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ABSTRACT 

Receiver Operator Characteristic (ROC) curves 
are commonly applied as metrics for quantifying 
the performance of binary fault detection 
systems. An ROC curve provides a visual 
representation of a detection system’s True 
Positive Rate versus False Positive Rate 
sensitivity as the detection threshold is varied. 
The area under the curve provides a measure of 
fault detection performance independent of the 
applied detection threshold. While the standard 
ROC curve is well suited for quantifying binary 
fault detection performance, it is not suitable for 
quantifying the classification performance of 
multi-fault classification problems. Furthermore, 
it does not provide a measure of diagnostic 
latency. To address these shortcomings, a novel 
three-dimensional receiver operator 
characteristic (3D ROC) surface metric has been 
developed. This is done by generating and 
applying two separate curves: the standard ROC 
curve reflecting fault detection performance, and 
a second curve reflecting fault classification 
performance. A third dimension, diagnostic 
latency, is added giving rise to three-dimensional 
ROC surfaces. Applying numerical integration 
techniques, the volumes under and between the 
surfaces are calculated to produce metrics of the 
diagnostic system’s detection and classification 
performance. This paper will describe the 3D 
ROC surface metric in detail, and present an 
example of its application for quantifying the 
performance of aircraft engine gas path 
diagnostic methods. Metric limitations and 
potential enhancements are also discussed.* 

                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

1 INTRODUCTION 

Diagnostic system designers rely on metrics to assess 
and compare the quality of candidate diagnostic 
methods. One such metric is the Receiver Operator 
Characteristic (ROC) curve. An ROC curve provides a 
technique for visualizing and evaluating the 
performance of binary classification systems (Fawcett, 
2005; Hanley and McNeil, 1982; Metz, 1978). 
Historically, ROC curves have been applied in the 
fields of communication signal detection theory, 
medical diagnostics, and machine learning. Recently, 
they have grown in popularity as a metric for 
machinery diagnostics (Davison and Bird, 2008; SAE, 
2008; Vachtsevanos et al., 2006).  
 As a point of introduction to ROC curves, first 
consider the multi-fault class diagnostic process 
illustrated in Figure 1. Shown is a system that can 
operate in either a nominal state, or in a faulty state 
where it has encountered one of N potential fault types. 
Also shown is a diagnostic method applied to produce a 
diagnostic inference of the current system state based 
on acquired sensed measurements. The diagnostic 
method consists of the three-step process of: 1) data 
conditioning—processes the acquired system sensor 
measurements to produce signal(s) used for fault 
detection and classification purposes; 2) fault 
detection—monitors produced signal(s) for threshold 
exceedance, which classifies the system as being in 
either a nominal or faulty state; and 3) fault 
classification—invoked upon fault detection to classify 
the system as being of one of the N possible fault states 
or fault types. This third step is commonly referred to 
as fault isolation.  
 A challenge in developing reliable machinery 
diagnostic methods is that the process is not 
deterministic. System measurement noise, variations in 
ambient conditions, operating load, deterioration, and 
nonlinear dynamics are all factors that contribute 
random variation to the process. This can lead to 
incorrect diagnostic inferences. For example, consider 
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Figure 1: Multi-fault diagnostic process 
 
the fault detection logic, shown in step 2 of Figure 1, 
that is tasked with performing the binary classification 
problem of declaring a system as either “nominal” or 
“faulty” based on a provided signal. The distributions 
in this signal under nominal and faulty operation are 
shown in Figure 2. Also shown is the placement of the 
threshold applied for detecting nominal versus faulty 
operation. Due to the overlap in the two distributions it 
will not be possible to attain 100% fault detection 
decision accuracy. In fact, there are four possible 
detection decision process outcomes including a true 
positive, a false positive, a false negative, or a true 
negative (see Figure 3). The probability of each 
outcome is defined as follows: 
 
• True Positive Rate (TPR): proportion of faulty cases 

that trigger a threshold exceedance. 
• False Positive Rate (FPR): proportion of nominal 

cases that trigger a threshold exceedance. 
• False Negative Rate (FNR): proportion of faulty 

cases that do not trigger a threshold exceedance.  
• True Negative Rate (TNR): proportion of nominal 

cases that do not trigger a threshold exceedance.   
 
