: Sigma point locations and weights for a two-dimensional random variable x with x̄ = 0 and Pxx = I. The
gray dots represent the random samples, and the markers represent the sigma points, labeled with their weights.

Minimal Skew Simplex Unscented Transform

The symmetric unscented transform uses 2nx + 1 sigma
points, however, it is possible to reduce the number of
points to nx + 2, while still capturing the first two mo-
ments of the distribution, thus reducing the amount of
computation. The minimal skew sigma points are such a
set, and satisfy an additional constraint in which the skew
(third moment) is minimized, which reduces the average
error for a symmetric distribution (Julier & Uhlmann,
2002).

The minimal skew sigma points are selected in a con-
structive manner, first by choosing the set of points for
nx = 1, and then increasing nx by one until the full di-
mension is reached. The procedure for selecting sigma
points for dimension nx for a distribution with mean 0
and Pxx = I, where I is the identity matrix, is as fol-
lows (Julier & Uhlmann, 2002). First, the weight of the
0th sigma point is selected freely as

w0 ∈ [0, 1].

The remaining weights are computed using

wi =


1− w0

2nx
, i = 1, 2

2i−2w1, i = 3, . . . , nx + 1

For the initial dimension size j = 1, where X j
i refers

to the ith sigma point for the jth dimensional space, the
sigma points are initialized as

X 1
0 = 0

X 1
1 = − 1√

2w1

X 1
2 =

1√
2w1

.

Expanding up to higher dimensions j = 2, . . . , nx, the
higher-dimensional sigma points are recursively defined

as

X j
i =



[
X j−1

0

0

]
, i = 0[

X j−1
i

− 1√
2wj

]
, i = 1, . . . , j[

0j
1√
2wj

]
, i = j + 1

,

where 0j is a vector of j zeros. The points form a sim-
plex (a generalization of the triangle to arbitrary dimen-
sions) centered about the origin, with an additional point
located at the origin (X 0).

The sigma points may then be transformed to those for
mean x̄ and covariance Pxx using

X ′i = x̄ +
√

PxxX i,

where
√

Pxx is the matrix square root of Pxx. The trans-
formed sigma points Y and its statistics are computed as
in the basic unscented transform, using X ′i.

Spherical Simplex Unscented Transform
The problem identified with the skew simplex set of
sigma points is that the weights vary by a factor of 2nx

and the point coordinates vary by a factor of 2nx/2,
so with large values of nx, numerical problems may
arise (Julier, 2003). The spherical simplex points still
use only nx + 2 points, but overcome this issue, placing
the sigma points on a hypersphere centered at the ori-
gin, with the 0th sigma point located at the origin. These
points are constructed in a similar fashion to the minimal
skew sigma points as follows (Julier, 2003).

First, the weight of the 0th sigma point is selected
freely as

w0 ∈ [0, 1].

The remaining weights are computed using

wi =
1− w0

n+ 1
.

7
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The sigma points for dimensional space j = 1 are ini-
tialized again as

X 1
0 = 0

X 1
1 = − 1√

2w1

X 1
2 =

1√
2w1

.

Expanding up to higher dimensions j = 2, . . . , nx, the
higher-dimensional sigma points are recursively defined
as

X j
i =



[
X j−1

0

0

]
, i = 0[

X j−1
i

− 1√
j(j+1)w1

]
, i = 1, . . . , j[

0j
j√

j(j+1)w1

]
, i = j + 1

,

where 0j is a vector of j zeros. These points may then be
transformed for mean x̄ and covariance Pxx as before.

Fig. 4 compares the location and weights for a two-
dimensional random variable for the three different
transforms. The mean of the random variable is 0, and
the covariance is I.

Improved Prediction Procedure
The improved prediction procedure uses Algorithm 2,
only instead of the inputs being the particles and their
weights, the inputs become the sigma points and their
weights computed from the particle distribution at time
kP , with a suitable sigma point selection algorithm.
Fig. 5 shows an example output of the prediction pro-
cedure for spring damage, using the full particle distri-
bution (N = 100). Each particle creates a predicted tra-
jectory, and determines a single EOL prediction. These
individual predictions then form the complete prediction
distribution.

