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ABSTRACT 

The use of condition monitoring (CM) in wind 

energy machines continues to evolve as wind energy 

machines grow in size and move offshore.  Early and 

smaller wind generation machines offered little 

financial incentives for condition monitoring, 

justifying only simple and inexpensive health 

monitoring technologies.  Today, multi-megawatt 

wind machines are more complex, more difficult to 

physically reach, and generate more revenue than 

previous models.  This paper reviews challenges and 

candidate technologies for next generation condition 

monitoring in Wind Energy.   

 

Larger wind turbines typically employ Doubly-Fed 

induction generators with gearbox based drive trains 

or direct drive generators with multi pole rotors and 

fixed stators.  Both configurations employ variable 

speed wind driven rotors, variable due to wind speed.   

Fixed rotor speed signal processing techniques no 

longer work in a variable speed environment.  

Synchronous sampling, order analysis, wavelet 

filters, Cepstrum and related frequency analysis of 

sensor waveforms are examples of advanced feature 

extraction tools now available for up-tower condition 

monitoring systems to address the variable speed 

nature of modern wind turbines.  These signal 

processing tools operate to reduce and preprocess 

sensory data producing and extracting signal features.  

With extracted features, performance prediction and 

health diagnostics are then able to produce machine 

degradation rate and degradation levels.   

 

This paper provides a tutorial of signal processing 

techniques for analysis of sensory information from 

variable speed rotary machines.  The paper concludes 

with a discussion of prediction and diagnostics 

techniques which consume the analysis results of 

previously mentioned signal processing techniques. 
*
 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

1 INTRODUCTION 

As wind energy machines grow in size and move 

offshore, reaching the machines to conduct routine 

maintenance and repairs becomes extremely difficult.  

As wind turbines evolve to higher MW ratings, 

reliability is more critical.  In off shore environments 

limited human access and poor weather often lengthen 

the time to repair.  To reduce the burden of 

maintenance activities, improved reliability of wind 

energy machines becomes paramount.   

 

Reliability of the wind turbine generator drive train, for 

example, depends on several factors including design, 

manufacturing quality, acceptance testing, and 

monitoring (Tan 2010).  We often think of design and 

manufacturing as fundamental to reliability of the drive 

train.  However, reliability of any system is increased 

with monitoring and supervision.  Monitoring 

technologies coupled with mathematics (that indicate 

failures) allow for operations personnel to respond to 

drive train health degradation on a convenient schedule 

by using failure indications from monitoring 

technology. Reliability is then improved by avoiding 

surprise failures and by scheduling resources at the 

most cost and risk effective time.  When action is taken 

to prevent failures, the wind turbine is more reliable.   

 

There are many variables to consider in choosing a 

monitoring strategy.  These include identification of 

typical failure modes of the drive train, the generator, 

driving forces, and key machine performance 

indicators.  A holistic approach to monitoring 

incorporates all system parameters to provide a 

complete picture of the health of the wind turbine.  On 

the other hand, an extreme volume of data from 

monitoring instruments is burdensome to evaluate and 

act upon.  Due to this burden, evaluations are set aside 

and maintenance decisions to act are made without the 

benefit of failure indications hidden in the data.  

Operational decisions then suffer from data overload.   

                                                                                          
which permits unrestricted use, distribution, and reproduction 
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In order to benefit from a holistic monitoring approach 

and to avoid data overload, smart monitors analyze and 

reduce at the point of data acquisition.  The 

combination of sensor and monitoring technologies can 

create a smart sensor to analyze incoming sensory 

information and reduce it to actionable items.  

Measured signals, such as vibration and temperature, 

carry feature information describing a physical aspect 

of the electromechanical component where the sensor is 

placed.  Time domain and frequency domain analysis 

reduces the digitized sensor signal into key features.  

However, the wind turbine is subjected to variable 

excitation forces (wind) and operates at variable 

rotational speeds.  The variability of excitation force 

and rotational speeds creates challenges for traditional 

signal processing techniques.   