The above probabilities will depend on two factors: the 
separation between the nominal and faulty distributions 
of the detection signal, and the applied detection 
threshold. Reducing the detection threshold will have 
the desired effect of increasing true positives, but this 
will come at the expense of increased false positives. 
This can pose a dilemma in attempting to compare the 
merits of candidate detection strategies. 
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Figure 2: Distribution in fault detection signal under 

nominal and faulty conditions 
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Figure 3: Detection decision matrix 

 
 The ROC curve is an effective tool for quantifying 
and comparing the TPR vs. FPR tradeoff of binary 
classification methods because it is independent of the 
applied detection threshold. An example ROC curve is 
shown in Figure 4. This curve is generated by plotting a 
detection method’s TPR vs. FPR, and illustrates the 
interrelationship between the two parameters as the 
applied detection threshold is varied over the full range 
of possible settings. Applying a detection threshold of 
∞ produces TPR and FPR values of 0. Conversely, 
applying a detection threshold of 0 will produce TPR 
and FPR values of 1.0. The area under the curve (AUC) 
forms a metric of detection performance, and ranges 
from 0.50 to 1.0. An AUC of 0.50 would be produced 
by applying a random guess, while an AUC of 1.0 
reflects perfect detection performance. It is important to 
 

 
Figure 4: An example ROC curve 
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emphasize that an ROC curve, and its associated AUC, 
is not only dependent on the applied detection 
approach, but also the fault severity distribution. Larger 
faults, which are easier to detect, will generally result in 
higher AUC values.    
 While the standard two-dimensional ROC curve is a 
suitable metric for binary classification problems, it 
only partially captures the salient characteristics of the 
multi-fault diagnostic problem presented in Figure 1. It 
will provide an indication of how well fault detection is 
performed, but it does not provide an indication of how 
well fault classification is performed given a multi-fault 
classification problem. Furthermore, the ROC does not 
reflect diagnostic latency, the time required for the 
diagnostic system to produce a correct diagnostic 
inference. To address these shortcomings a new three-
dimensional ROC (3D ROC) surface metric has been 
developed. It includes a second curve of Correct 
Classification Rate (CCR) versus FPR to quantify 
multi-fault classification performance. Additionally, a 
third dimension, diagnostic latency, can be added to 
reflect a measure of time within the diagnostic 
assessments.  
  The remaining sections of this paper are organized 
as follows. First, the 3D ROC surface diagnostic metric 
is described, and a step-by-step approach for generating 
and applying the metric is discussed. Next, results from 
the application of the 3D ROC surface metric for 
quantifying the diagnostic performance of several 
aircraft engine gas path diagnostic methods are 
presented. This is followed by a discussion of practical 
considerations for applying the new metric, including 
potential enhancements. Finally, conclusions are given. 

2 THREE-DIMENSIONAL RECEIVER 
OPERATOR CHARACTERISTIC (3D ROC) 
SURFACE METRIC 

The 3D ROC surface metric provides two 
enhancements to the standard ROC curve—
quantification of multi-fault classification performance 
and quantification of diagnostic latency. These 
enhancements are discussed in the following sections 
along with a description of the steps for applying the 
metric.  

2.1 Quantifying Correct Classification Performance  

Fault classification performance is captured by 
generating a second curve reflecting a diagnostic 
method’s correct classification rate (CCR) of a given 
fault type versus its FPR over the range of possible 
detection thresholds. Figure 5 shows an example of this 
CCR versus FPR curve, ROCCCR, along with the 
original TPR versus FPR ROC curve, hereafter in this 
paper referred to as ROCTPR.  
 

 
Figure 5: An example of the standard ROC curve 

reflecting true positives (ROCTPR) and the ROC curve 
reflecting correct classifications (ROCCCR) 