The predicted EOLs based on simulating the sigma
points for the different selection algorithms reviewed
here are shown in Fig. 6. The free parameters were se-
lected by hand in this particular example. The predicted
EOL means and variances are shown in the figure. Recall
that the aim is to approximate the full state-parameter
distribution using a small set of samples, such that, when
transformed to EOL, accurately predict the mean and
variance of the EOL distribution computed using the full
distribution. An under- or overapproximation of either
statistic is undesirable, as it misrepresents the EOL cor-
responding to the current belief state. For this example,
in each case, the mean EOL predicted with the sigma
points matches the mean from the full distribution within
0.2% error. The variances are less accurate, with around
6% error for the symmetric and simplex sigma points,
and around 16% error for the spherical sigma points. The
error in predicted variance may be improved with bet-
ter selection of the free parameters. An improvement in
computation time of 18-24% was observed for the sigma
point method. In this case nx = 5, so the symmetric
set has 11 sigma points and the simplex methods have 7
points, so there is also a very significant improvement in
memory requirements for prediction.
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Figure 6: EOL predictions based on sigma points.

6. RESULTS
In this section, we evaluate the prognostics performance
for the different prediction methods. In each case, we
predict using the full particle distribution, the symmetric
sigma points, the minimal skew simplex sigma points,
and the spherical simplex sigma points, in order to com-
pare the accuracy, precision, and computational cost of
the prediction.

Estimation accuracy is evaluated using percentage
root mean square error (PRMSE), which expresses rel-
ative estimation accuracy as a percentage:

PRMSE = 100

√√√√Meank

[(
ŵk − w∗k
w∗k

)2
]
,

8
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Table 1: Prognostics Performance Results for N = 500 and M = {x, i, open, closed}
Fault PRMSE RSDw RA RSDRUL T cpu

Full Sym. Skew Sph. Full Sym. Skew Sph. Max Sym. Skew Sph.
r 3.72 26.09 94.39 94.49 93.90 94.48 19.89 18.40 21.35 18.48 72.98 57.39 53.91 60.21

k 3.90 14.74 96.19 96.20 96.12 96.17 15.21 14.27 15.35 14.42 61.46 58.05 55.85 58.06

Lc 5.01 18.01 93.62 93.85 93.82 93.77 22.65 20.18 22.35 21.63 77.22 63.32 61.38 61.41

Lo 3.05 17.89 95.48 95.59 95.12 95.36 16.95 16.20 19.30 18.61 67.93 56.70 52.69 53.56

where ŵk denotes the estimated wear parameter value
at time k, w∗k denotes the true wear parameter value at
k, and Meank denotes the mean over all values of k.
Estimation spread is calculated using relative standard
deviation (RSD), computed for the wear parameter dis-
tribution at each prediction point (every 10 cycles), and
averaged over all prediction points. The average is de-
noted as RSD. In computing both PRMSE and RSD,
we ignore the initial time period associated with estima-
tion convergence. Convergence of the wear parameter
estimate, Cw, is computed based on the definition of the
convergence metric described in (Saxena et al., 2008),
where the convergence of a curve is expressed as the dis-
tance from the origin to the centroid under the curve (a
shorter distance is better). We use the absolute error of
the hidden parameter estimate as the curve.

For a given prediction point kP , we compute measures
of accuracy and spread. For accuracy, we use the relative
accuracy (RA) metric (Saxena, Celaya, Saha, Saha, &
Goebel, 2009):

RAkP = 100

(
1−
|RUL∗kP −Meani(RULi

kP
)|

RUL∗kP

)
.

We calculate prediction spread using RSD, which we de-
note as RSDRUL. Both RA and RSD are averaged over
all prediction points starting from the prediction at which
a prognostics horizon (RA within a specified bound) is
first reached (denoted using RA and RSDRUL).

In order to measure the computational performance, at
each prediction point we measure the time taken for the
prediction to be completed, tcpu(kP ). For a given pre-
diction method, we then compute the percent improve-
ment over the time for the full distribution, tfull

cpu (kP ),
defined as

Tcpu = 100
|tfull

cpu (kP )− tcpu(kP )|
tfull
cpu (kP )

.

This metric is then averaged over all kP , denoted as
T cpu, to summarize percent improvement over the en-
tire experiment. We characterize the maximum possible
performance increase by computing T cpu for the pre-
diction using a single point representing the mean of
the state-parameter distribution. This performance can
be achieved with the sigma point method by selecting
a small enough value of κ or w0 such that all the sigma
points are concentrated on the mean, however, this would
result in a vast underapproximation to the variance.

We consider the case where only a single damage
mode is actively progressing. Table 1 shows the per-
formance for each fault for N = 500, and taking the

complete measurement set M . The random walk vari-
ances were chosen as fixed values assuming that the or-
ders of magnitude of the wear parameters were known.
Overall, the unknown wear parameter can be estimated
well. The desired outcome is that the computed RA and
RSDRUL using the sigma point methods closely approx-
imate those produced using the full distribution. In the
case of RA, the sigma point methods are within 0.5%
of the RA calculated using the full distribution, mean-
ing that the means of the distribution (from which RA
is calculated) are predicted well. Larger differences are
observed when comparing RSDRUL, as in most cases
the sigma point methods underapproximate the variance,
with a worst-case error of 6-14%. The accuracy of vari-
ance prediction depends on the selected values of the free
parameters of the unscented transforms, as correctly se-
lected values will lead to better approximations. In this
case, we selected the suggested value of κ for the sym-
metric sigma points, and this seemed to work well in
all cases. For the minimal skew simplex sigma points,
we chose w0 = −1 for r, Lc, and Lo, and w0 = 0.1
for k. For the spherical simplex sigma points, we chose
w0 = 0.1 for k, Lc, and Lo, and w0 = −1 for r. These
values were selected manually.

