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ABSTRACT 

Analytical damage growth equations, such as Paris law, 

need the stress intensity factor for predicting damage 

growth. Analytical expressions for the stress intensity 

factor are available only for simple crack locations, 

geometries and loading conditions. Therefore, actual 

damage growth requires numerical solution, such as by 

finite elements. However, for estimating the uncertainty 

in remaining useful life (RUL), thousands of 

simulations of crack growth must be undertaken, which 

is computationally expensive. Here, an estimate of the 

error associated with RUL estimation based on an 

analytical stress intensity factor that does not consider 

the effects of boundary conditions, crack location or 

complex geometry is introduced. An effective damage 

parameter is identified which, although different from 

the true value, results in accurate damage growth 

prediction. Actual damage growth is simulated using 

the extended finite element method (XFEM) to model 

the effects of crack location and geometry on the 

relationship between crack size and stress intensity 

factor. The XFEM data are then perturbed with noise to 

simulate measurements. The damage growth parameter 

is then identified using least square filtered Bayesian 

(LSFB) method. The identified parameter can then be 

used with the model to estimate the RUL. Examples 

include center and edge cracks in a plate that 

experiences both horizontal and vertical finite effects 

and stress concentrations caused by the presence of 

holes. For these examples, it is found that the RUL 

estimates are accurate even when an inaccurate stress 

intensity factor model is used.
*
 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

1. INTRODUCTION 

Intuitively, model-based prognosis for a structure’s 

health management requires accurate estimation of 

model parameters. Here, model parameters which are 

different from the true values are identified which 

result the same prediction in the model-based prognosis 

model. Once these model parameters are identified, 

they can be used to predict the future behavior of the 

system. However, many physical models are limited to 

simple conditions. For example, the Paris model (Paris, 

1999) describes the rate of crack growth in terms of 

material properties and the stress intensity factor. The 

simplest available expression for the stress intensity 

factor is the infinite plate with a through-the-thickness 

center crack. In reality the stress intensity factor is a 

complicated function of applied loading, boundary 

conditions, crack position, geometry, and material 

properties. Although there are many correction factors 

for taking into account for finite plate size or edge 

cracks (Mukamai, 1987), still they are limited in 

representing complex engineering systems. 

The objective of this paper is to demonstrate that in 

model-based identification, one can use simple models 

to predict the remaining useful life even if they do not 

model well actual behavior. This is accomplished 

through the identification of an equivalent damage 

growth parameter that compensates for the difference 

between the model and the true stress intensity factor. 

A square plate is chosen as the geometry for the 

problem. The addition of cracks and holes to the plate 

causes the crack tip state of stress to experience finite 

plate effects in both the horizontal and vertical 

directions as well as stress concentrations caused by the 

addition of holes to the plate. As no solution is known 

to the authors which considers the vertical effects, the 

damage growth is simulated using the extended finite 

element method (XFEM) for calculating “true” stress 

intensity factors and Paris law is used to grow the 

crack. XFEM (Moёs, 1999) allows for discontinuities 

to be modeled independently of the finite element 
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mesh, which avoids costly remeshing as the crack 

grows. The stress intensity factors which are the driving 

force for crack growth are calculated using the domain 

form of the contour integrals (Shih, 1998). 

In practice, the actual damage sizes are measured 

using structural health monitoring systems in which on-

board sensors and actuators are used to detect damage 

location and size. In this paper, instead of using actual 

measurement data, synthetic data are generated to 

demonstrate the insensitivity of RUL to errors in the 

stress intensity model. First, the true values of Paris 

model parameters are assumed. Then, the true crack 

will grow according to the given parameters and 

prescribed operating and loading conditions. Thus, the 

true crack size at every measurement time is known. 