 
 Since fault detection is a prerequisite for fault 
classification, the ROCCCR curve will always reside at 
or below the ROCTPR curve. The ROCCCR curve, like 
the ROCTPR curve, will initiate at the origin 
corresponding to a detection threshold of ∞, and will 
monotonically increase as the detection threshold is 
reduced. However, unlike the ROCTPR curve, there is 
no guarantee that the ROCCCR curve will reach a final 
value of 1.0 once the detection threshold is reduced to 
zero. This is due to the fact that even if a fault is 
detected with 100% accuracy there is no guarantee that 
it will be classified with 100% accuracy.  
 The areas under the ROCTPR and ROCCCR curves, 
referred to as AUCTPR and AUCCCR, provide metrics of 
the diagnostic method’s true positive detection 
performance and correct classification performance, 
respectively. Once AUCTPR and AUCCCR are obtained, 
additional metrics reflective of the system’s 
misclassification rate can be calculated. The area 
between the curves (ABC) reflects the diagnostic 
method’s probability of misclassification given that a 
fault has occurred. This metric is calculated as AUCTPR 
minus AUCCCR. A normalized measure of system 
misclassification performance can be produced by 
dividing ABC by AUCTPR. This metric, referred to as 
ABCNORM reflects the system’s probability of 
misclassification given that a true positive detection has 
occurred. ABCNORM is perhaps preferred over ABC 
because it reflects the rate of misclassification given the 
opportunity for a misclassification.  
 In general, better diagnostic performance is 
indicated by maximizing AUCTPR and AUCCCR, while 
minimizing ABCNORM. Given an N-fault classification 
problem, the AUCCCR can in general be expected to 
range from AUCTPR/N (i.e., random classification) to 
AUCTPR (i.e., perfect classification). However, a lower 
bound of AUCTPR/N is by no means guaranteed, 
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especially if the classifier is designed to place more 
emphasis on certain fault types, or takes the rate of 
occurrence of fault types into consideration when 
making an inference.  
 Given a multi-fault classification problem, 
individual ROCTPR and ROCCCR curves can be 
generated for each fault type. Alternatively, single 
ROCTPR and ROCCCR curves reflective of the system’s 
overall fault detection and classification performance 
across all fault types can be generated. However, in 
generating ROCTPR and ROCCCR curves reflective of all 
fault types, users are cautioned of the need to consider 
the relative frequency of occurrence of the faults. The 
ROCTPR and ROCCCR curves for a single fault type are 
invariant to the fault’s frequency of occurrence relative 
to other fault types—they reflect the probability of true 
positive detection and correct  classification given that 
a fault of the specified type is present, versus the 
probability of a false positive given that no fault is 
present. Conversely, multi-fault ROCTPR and ROCCCR 
curves are not invariant to changes in the relative 
frequency of occurrence of the different fault types. 
Changes in component design or in the usage profile of 
a machine can make certain fault types more/less likely. 
The more frequent occurrence of easily diagnosable 
faults will result in higher metric values, while the 
more frequent occurrence of difficult to diagnose faults 
will result in lower metric values. The article (Webb 
and Ting, 2005), and the corresponding response 
(Fawcett and Flach, 2005) provide an excellent 
discussion of causal dependence and the impact of 
varying class distributions, or frequency of occurrence, 
on ROC analysis.  

2.2 Quantifying Diagnostic Latency 

In developing machinery diagnostic systems, designers 
must deal with random variations in the measurement 
process, which can make discriminating between 
nominal and anomalous conditions challenging. It is 
common to apply some form of data filtering or 
detection threshold persistency checks to help reduce 
the occurrence of false alarms. While beneficial for 
false alarm reduction, such filtering or persistency 
checks can introduce undesirable delay, or latency, into 
the diagnostic process. 
 To quantify a diagnostic method’s latency, a third 
dimension reflecting this latency, labeled as TL, is 
added to the previously described ROCTPR and ROCCCR 
curves. This gives rise to three-dimensional ROC 
surfaces as shown in Figure 6. Here, true positive 
detection performance is reflected by the top red 
surface, ROCSURFTPR, and correct classification 
performance is reflected by the blue surface below, 
ROCSURFCCR. Unlike the TPR and FPR axes that 
range from 0.0 to 1.0, the TL axis will range from 0.0 

(time of first available sample after fault occurrence) to 
some user-specified upper bound. This upper bound 
can be treated as the maximum acceptable diagnostic 
latency for the system. In other words, diagnostic 
inferences made beyond this point in time are treated as 
having no value. For some applications the acceptable 
diagnostic latency may be on the order of milliseconds, 
whereas for others it may be on the order of months. 
Regardless of the specified value, the coordinates on 
the TL axis are normalized by dividing them by the 
user-specified upper bound. This produces a TL axis 
ranging from 0.0 to 1.0, and ensures that the total 
volume contained within the three-dimensional ROC 
space is 1.0. In addition to normalizing the TL axis, it is 
often desirable to apply a scaling to the axis to place 
more emphasis on early diagnosis and less emphasis on 
more latent diagnosis.  