Over 50% improvement in computation time was ob-
served in all cases, coming within 75-90% of the maxi-
mum possible improvement. Further, only a fraction of
the samples are used in the sigma point methods, sav-
ing significantly on memory. At the selected prediction
points, the valve is in a closed state, and the effective
nx is only 3 (i.e., only 3 of the states have different val-
ues between particles). Therefore, for the symmetric un-
scented transform only 2nx + 1 = 7 sigma points are
required, and only nx + 2 = 5 are required for the min-
imal skew simplex and spherical simplex sigma points.
For N = 500 this is an improvement of over 98% in
memory usage.

To explore further, we focus on the case of spring
damage, and vary the number of particles and the mea-
surement set. Table 2 shows the estimation results. Over-
all, the unknown wear parameter can be estimated well
with both N = 100 and N = 500. This is also true
when the measurement set is varied, in fact, using only
the open and closed indicators, prognostics can still be
performed, but at the cost of a wider variance in the pre-
diction and slower convergence. With more particles,
PRMSE improves and RSD generally increases slightly.
Convergence is somewhat better with fewer particles as
the filter tends to be more aggressive, whereas additional
particles smooth the behavior. Of course, with too few
particles, convergence may not occur, therefore a rea-
sonably large N must usually be chosen.

Table 3 shows the prediction performance. RA is
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Table 3: Comparison of Prognostics Prediction Methods for Spring Damage
M N RA RSDRUL T cpu

Full Sym. Skew Sph. Full Sym. Skew Sph. Max Sym. Skew Sph.
{x, i, open, closed} 100 94.59 94.64 94.59 94.56 15.01 13.88 14.96 14.03 48.08 42.98 23.81 29.98

{x, i, open, closed} 500 96.19 96.20 96.12 96.17 15.21 14.27 15.35 14.42 61.46 58.05 55.85 58.06

{x, i} 100 93.96 94.00 93.88 94.00 15.53 14.73 15.81 14.90 45.49 38.98 22.49 26.02

{x, i} 500 97.16 97.18 97.16 97.22 15.39 14.30 15.46 14.48 62.39 58.97 56.40 58.81

{x} 100 93.68 93.82 93.65 93.74 18.17 16.58 17.83 16.79 50.89 42.83 27.79 31.37

{x} 500 94.85 95.02 94.72 94.99 18.25 16.68 18.13 16.93 67.39 62.92 60.81 63.09

{i} 100 93.34 93.34 93.13 93.31 16.65 15.51 17.23 16.22 47.01 37.62 22.19 25.65

{i} 500 94.61 94.77 94.49 94.77 18.32 16.83 18.34 17.14 65.25 60.80 57.84 60.52

{open, closed} 100 94.46 94.74 94.28 94.65 22.84 20.13 22.83 21.48 48.95 38.53 16.73 36.78

{open, closed} 500 94.20 94.58 94.14 94.40 23.62 20.50 23.25 21.55 74.61 69.16 66.20 68.29

Table 2: Damage Estimation Performance for Spring
Damage

M N PRMSE RSDw Cw

{x, i, open, closed} 100 4.62 14.81 32.90

{x, i, open, closed} 500 3.90 14.74 32.31

{x, i} 100 5.83 14.58 33.79

{x, i} 500 3.87 14.93 34.37

{x} 100 3.99 16.44 38.13

{x} 500 3.10 16.83 35.39

{i} 100 5.16 15.74 40.72

{i} 500 4.61 16.45 34.90

{open, closed} 100 3.47 21.47 42.55

{open, closed} 500 3.00 21.89 42.35

estimated within similar error bounds as in Table 1.
Again, the sigma point methods usually underapproxi-
mate RSDRUL. With fewer particles, the gain in com-
putational efficiency is smaller, as expected, but gains
of 20-40% are still observed with N = 100, coming
within 30-90% of the maximum possible increase, and
the memory usage improves by at least 93% (i.e., 100
particles compared to at most 7 sigma points). Notice
also that for the cases where RSDRUL is larger, such as
with M = {open, closed}, the savings are even greater,
i.e., the wider the full particle distribution, the more of a
savings the sigma point methods can offer.