With the true crack size, the remaining useful life is 

defined when the crack size reaches the critical crack 

size, which is a function of material, operating, and 

loading conditions. It is assumed that the measurement 

instruments may have a deterministic bias and random 

noise. These bias and noise are added to the true crack 

sizes, which are denoted as synthetic measured crack 

sizes. Then, these data are used to predict the effective 

damage growth parameters and thus the remaining 

useful life. In this way, it is possible to evaluate the 

accuracy of prognosis method. 

Of the many methods available for parameter 

identification, the least-square-filtered Bayesian 

method (LSFB) (Coppe, 2009) is used to identify 

damage growth parameters using the synthetic data. 

This method applies nonlinear least-square method to 

the measurement data, so that the magnitude of noise 

can be reduced, followed by Bayesian inference, 

(Sheppard, 2005) to identify a probability distribution 

for model parameters. The identified distribution of 

damage growth parameters can then be used to predict 

the distribution of remaining useful life.  

An important question that is explored in this paper 

is whether or not a simple stress intensity model can be 

used for general crack geometries for the purpose of 

prognosis. The key concept in this paper is that the 

Paris model can be considered as an extrapolation tool. 

Thus, even if the actual crack growth behavior is 

different from that obtained with simplified stress 

intensity expressions, Bayesian inference will identify 

equivalent damage growth parameters, different from 

the true ones, such that the model accurately predicts 

future damage growth behavior. 

The paper is organized into the following sections. 

In Section 2, the crack growth model is introduced. In 

Section 3, the least-square-filtered Bayesian method is 

summarized. Results are presented in Section 4, three 

problems with increasingly complicated geometry, in 

the sense that the center crack in an infinite plate model 

is an increasingly bad predictor of the actual state of 

stress at the crack tip. Concluding remarks and future 

work are presented in Section 5. 

2. CRACK GROWTH MODEL 

The Paris model (Paris, 1999) gives the fatigue 

crack growth rate as a function of material properties C 

and m and the stress intensity factor range K∆  as 

( )
mda

C K
dN

= ∆ . (1) 

This model is created from experimental observation. 

For a center crack in an infinite plate in Mode I 

loading, the stress intensity factor range K∆  is given 

as 

K aσ π∆ =  (2) 

where σ  is the applied stress and a is the characteristic 

crack size. The characteristic crack length ai at the i
th

 

cycle derived from Eqs. (1) and (2) is given as 
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where a0 is the initial crack size and Ni the number of 

cycles at the i
th

 measurement. Similarly, the number of 

cycles to failure for a center crack in an infinite plate 

can be derived by integrating Eq. (1) as 

( )
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where 
c

a  is the critical crack size. Note that Nf is 

uncertain because the initial crack size and damage 

growth parameters are uncertain. Although the critical 

crack size can be uncertain, it can be specified by 

airliner as a criterion to fix the damage. 

In general, the accuracy of Eq. (2) depends on 

geometrical effects, boundary conditions, crack shape, 

and crack location. A more general expression 

(Mukamai, 1987) is  

( )K f aλ σ π∆ =  (5) 

where ( )f λ  is the correction factor, given as the ratio 

of the true stress intensity factor to the value predicted 

by Eq. (2). The value of λ  is given in terms of the 

geometry and characteristic crack size and is problem 

dependent. An example of the effect that the correction 

factor ( )f λ  can have on the stress intensity factor 

curve for a range of crack sizes is shown in Figure 1 for 

a center crack in an infinite plate, center crack in a 
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finite plate, and an edge crack in a finite plate 

(Mukamai, 1987). For this case the assumed plate 

width for the finite models was 0.2 m. 

 

 

Figure 1. Comparison of stress intensity response for 

some correction factors and crack sizes. Plate width is 

200 mm. 

For complex geometry, analytical expressions as 

given in Eqs. (4) and (5) do not exist. In such a case, 

numerical methods can be used to calculate the stress 

intensity factor K∆  and Eq. (1) can be numerically 

integrated to calculate the crack size as a function of 

the number of cycles as is done in Appendix B. 