 
Figure 6: Example 3D ROC surfaces 

    
Diagnostic performance metrics can be produced by 
calculating the volumes under, and between the two 
surfaces. The volume under ROCSURFTPR, VUSTPR, 
reflects true positive performance, while the volume 
under ROCSURFCCR, VUSCCR, reflects correct 
classification performance. The volume between the 
two surfaces, VBS, reflects the misclassification rate 
given that a fault has occurred, and is calculated as 
VUSTPR minus VUSCCR. A normalized measure of 
misclassification, VBSNORM, can be calculated by 
dividing VBS by VUSTPR. 
 As with the previously described ROCTPR and 
ROCCCR curves, ROCSURFTPR and ROCSURFCCR 
surfaces can be generated for individual fault classes, or 
combined to produce 3D ROC surfaces reflective of 
average fault detection and classification performance. 
Obviously, the same considerations regarding a fault’s 
relative frequency of occurrence hold for the three-
dimensional surfaces as were previously discussed for 
the two-dimensional ROC curve metric. 
  As a point of emphasis it is noted to readers that the  
inclusion of the third dimension is only warranted for 
diagnostic methods where diagnostic latency is an 
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important design consideration. If diagnostic latency is 
not of concern, the two-dimensional ROCTPR and 
ROCCCR curves are sufficient.  

2.3 Step-by-Step Approach for Generating 3D ROC 
Surface Diagnostic Metrics 

The following is a more detailed description of the 
steps applied for generating the 3D ROC surface 
diagnostic metrics:  
 
 1. Obtain system data: Gain access to a suitable 
database of system data under both nominal and all 
faulty operating scenarios. This should contain 
stochastic variations such as sensor measurement noise 
and variations in operating conditions, performance 
deterioration, and load conditions. The faulty scenario 
data should be selected to represent the actual fault 
severity level distribution so that the ROC surface is 
not incorrectly biased towards a particular fault size. 
This data should be of suitable quantity to generate 
ROC surfaces of the desired fidelity. Richer data sets 
will allow higher fidelity surfaces to be generated, 
while sparser data sets will generate coarser surfaces 
with less precise metric results.  
 
 2. Specify FPR and latency axis coordinates: The 
user specifies m coordinates along the FPR axis ranging 
from 0.0 to 1.0, and n coordinates along the TL axis 
spanning the defined latency range. This forms an m n 
grid covering the 3D ROC surface. Uniform spacing of 
the coordinates is not required, and finer coordinate 
spacing often proves to be beneficial in regions where 
the detection and classification surfaces tend to undergo 
the most rapid rate of change, e.g., low FPR and 
latency levels. The only limitations are that attainable 
FPR axis coordinate spacing is dependent on the 
number of nominal (no fault) scenarios available, and 
latency axis coordinate spacing must be at, or a 
multiple of, the diagnostic inference update rate of the 
system. 
 

3. Determine the detection thresholds corresponding 
to the specified FPR and latency axis coordinates: The 
nominal system data collected in Step 1 can next be 
processed (using just the detection logic portion of the 
diagnostic method) to determine the detection threshold 
required to produce the specified FPR and latency at 
each of the m n grid points defined in step 2. If the 
detection logic is a function of previous detection 
assessment(s), as is often the case in diagnostic 
methods, different thresholds will be required to 
maintain a given FPR as the TL axis is traversed.  

 
 4. Evaluate fault detection and fault classification 
performance: The next step is to evaluate the diagnostic 

method’s fault detection and fault classification 
performance at each of the m n grid points defined in 
step 2 when applying the corresponding thresholds 
determined in step 3. This is accomplished by applying 
the diagnostic method to the faulty operational data 
obtained in Step 1. Average TPR and CCR values are 
determined at each grid point. The TPR and CCR 
information, along with FPR and TL coordinates, form 
three-dimensional ROCSURFTPR and ROCSURFCCR 
surfaces similar to the example previously shown in 
Figure 6.  
 
 5. Calculate the volumes under and between the 3D 
ROC surfaces: Once the ROCSURFTPR and 
ROCSURFCCR surfaces have been generated, the 
corresponding volumes under each surface, VUSTPR 
and VUSCCR, can be calculated. This can be 
accomplished by partitioning the VUSTPR and VUSCCR 
volumes into polyhedrons as illustrated in Figure 7 and 
Figure 8, respectively, and then applying a Riemann 
sum numerical integration technique to calculate and 
sum the individual polyhedron volumes to produce 
VUSTPR and VUSCCR. In the example given in Figures 7 
and 8 a logarithmic scaling has been applied to the TL 
axis. This places an emphasis on the importance of 
early diagnosis, with a decaying emphasis over time, 
and results in the observed non-uniform spacing of grid 
points along the latency axis.  