Overall, these results demonstrate that prediction can
be achieved much more efficiently with limited devia-
tions in prediction performance. The symmetric sigma
points seemed to provide the largest improvement in time
efficiency, but underapproximated the variance the most.
These two effects are interrelated. The smallest values
of the wear parameter in the full distribution contribute
most to the time cost, so sigma points concentrated more
towards the mean take less time to simulate. The mini-
mal skew simplex sigma points came closest to the vari-
ance of the true distribution, but usually with the smallest
time improvement.

The biggest practical difficulty in applying this
method is the selection of the free parameters, as this re-
lates to performance. Using the symmetric sigma points
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Figure 7: Prognostics performance for different values
of w0 for the minimal skew simplex sigma points, for k
with N = 500 and M = {x, i, open, closed}.

with the suggested value of κ seemed to always work
well, requiring no further tuning. There is no heuristic
available in the literature for the minimal skew simplex
and spherical simplex sigma points. In order to examine
the sensitivity of the selected value of the free parameter
on performance, we varied the value of w0 for the min-
imal skew simplex sigma points for the case of spring
damage with N = 500 and M = {x, i, open, closed}.
According to Table 1, the full distribution achieves
RA = 96.19% and RSDRUL = 15.21 cycles. Fig. 7
illustrates how these metrics vary over the selected range
of w0. In general, a large value of w0 will spread out the
sigma points, and therefore increase the predicted vari-
ance. For w0 ∈ [−1.0, 0.5], RA and RSD have little
deviation from the desired values produced by the full
distribution, so any value within this range will result in
an acceptable approximation. But, for w0 ∈ (0.5, 0.9],
the approximated RSD begins to increase significantly,
and RA decreases with it at a much smaller rate.
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7. CONCLUSIONS

In this paper, we developed a computationally efficient
prediction scheme for model-based prognostics based on
the unscented transform. The unscented transform al-
lows the statistics of a distribution passed through a non-
linear transformation to be predicted using a minimal set
of deterministically selected samples. Applying this to
the prognostics problem, we are able to predict the mean
and variance of the EOL accurately, and with improved
computational efficiency and significantly reduced mem-
ory costs.

Particle filtering approaches have become a popu-
lar choice for model-based prognostics (e.g., (Saha &
Goebel, 2009; Abbas, Ferri, Orchard, & Vachtsevanos,
2007)). The most significant disadvantage is the compu-
tational complexity, as usually a large number of par-
ticles are needed for accurate estimation, and, subse-
quently, prediction. A related approach to efficient pre-
diction is described in (Orchard, Kacprzynski, Goebel,
Saha, & Vachtsevanos, 2008), however, in this approach,
random sampling with a smaller number of particles is
advocated. As described in Section 5., a large number of
randomly selected particles are needed to correctly ap-
proximate the statistics of the prediction based on the full
particle set, so a significant number of particles would
still be needed. However, the method described in this
paper selects only the minimal number of points neces-
sary to capture those statistics. This number is depen-
dent only on the dimension of the state space. This ap-
proach is also applicable when a technique other than
particle filters is used for the estimation task, as long as
the method provides a state distribution which is to be
propagated forward to EOL. Note that if the unscented
Kalman filter is used, the sigma points are already avail-
able for prediction.

The unscented transform is not limited to Gaussian
distributions, but the prediction method based on it is
useful only when the mean and variance of the EOL dis-
tribution are meaningful statistics. For example, for a
multi-modal distribution, a single mean and variance are
not meaningful. This could be the case when multiple fu-
ture input trajectories are considered. In this case, each
mode is associated with one of these trajectories, and
each may be defined by a mean and variance. Therefore,
the method could be applied to each case individually to
obtain the means and variances of the different modes.

As part of future work, it is important to determine
strategies for selecting the free parameters of the differ-
ent unscented transforms, as this is the main hurdle to
practical implementation. As discussed in Section 6.,
the suggested heuristic for selecting κ for the symmet-
ric sigma points worked well. For the remaining meth-
ods, selection of w0 may be difficult, although a value
between −1 and 0.1 worked well here. Further, scaling
of the sigma points can also be performed, which intro-
duces additional free parameters (Julier, 2002). Bringing
the sigma points closer together will speed up computa-
tion, but it should be ensured that the variance estimate
remains accurate. A detailed analysis over this param-
eter space is necessary to suggest useful heuristics in
the context of prognostics. One may then envision auto-
matic methods to tune the free parameters to achieve the
desired spread in sigma points to correctly approximate
EOL mean and variance. Extensions of the unscented

transform to prediction of higher-order moments such as
skew and kurtosis may also be useful for prognostics.
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