3. LEAST SQUARE FILTERED BAYESIAN 

(LSFB) METHOD 

Bayesian updating and least square fit are often used 

for identifying unknown model parameters and present 

advantages and limitations, but they appear to be 

complementary. Least square fit’s ability to identify the 

bias and reduce the noise makes it a useful tool to 

process the data in order to identify the distribution of 

RUL using Bayesian updating. Note that we chose to 

update m here but similar results could be obtained by 

updating C  or both parameters together. 

The LSFB method processes information collected 

at every cycle by least square fit in order to reduce the 

noise, and identify the bias, b. The least square problem 

is expressed as 

( )
2

, ,
min

o

meas

i i
a m b

i

a b a− −∑  (6) 

where meas

i
a  are the synthetic measured crack sizes with 

noise model to simulate measurement data. 

The LSFB method assumes in this paper that the 

K∆  for the characteristic crack size a is given by Eq. 

(2), and an effective value of m is identified resulting in 

the same solution to Eq. (1) as though the true K∆  

were known. The identified values of a0, m and b are 

then used to generate a new estimate of the damage size 

at the i
th

 cycle using Eq. (3), they are referred to as 

filtered data. Those data are then used in Bayesian 

updating in order to narrow down the distribution of m 

and obtain a more accurate prognosis. The identified a0 

and b are considered as deterministic, and only 

uncertainty in m is considered in the Bayesian update. 

Bayesian inference is based on the Bayes’ theorem 

on conditional probability. It is used to obtain the 

updated (also called posterior) probability of a random 

variable by using new information. In this paper, since 

the probability distribution of m given a is of interest, 

the following form of Bayes’ theorem is used (An, 

2008) 

( )
( ) ( )

( ) ( )

|

|

ini

updt

ini

l a m f m
f m

l a m f m dm
+∞

−∞

=

∫
 (7) 

where fini the assumed (or prior) probability density 

function (PDF) of m, fupdt the updated (or posterior) 

PDF of m and l(a|m) is called the likelihood function, 

which is the probability of obtaining the characteristic 

crack length a for a given value of m, the derivation of 

the likelihood function can be found in Appendix A. 

The likelihood function is designed to integrate the 

information obtained from structural health monitoring 

(SHM) measurement to the knowledge about the 

distribution of m. Instead of assuming an analytical 

form of the likelihood function, uncertainty in 

measured crack sizes is propagated and estimated using 

the Monte Carlo simulation (MCS). Although this 

process is computationally expensive, it will provide 

accurate information for the posterior distribution.  

Once the distribution of m has been identified at 

cycle Ni, it can be used to predict the remaining useful 

life (RUL). The distribution of RUL is calculated at 

every SHM measurement cycle Ni using MCS and the 

RUL is estimated using Eq. (4) derived from Paris’ law. 

This allows us to estimate the distribution and from 

there obtain the 5
th

 percentile.  

The 5
th

 percentile of Nf samples is used as a 

conservative estimate of RUL in order to have a safe 

prediction. Since random noise is added to the synthetic 

data, the result may vary with different sets of data. 

Thus, the above process is repeated with 100 sets of 

measurement data and mean plus and minus one 

standard deviation intervals are plotted. 

In order to show the value of the LSFB method the 

RUL calculated using the distribution of mLSFB and the 

distribution (mean ± one standard deviation) of the 5
th

 