 
Figure 7: An example of VUSTPR partitioning 

 
Figure 8: An example of VUSCCR partitioning 
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Once the VUSTPR and VUSCCR volumes are obtained 
the previously mentioned VBS and VBSNORM metrics 
reflective of misclassification performance can be 
calculated. VBS, which provides an indication of the 
diagnostic method’s misclassification rate given that a 
fault has occurred, is calculated as 
 

TPR CCRVBS VUS VUS= −  (1) 
 
VBSNORM, which provides a measure of the 
misclassification rate given that a fault has been 
positively detected, is calculated as 
 

( )TPR CCR
NORM

TPR

VUS VUS
VBS

VUS
−

=  (2) 

 

3 EXAMPLE: APPLICATION OF THE 3D ROC 
SURFACE METRICS FOR QUANTIFYING 
AIRCRAFT ENGINE DIAGNOSTIC 
PERFORMANCE 

An example application of the 3D ROC surface 
diagnostic metrics is given in the form of a simulated 
aircraft turbofan engine gas path diagnostic problem. 
The following subsections describe the diagnostic 
problem, the diagnostic methods applied to the 
problem, and each method’s corresponding 3D ROC 
surface metrics results.  

3.1 Description of the Aircraft Engine Gas Path 
Diagnostic Problem 

Aircraft operators rely on gas path diagnostic methods 
to assist them in managing the health of their gas 
turbine engine assets. It is conducted by monitoring 
sensed measurements collected from the engine flow 
path, and utilizing this information to detect and 
classify engine faults that can impact engine flow path 
performance (Li, 2002; Volponi and Wood 2005; Von 
Karman Institute, 2003). Gas path diagnostics presents 
a classic multi-fault detection and classification 
problem, and thus is ideal for illustrating the 
application of the 3D ROC surface metrics.  
 In this study, a simulated gas path diagnostic 
problem is constructed using the NASA Commercial 
Modular Aero-Propulsion System Simulation 
(C-MAPSS), a generic turbofan engine simulation 
(Frederick, DeCastro, and Litt, 2007). The problem is 
setup to emulate the collection of time-averaged engine 
sensor measurement snapshots from each engine, each 
flight, while the aircraft is operating at a cruise 
operating point. Excluding sensors used for parameter 
correction and power setting reference purposes, the 
snapshot measurement vector consists of the four 

sensors shown in Table 1. The diagnostic objective is to 
accurately detect and classify the occurrence of any 
engine gas path faults with minimal diagnostic latency. 
In this study it is assumed that an engine is either 
operating nominally (fault-free), or has experienced one 
of three possible turbomachinery module faults. The 
three faults considered are fan, high pressure 
compressor (HPC), and low pressure turbine (LPT) 
faults. These faults are simulated in C-MAPSS by 
adjusting the efficiency and flow capacity health 
parameters of the respective faulty module. Fan and 
HPC faults are simulated by simultaneously reducing 
their efficiency and flow capacity health parameters, 
while LPT faults are simulated by reducing LPT 
efficiency and increasing LPT flow capacity. Each 
fault, along with their uniformly distributed fault 
magnitudes, or health parameter adjustments, are 
shown in Table 2. The location of the faulty modules 
and sensor locations within the C-MAPSS engine are 
shown in Figure 9. 
 
Table 1: Example gas path diagnostic problem—engine 

sensor measurements 
Sensor Description 

Nc Core Speed 
Ps30 HPC exit static pressure 

T48 Inter-turbine total temperature 

Wf Fuel flow 
 

Table 2: Example gas path diagnostic problem—fault 
types and magnitudes 

Fault 
type Description 

Magnitude 
(uniformly 
distributed) 

Fan Fan fault 0.5% to 3.0% 

HPC High pressure 
compressor fault 0.5% to 3.0% 

LPT Low pressure 
turbine fault 0.5% to 3.0% 
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Figure 9: C-MAPSS module faults and sensor locations 
 
Additional relevant characteristics of the fault scenarios 
considered are as follows: 
 
• Only single fault scenarios are included. Multiple 

faults occurring in combination is not considered.  
• All fault types have equal probability of occurrence. 
• All faults are simulated as abrupt step changes that 

occur between collected snapshot measurements. 
Engine fault transient dynamics are not captured. 

• Once a fault occurs, it will persist at a constant 
magnitude. Intermittent faults or faults that initiate 
and then undergo a change in magnitude are not 
considered.  

• The defined problem includes random variations in 
sensor noise, and the flight-to-flight cruise operating 
point.  

3.2 Description of the Evaluated Gas Path 
Diagnostic Methods 

Each of the evaluated gas path diagnostic methods is 
comprised of the three-step process of data 
conditioning, fault detection, and fault classification 
(see Figure 1). These steps are implemented as follows: 
 
Data conditioning: The incoming snapshot 
measurement vector is normalized to account for 
variations in operating condition, and referenced 
against a model reflective of nominal C-MAPSS engine 
performance to produce a vector of snapshot 
measurement residuals, y. Next, an exponential moving 
average (EMA) is applied to each of the four 
measurements contained in y. This places more 
emphasis on the most recent data, while older data is 
exponentially forgotten over time. The EMA of the 
residual in sensor a at time sample k is given as 
 

( ) ( ) ( ) ( )α 1 1 αa a ay k y k y k= ⋅ − + − ⋅  (3) 

where the weighting between the EMA on the previous 
time step, ( )1ay k − , and the current residual sample, 

( )ay k , is established by the constant α (where 0 ≤ α < 
1). The EMA α values applied by the diagnostic 
methods evaluated in this study are: 
 

• EMA α = 0.000 (no averaging) 
• EMA α = 0.667 
• EMA α = 0.905 

 
Fault detection: The signal monitored for fault 
detection purposes is the Mahalanobis distance (Hall 
and Llinas, 2001) of the vector, ( )y k , relative to the 
origin. This distance is calculated as 
 

( ) ( )1( ) T
MD k y k R y k−=  (4) 

 
where R is the measurement noise covariance matrix. If 
DM(k) exceeds the applied detection threshold, a fault is 
declared. All of the diagnostic methods evaluated in 
this study apply the Mahalanobis distance detection 
approach. 
 
Fault classification: Two different fault classification 
approaches were evaluated: a weighted least squares 
(WLS) approach and a probabilistic neural network 
(PNN) approach. The WLS classification approach is 
based on an analytically derived linear approximation 
of the influence of each fault type on the observed 
measurement vector (Gelb, 1974). Upon fault detection, 
the WLS classifier evaluates how well each candidate 
fault type matches the observed ( )y k  measurements in 
a weighted least squares sense. Weighting is applied to 
factor in covariance amongst the sensed measurements. 
The fault type that produces the closest match to ( )y k   
is then classified as the fault type. The PNN is a radial 
basis neural network classifier, designed using the 
newpnn function of the Matlab (The MathWorks, Inc.) 
neural network toolbox (Demuth and Beale, 2001). 
This classifier is empirically trained using C-MAPSS 
produced fault data sets, which are different than the 
data sets used for testing. The PNN is designed to 
produce a classification of the most likely fault class, 
provided the ( )y k  vector as an input. 
 
 The logic associated with each diagnostic method is 
designed such that once a fault is diagnosed, be it either 
correctly or incorrectly, that same fault diagnosis will 
persist into the future. In other words, a diagnostic 
method is not permitted to change its diagnostic 
assessment from one sample to the next once a positive 
diagnosis has occurred. All combinations of the 
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previously described data conditioning approaches (α = 
0.000, α = 0.667, α = 0.905) and fault classification 
approaches (LS, PNN) were evaluated resulting in a 
total of six different diagnostic methods. 

3.3 3D ROC Surface Diagnostic Metric Results 

3D ROC surface metric results were generated for each 
of the six evaluated diagnostic methods following the 
steps previously listed in Section 2.3. The test data 
generated by C-MAPSS to conduct this evaluation 
consisted of: 
• 5,000 nominal engines, each 20 snapshot 

measurement samples in duration. 
• 600 faulty engines (200 engines of each fault type), 

each 20 snapshot measurement samples in 
duration. Each of the faulty engines experienced a 
fault appearing on sample 10. During evaluation, 
the first 9 samples were used to establish residual 
moving averages, and samples 10 through 20 were 
used for evaluating fault diagnostic performance. 

 
The specified FPR and TL (latency) axes coordinates 
consisted of: 
• 26 FPR coordinates ranging from 0.0 to 1.0 
• 11 TL coordinates ranging from 0 to 10. This 

corresponded to samples 10 through 20 of the 
faulty engine data sets. The TL axis coordinates 
were scaled (applying a base 2 logarithmic 
scaling), and normalized to range from 0 to 1.  