percentile of the distribution of RUL obtained using the 

updated distribution of m at each inspection are 

compared. 
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4. RESULTS 

For each example an aluminum 7075

with edge lengths of 0.2 m and thickness 2.48 mm 

an initial crack size of 0.01 m is used. Aluminum 7075 

has Young’s modulus E of 71.7 GPa, Poisson’s ratio 

of 0.33, critical mode I stress intensity factor 

MPa m , Paris Law constant C of 1.5E

assumed, deterministic Paris Law exponent 

The plate is assumed to be an aircraft panel with radius 

3.25 m, which undergoes pressurization cycles of 

amplitude 0.06 MPa. The relatively large initial crack 

size is chosen because many SHM sensors cannot 

detect small cracks. In addition, there is no significant 

crack growth when the size is small. However, this size 

is still too small to threaten the safety of an 

True crack growth data was calculated using the 

extended finite element method using stress 

from the pressurization model. XFEM simulations were 

performed on a structured mesh of square linear 

quadrilateral elements with characteristic length of 1

mm. Each cycle of fatigue crack propagation was 

modeled until the equivalent mode I stress intensity 

factor exceeded KIC. The characteristic crack length at 

each iteration was then used in the identification of a

equivalent Paris Law exponent through the use 

least-square-filtered Bayesian method

simplified stress intensity formula, Eq. 

4.1 Center crack in a finite plate 

The first problem considered is that of a

crack in a finite plate as shown in Figure 

right half of the plate was modeled with XFEM through 

the use of symmetry. 

Figure 2. A center crack in a finite plate.

The corresponding curve of the correction factor

( )f λ which this edge crack represented is given in

Figure 3. For this case, it was found that failure 
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n aluminum 7075 square plate 

with edge lengths of 0.2 m and thickness 2.48 mm and 

is used. Aluminum 7075 

Pa, Poisson’s ratio ν  

of 0.33, critical mode I stress intensity factor KIC of 30 

of 1.5E-10, and an 

Paris Law exponent m of 3.8. 

The plate is assumed to be an aircraft panel with radius 

pressurization cycles of 

atively large initial crack 

size is chosen because many SHM sensors cannot 

detect small cracks. In addition, there is no significant 

crack growth when the size is small. However, this size 

threaten the safety of an airplane.  

growth data was calculated using the 

using stress calculated 

XFEM simulations were 

performed on a structured mesh of square linear 

quadrilateral elements with characteristic length of 1 

Each cycle of fatigue crack propagation was 

modeled until the equivalent mode I stress intensity 

. The characteristic crack length at 

each iteration was then used in the identification of an 

equivalent Paris Law exponent through the use of the 

filtered Bayesian method with the 

 (2). 

that of a center 

Figure 2. Only the 

right half of the plate was modeled with XFEM through 

 

center crack in a finite plate. 

correction factor 

which this edge crack represented is given in 

For this case, it was found that failure 

occurred at 2070 cycles with a corresponding crack 

length of 37.5 mm. 

Figure 3. Correction factor for center crack

As the LSFB analysis results in a final distribution 

of m the predicted crack lengths for this distribution are 

plotted and compared directly to the XFEM data in 

Figure 4. The XFEM data fall within the bounds of the 

LSFB identification. 

Figure 4. Comparison of XFEM crack growth data with 

crack growth predicted from LSFB analysis.

Figure 5 shows in grey the distribution (mean ± one 

standard deviation obtained from 100 sets of different 

measurements) of 5
th

 percentile of RUL discussed in 

Section 2 for that geometry, compared to 

remaining useful life for an arbitrarily chosen 

deterministic critical damage size a
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occurred at 2070 cycles with a corresponding crack 

 

Correction factor for center crack. 

As the LSFB analysis results in a final distribution 

the predicted crack lengths for this distribution are 

plotted and compared directly to the XFEM data in 

. The XFEM data fall within the bounds of the 

 

. Comparison of XFEM crack growth data with 

crack growth predicted from LSFB analysis. 

shows in grey the distribution (mean ± one 

standard deviation obtained from 100 sets of different 

percentile of RUL discussed in 

Section 2 for that geometry, compared to the actual 

remaining useful life for an arbitrarily chosen 

C of 25 mm. 
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Figure 5. Distribution (mean ± one standard deviation) 

of 5
th

 percentile of RUL for a center crack.

It can be observed that the estimate of RUL 

converges to the actual remaining useful life from the 

conservative side. 

4.2 Edge crack in a finite plate 

Next, an edge crack in a finite plate was considered 

as shown in Figure 6. For this case the boundary 

conditions were fixing the lower right hand corner and 

allowing the top right corner to only move in the 

vertical direction. 

Figure 6. Edge crack in a finite plate.

The correction factor corresponding to 

which this edge crack represented is given in 

For this case, it was found that failure occurred at 1018 

cycles with a corresponding crack length of 27.
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Distribution (mean ± one standard deviation) 

percentile of RUL for a center crack. 

t the estimate of RUL 

converges to the actual remaining useful life from the 

Next, an edge crack in a finite plate was considered 

For this case the boundary 

conditions were fixing the lower right hand corner and 

allowing the top right corner to only move in the 

 

dge crack in a finite plate. 

to the finite effect 

which this edge crack represented is given in Figure 7. 

und that failure occurred at 1018 

cycles with a corresponding crack length of 27.2 mm. 

Figure 7. Correction factor for edge crack.

As the LSFB analysis results in a final distribution 

of m the predicted crack lengths for this dis

plotted and compared directly to the XFEM data in 

Figure 8. The XFEM data fall within the bounds of the 

LSFB identification. Compared to the case of a c

crack in an infinite plate the range of the identified 

distribution of m is wider, which is likely caused by the 

increased difference between the actual and assumed 

models for the stress intensity factor.

Figure 8. Comparison of XFEM crack growth data with 

crack growth predicted from LSFB analysis.

Figure 9 shows the distribution of 5

RUL discussed in Section 2 for that geometry, 

compared to the actual remaining useful life. As for the 

previous geometry it can be observed that the estimate 

of RUL converges to the actual value from the 

conservative side. 
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for edge crack. 

As the LSFB analysis results in a final distribution 

the predicted crack lengths for this distribution are 

plotted and compared directly to the XFEM data in 

. The XFEM data fall within the bounds of the 

LSFB identification. Compared to the case of a center 

crack in an infinite plate the range of the identified 

is wider, which is likely caused by the 

increased difference between the actual and assumed 

models for the stress intensity factor. 

 

Comparison of XFEM crack growth data with 

crack growth predicted from LSFB analysis. 

shows the distribution of 5
th

 percentile of 

in Section 2 for that geometry, 

compared to the actual remaining useful life. As for the 

previous geometry it can be observed that the estimate 

of RUL converges to the actual value from the 
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Figure 9. Distribution (mean ± one standard deviation) 

of 5
th

 percentile of RUL for an edge crack.

4.3 Center crack in a plate with holes

The final example considers differences between 

the actual and predicted model that may be caused by 

localized stress concentrations in structures. Four holes 

are inserted into the plate as shown in 

the right half of the plate was modeled with XFEM 

through the use of symmetry. 

Figure 10. Center crack in a finite plate with holes.

Unlike the other examples presented, the authors 

are unaware of an approximation to 

correction factor obtained from XFEM is shown in 

Figure 11. For this case, it was found that failure 

occurred at 625 cycles with a corresponding crack 

length of 24.2 mm. 
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Distribution (mean ± one standard deviation) 

percentile of RUL for an edge crack. 

Center crack in a plate with holes 

The final example considers differences between 

the actual and predicted model that may be caused by 

in structures. Four holes 

are inserted into the plate as shown in Figure 10. Only 

the right half of the plate was modeled with XFEM 

 

. Center crack in a finite plate with holes. 

Unlike the other examples presented, the authors 

are unaware of an approximation to ( )f λ . This 

correction factor obtained from XFEM is shown in 

. For this case, it was found that failure 

occurred at 625 cycles with a corresponding crack 

Figure 11. Correction factor for plate with holes.