 
 For each diagnostic method the 3D ROC surface 
metrics of VUSTPR, VUSCCR, and VBSNORM were 
generated applying a Riemann sum numerical 
integration technique. This was done considering the 
detection and classification of each fault type 
individually, as well as overall performance across all 
fault types. The results are shown in Table 3  for the six 
diagnostic methods considered. 
 These results reveal several findings. Based on the 
VUSTPR results it can be seen that fan faults are the 
most difficult to detect, followed by HPC faults and 
then LPT faults. The results also indicate that applying 
an EMA α of 0.667 provides superior detection results 
compared to EMA α values of 0.000 or 0.905.  This 
holds for all three fault types (fan, HPC, and LPT). The 
relative performance of the two fault classification 
approaches is mixed. The VUSCCR and VBSNORM results 
indicate that the PNN classifier provides superior 
classification of fan faults, LPT faults, and all faults 
collectively. However, the WLS classifier provides 
better classification of HPC faults. The best overall 
performance is obtained when applying an EMA α of 
0.667 coupled with the PNN classification approach 
(shown in bold font in Table 3). 

Table 3: 3D ROC surface metric results 
EMA 
α 

Fault 
type VUSTPR 

VUSCCR VBSNORM 
WLS PNN WLS PNN 

 

α = 
0.000 

FAN 0.787 0.562 0.686 0.286 0.128 

HPC 0.944 0.879 0.855 0.069 0.094 

LPT 0.946 0.789 0.909 0.166 0.039 

ALL 0.892 0.743 0.817 0.167 0.084 
 

α = 
0.667 

FAN 0.820 0.652 0.760 0.205 0.074 

HPC 0.943 0.901 0.892 0.044 0.054 

LPT 0.955 0.851 0.914 0.109 0.044 

ALL 0.906 0.801 0.855 0.115 0.056 
 

α = 
0.905 

FAN 0.785 0.597 0.694 0.241 0.117 

HPC 0.894 0.831 0.814 0.071 0.089 

LPT 0.928 0.779 0.855 0.160 0.079 

ALL 0.869 0.736 0.788 0.154 0.094 

  

4 DISCUSSION 

The diagnostic latency dimension of the 3D ROC 
surface metric provides a means of measuring 
diagnostic performance over a range of latencies 
suitable for the given application. In contrast, one must 
assume a fixed diagnostic latency (i.e., a fixed number 
of samples available for producing diagnostic 
inferences) when applying the standard 2D ROC curve. 
Consequently, the 2D ROC curve does not reflect the 
percentage of correct inferences that could have been 
made based on fewer/more samples. Furthermore, it 
does not emphasize the importance of early diagnosis. 
To illustrate this refer to Figure 10 showing the 
variation in AUCTPR and AUCCCR versus latency for the 
three EMA α’s coupled with PNN classification 
considered in the previous example. Here, the latency 
axis reflects the applied base 2 logarithmic scaling. 
These plots show the change in the area under the two-
dimensional ROCTPR and ROCCCR curves as additional 
samples are considered. Based on one sample it would 
be concluded that applying an α of 0.000 (no EMA) is 
superior given the three α options. If 11 samples are 
considered it would be concluded that applying an α of 
0.905 is superior. Over the range of samples shown, an 
α of 0.667 becomes the superior choice. This illustrates 
the benefit of including the third dimension within the 
3D ROC surface metric. Instead of simply capturing 
diagnostic performance at a fixed latency as the 2D 
ROC curve does, the 3D ROC surface provides an 
assessment of diagnostic performance across a range of 
potential latencies. That being said, it is acknowledged 
that the evaluated latency range and scaling is 
somewhat subjective as it is user specified. Integrating 
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over a shorter or longer length of the latency axis, or 
applying a different scaling, will produce different 
results. Therefore, users are reminded of the importance 
of specifying a latency range and scaling that is 
appropriate and relevant for their given application.        
 