As the LSFB analysis results in a final distribution 

of m the predicted crack lengths for this distribution are 

plotted and compared directly to the XFEM data in 

Figure 8. The XFEM data fall within the bounds of the 

LSFB identification. The identified crack size 

distribution is wider than others which corresponds to 

the model being increasingly far away from reality.

Figure 12. Comparison of XFEM crack growth data 

with crack growth predicted from LSFB analysis.

Figure 13 shows the distribution of 5

RUL discussed in Section 2 for that geometry, 

compared to the actual remaining useful life for a 

critical damage size of 24 mm. As for the previous 

geometries it can be observed that the estimate of RUL 

converges to the actual value from t

side. It has to be observed that the estimation is not as 

accurate but this can be explained by the fact that the 

geometry is very different from the one assumed in the 

model and the number of cycles to failure is much 

smaller. 
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for plate with holes. 

As the LSFB analysis results in a final distribution 

the predicted crack lengths for this distribution are 

plotted and compared directly to the XFEM data in 

. The XFEM data fall within the bounds of the 

LSFB identification. The identified crack size 

distribution is wider than others which corresponds to 

the model being increasingly far away from reality. 

 

. Comparison of XFEM crack growth data 

with crack growth predicted from LSFB analysis. 

shows the distribution of 5
th

 percentile of 

RUL discussed in Section 2 for that geometry, 

compared to the actual remaining useful life for a 

As for the previous 

geometries it can be observed that the estimate of RUL 

converges to the actual value from the conservative 

side. It has to be observed that the estimation is not as 

accurate but this can be explained by the fact that the 

geometry is very different from the one assumed in the 

model and the number of cycles to failure is much 
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Figure 13. Distribution (mean ± one standard deviation) 

of 5
th

 percentile of RUL for a plate with holes. 

5. CONCLUDING REMARKS 

Effective damage growth parameters were 

identified using the LSFB method for cases of finite 

and geometric effects. The stress intensity factor 

relationship was assumed to follow the center crack in 

an infinite plate and the Paris Law exponent m was 

identified which is correct for the incorrect stress 

intensity factor relationship. Damage growth was 

simulated at each loading cycle through the use of the 

extended finite element method with a reanalysis 

algorithm. 

This represents the versatility of the proposed 

method in that it does not require a priori knowledge of 

the correction factor ( )f λ . The mean value of the 

updated distribution of m and the RUL curves show 

good agreement with the simulated results. It is 

especially encouraging that the RUL converges from 

the conservative side. 

The method is demonstrated here updating only one 

parameter, m, of Paris’ law, the same idea can be 

applied to the parameters m and C together. This should 

allow for even more accurate results because it would 

allow for more flexibility in fitting the equivalent 

model. The feasibility of using XFEM in the 

calculation of the likelihood function will also be 

explored which may identify the true m and C. 

APPENDIX A: LIKELIHOOD FOR BAYESIAN 

INFERENCE 

The idea is to identify the damage parameters m or 

C from the measured half crack size that is 

contaminated by measurement errors. In order to do 

that, the measurements are compared to the simulated 

crack size defined above. In order to use the 

information in Bayes law, it is necessary to estimate the 

likelihood ( )|l a m  that for a given set of material 

properties m or C, meas sim

N N
a a=  or in other words:  

0sim meas

N N
a ad − ==

 
(8) 

If analytical expressions for the PDFs of meas

N
a  and 

sim

N
a  are available they can be used to obtain the PDF 

of d, then the value of this PDF at d = 0 is the 

likelihood function. Since this rarely happens, MCS 

will be used as the likelihood function 

( ) ( )| da ml P= ≤ ε . (9) 

Note that the integration over ε is just a normalizing 

constant that is taken care of by the normalization in 

the Bayesian formulation. 

If the likelihood ( )|l a m  is calculated purely by 

sampling meas

N
a  and, sim

N
a  then the tolerance ε  needs to 

be large enough to include enough sample points to 

reduce the sampling error to acceptable levels. On the 

other hand if ε � is large, errors will increase due to 

nonlinearity in the likelihood function. 

It is assumed that the measurement error that 

controls meas

N
a  is independent of the modeling errors 

that control sim

N
a �����. In that case, separable sampling 

can be performed by comparing all possible 

combinations of two individual samples. 

The PDF of sim

N
a  is not available analytically, 

because it is obtained from propagation of uncertainties 

through an analysis code. On the other hand, the 

measurement errors are assumed rather than 

propagated, and they are here assumed to be uniform in 

a bounded region. It is investigated how to take 

advantage of the given distribution of meas

N
a ������ in 

order to improve the efficiency or accuracy of the 

sampling. In this case meas

N
a  ������and sim

N
a  are scalar, 

such that 

( ) ( )
( ) ( )1 0

|

0

l P d

P d P

m

d

a = ≤

= − + ≤ − − ≥

ε

ε ε

. (10) 

Using conditional expectation on the second term 

on the right-hand side the following expression is 

obtained: 

( ) ( )
( ) ( )
( ) ( )

ε ε

ε

ε

0 0

0
sim
N

sim

N

sim meas

N N

sim meas sim sim

N N sim N N
a

sim sim sim

meas N sim N N
a

P d P

P f d

F

a a

a a a

a f

a

a da

− ≥ = ≥− −

= − −

−

≥

=

∫
∫

(11) 
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where ( )simf x  is the PDF of sim

N
a  and ( )simF x 	���
�� 

is the CDF of sim

N
a ∆����� . The last relation is obtained 

from the definition of CDF; i.e., by considering meas

N
a

∆������ as the only random variable, 

( ) ( )meas sim sim

N N meas N
P a a F aε ε≤ − = − 
�∆������ ≤

∆����� − �� = 	�����∆����� − ��. Similarly, the first 

term can be written as 

( ) ( ) ( )

( ) ( )

0 0
sim
N

sim
N

sim meas sim sim

N N sim N N
a

sim sim sim

meas N sim N N
a

a a a a

a a

P d P f d

f daF

≥ − +

+

+ = ≥

=

∫

∫

ε ε

ε

 (12) 

By combining Eqs. (11) and (12), the likelihood can 

be written as 

( ) ( ) ( ) ( )
( ) ( )2

|
sim
N

sim
N

sim sim sim sim

meas N meas N sim N N
a

sim sim sim

meas N sim N N
a

l F F f da m a a a a

f fa ada

 = −+

≈

−  ∫
∫

ε ε

ε

 (13) 

where the central finite difference approximation is 

used in the second relation, which becomes exact when 

ε→0� → 0. As explained before, since the posterior 

PDF will be normalized, the coefficient 2ε can be 

ignored. The above expression is in particular 

convenient for separable MCS because the analytical 

expression of ( )measf x �����
�� is known, and ����
�� 

can be evaluated by propagating uncertainty through 

numerical simulation. Let M be the number of samples 

in MCS, the likelihood can then be calculated by 

( ) ( ) ( )

( ),

1

|

1

sim
N

sim sim sim

meas N sim N N
a

sim

meas N

M

i

i

l fa m a a a

a

d

f
M

f

=

=

≈

∫

∑
 (14) 

In the literature (Li, 2009), the Gaussian function is 

often assumed for the likelihood function. In addition, 

the expression of this function remains unchanged 

throughout the entire process. However, the likelihood 

function is quite different from the Gaussian function 

and it varies at different crack sizes. Since the 

uncertainty structure of the posterior distribution 

strongly depends on the likelihood function in Bayesian 

inference, the error in the likelihood calculation directly 

affects the accuracy of the posterior distribution. 

In the case presented here �����
���∆�,�
��� � is the 

PDF corresponding to the uniform distribution of the 

measure damage size. 
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APPENDIX B: EXTENDED FINITE ELEMENT 

METHOD 

Modeling crack growth in a traditional finite 

element framework is a challenging engineering task.  