 
Figure 10: Variation in AUCTPR and AUCCCR versus 

latency 
 
 As an additional point of emphasis, readers are 
cautioned that the volume under the 3D ROC surface 
metric, similar to the area under the 2D ROC curve 
metric, provides a general measure of diagnostic 
system performance. It does so by condensing 
performance over the entire surface into single metrics 
of detection and classification performance. While in 
practice these metrics perform very well in evaluating 
candidate diagnostic methods, it is possible for a 
diagnostic method receiving superior metric results to 
perform worse than a lower-scoring diagnostic method 
at specific detection threshold settings. This is a 
particularly relevant concern in machinery diagnostic 
applications that place high emphasis on maintaining 
low false positive rates. Therefore, it is often advisable 
to conduct additional analysis and comparison of 
candidate diagnostic methods applying detection 
thresholds that produce a false positive rate deemed 
appropriate for the given application. 
 Several potential enhancements to the presented 3D 
ROC surface metrics are possible. The presented 
approach has assumed that once a fault is detected, it 
must be classified to a specific fault type. This is not 
always a requirement in real-world diagnostic 
applications. For example, there could be cases where a 
fault is detected and then classified to be one of several 
faults within an ambiguity group—a group of faults 
known to produce similar sensed measurement 
signatures. There may also be cases where the 
diagnostic system simply declares an anomaly—an 
indication that the system is exhibiting abnormal 
behavior indicative of a fault, although no classification 
of the specific fault type is given. Such scenarios could 
be captured by adding an additional 3D ROC surface 
reflective of ambiguity group, and/or anomaly 

classification. Such a surface would reside between the 
TPR surface and the CCR surface. Collectively the 
three surfaces would show the demarcation between 
detections, classification to an ambiguity group or 
anomaly level, and classification to the individual fault 
level.  
 The presented approach has also taken the rather 
simplistic view of assuming that individual fault types 
can only occur in isolation. Two or more faults 
occurring in combination has not been discussed. 
However, the presented metric could be readily 
extended to encompass such scenarios. It would 
however require expanding the number of fault 
classifications to include all possible combinations of 
the N different fault types, which adds complexity.   
 Finally, readers are reminded that the presented 
metrics only provides a measure of diagnostic 
performance. As such the ROC surface metrics should 
be coupled with other metrics that provide measures of 
cost and complexity to thoroughly consider all aspects 
of the diagnostic method decision. 
 

5 CONCLUSION 

A three-dimensional Receiver Operator Characteristic 
(3D ROC) surface metric designed for visualizing and 
quantifying the performance of multi-fault class 
diagnostic methods has been presented. It enhances the 
standard True Positive Rate (TPR) versus False 
Positive Rate (FPR) ROC curve by adding a second 
curve reflecting Correct Classification Rate (CCR) 
versus FPR. A third dimension, diagnostic latency, is 
added to construct two 3D ROC surfaces. The volumes 
under and between the two surfaces give rise to a 
unified set of metrics  indicative of a diagnostic 
method’s fault detection, classification, and 
misclassification performance. These metrics are 
independent of the applied fault detection threshold, 
and inherently reflect diagnostic latency. The metrics 
can be used to assess a method’s ability to diagnose a 
single fault type, or used to assess average diagnostic 
capability over all fault types. However, in the latter 
case the metrics are susceptible to changes in fault type 
distributions. Results from the application of the metric 
to aircraft engine diagnostic methods have shown that it 
is an effective tool for evaluating diagnostic 
performance in multi-fault detection and classification 
problems.  
 

ACKNOWLEDGMENT 

This research was conducted under the NASA 
Aviation Safety Program, Integrated Vehicle Health 
Management Project.  

 



Annual Conference of the Prognostics and Health Management Society, 2010 

 10 

NOMENCLATURE 

3D ROC three-dimensional ROC 
ABC area between curves 
ABCNORM normalized area between curves 
AUC area under curve 
AUCCCR area under ROCCCR curve 
AUCTPR area under ROCTPR curve 
CCR correct classification rate 
C-MAPSS Commercial Modular Aero-

Propulsion System Simulation 
DM Mahalanobis distance 
EMA exponential moving average 
FNR false negative rate 
FPR false positive rate 
HPC high pressure compressor 
HPT high pressure turbine 
i index of FPR axis coordinates 
j index of TL axis coordinates 
k time sample index 
LPC low pressure compressor 
m number of FPR axis coordinates 
N number of fault classes 
n number of TL axis coordinates 
PNN probabilistic neural network 
R measurement covariance matrix 
ROC receiver operator characteristic  
ROCCCR CCR ROC curve 
ROCSURFCCR CCR ROC surface 
ROCSURFTPR TPR ROC surface 
ROCTPR TPR ROC curve 
TL diagnostic latency 
TNR true negative rate 
TPR true positive rate 
VBS volume between surfaces 
VBSNORM normalized volume between 

surfaces 
VUSCCR volume under ROCSURFCCR 
VUSTPR volume under ROCSURFTPR 
WLS weighted least squares 
  y measurement residual vector 
y  average measurement residual 

vector 
α exponential moving average 

weighting 
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