The finite element framework is not well suited for 

modeling crack growth because the domain of interest 

is defined by the mesh. At each increment of crack 

growth, at least the domain surrounding the crack tip 

must be remeshed such that the updated crack geometry 

is accurately represented. If a large number of cycles 

are to be considered, this repeated remeshing can 

consume a large amount of the computational time for 

the analysis. 

The extended finite element method (XFEM) 

allows discontinuities to be represented independently 

of the finite element mesh (Moёs, 1999). Arbitrarily 

oriented discontinuities can be modeled by enriching all 

elements cut by a discontinuity using enrichment 

functions satisfying the discontinuous behavior and 

additional nodal degrees of freedom. For the case of a 

domain containing a crack and voids (Daux, 2000) the 

approximation is: 

( )h

I I I I

I

u x V N u Ha bα

α
 = + + Φ ∑  (15) 

where N
I

 are the finite element shape function, V is 

the void enrichment function, H  is the Heaviside 

enrichment function, αΦ  are the crack tip enrichment 

functions, and 
I

u , 
I

a , and 
I

b  are the classical and 

enriched degrees of freedom (DOF). 

To decrease the computational time for the repeated 

solutions, a reanalysis algorithm (Pais, 2010) is used 

which takes advantage of the large constant portion of 

the global stiffness matrix represented by 
uu

K , 
ua

K , 

and 
aa

K . 

The mixed-mode stress intensity factors KI and KII 

for the given cracked geometry were calculated using 

the domain form of the interaction integrals (Shih, 

1988). The direction of crack growth was calculated 

using the maximum circumferential stress criterion 

(Shih, 1998). The effective stress intensity factor 

(Tanaka, 1974) given as 
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4 44 8
eff I II

K K K∆ = +  (16) 

was used to convert the mixed-mode stress intensity 

factors into a single value for used in Paris law. The 

crack growth at a given cycle is given as 

( )
m

eff
a C K∆ = ∆ . (17) 

The implementation of XFEM used here was 

verified using the center crack in a finite plate problem 

given in Section 3.1. For this problem the theoretical 

finite correction factor based on the equations of 

elasticity for a center crack in a finite plate (Mukamai, 

1987) is given as 

( )
2 43

sec 1
2 40 50

f
πλ λ λ

λ
  

= − +  
  

 (18) 

where a Wλ =  and a and W are the half crack length 

and half plate width. This model assumes that the plate 

is finite in the x-direction and infinite in the y-direction. 

A comparison of the crack lengths as a function of the 

number of cycles was first performed to ensure the 

accuracy of the XFEM data provided to the 

identification routine. As there is no closed form 

solution for the crack size as a function of N due to the 

finite correction factor given in Eq. (5) the forward 

Euler method with 10
4
 steps was used. This step size 

represents less than 0.1 percent change from 10
3
 steps. 

A comparison of the results is shown in Figure 14. 

 

Figure 14. Theoretical and XFEM crack growth curves. 

It was noticed that for the given plate geometry the 

finite and XFEM models predicted different crack 

growth curves. Increasing the height of the plate leads 

to good agreement with the theoretical values 

indicating that the chosen crack configuration has a 

finite effect from both the vertical and horizontal 

directions. The resulting difference in ( )f λ  caused by 

the vertical finite effect as a function of the number of 

cycles is shown in Figure 15. 

 

Figure 15. Theoretical and XFEM prediction of ( )f λ . 
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NOMENCLATURE 

a current crack length 

aC critical crack length 

ai crack length at cycle N 

ao initial crack length 

b bias applied to crack size data 

C Paris Law constant 

m Paris Law exponent 

mCRIT effective m value for critical crack length 

mLSFB final LSFB distribution of m 

mLSQ effective m value from least square fit 

mTRUE true value of m 

∆K stress intensity factor range 

KIC critical mode I stress intensity factor 
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