 

To compensate for variability of excitation forces 

wavelet and order analysis are two base signal 

processing technologies used to reduce errors from 

traditional signal processing analysis techniques.   

2 CHALLENGES WITH TRADITIONAL 

SIGNAL PROCESSING TECHNIQUES 

Traditional signal processing techniques for rotating 

machinery signal evaluation assume the machine speed 

remains constant.  As noted above, wind energy 

machines are subjected to varying aerodynamic forces 

which result in speed variations significant enough to 

cause significant errors in signal processing results.   

2.1 Limitations of the Fast Fourier Transform 

The Fast Fourier Transform (FFT) is the basic 

operation in frequency analysis of vibration response of 

wind turbine excitation forces.  However, frequency 

analysis produces frequency, amplitude, and phase 

information from the vibration signal.  However, the 

FFT does not indicate when in time the feature 

occurred.  Frequency analysis is useful for analyzing 

stationary signals where frequency content does not 

change over time, such as unbalance in a constant 

speed machine. Figure 1 shows an example of shaft 

unbalance time waveform and the corresponding 

frequency analysis as produced by the power spectrum 

FFT.  In a tenth of a second, the 3600 RPM (60 Hz) 

machine’s shaft wobbles back and forth 6 times.  The 

FFT indicates a vibration frequency component at 60 

Hz, which is the rotational speed of the machine.  We 

know from machine vibration texts, that machine 

unbalance features exist at the rotational speed of the 

machine. 

 

 
Figure 1:  3600 RPM machine with unbalance shown in 

time waveform and power spectrum analysis.   

 

However, as the speed changes, the standard FFT is 

unable to isolate the core frequency.  For example, a 

high speed pump increasing in speed from 1000 RPM 

to 3600 RPM with unbalance and mechanical looseness 

offers vibration measurements as shown in Figure 2.  

Here the unbalance and mechanical looseness are hard 

to isolate with an FFT alone. 

 

 
Figure 2:  Machine run-up vibration measurement, 

speed profile and FFT of vibration measurements. 

 

The increasing speed of the machine causes frequency 

variations in the time record.  The FFT “sees” all of 

these frequencies and reports the existence of many 

frequencies and amplitudes.  Therefore, it is nearly 

impossible to isolate the mechanical fault vibrations 

that change with changes in speed.  While some 

machines may change speed rapidly as shown here, 

wind turbines do change speed, yet not as quickly.  

Even so, changes in speed reduce the accuracy of the 

FFT if the signal processing sequence is not adapted for 

changes in speed (Zhang 2008).   

2.2 Using Resampling Order Analysis to 

Compensate for Machine Speed Variations 

In order to correctly isolate the individual unbalance 

and mechanical looseness measurements, it is necessary 

to track the running speed of the machine and remap 

the time series data to the angular position of the shaft.  

This is accomplished by a technique called resampling.  

Resampling combines the speed measurements taken 

from a tachometer with the vibration measurements and 

interpolates the vibration measurements into a data 

point per fraction of angular rotation.  The vibration 

measurements are now in the angular domain as 

compared to the time domain.  Once in the angular 
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domain, an FFT can be performed on the angular 

domain vibration measurement to produce what is 

known as an order spectrum.  This analysis is often 

referred to as order analysis.  Taking the same vibration 

measurements shown in Figure 2, and performing order 

analysis, the out of balance signature and the 

mechanical looseness signature of the pump are easier 

to separate, detect, and quantify.  Figure 3 shows the 

same vibration and speed information along with an 

order spectrum. 

 

 
Figure 3:  Machine run-up vibration measurement, 

speed profile, and order spectrum of vibration 

measurements.   

 

With order analysis then, we are able to isolate 

repetitive vibrations from mechanical components even 

as the speed of the machine changes.   

2.3 Resampling Process Defined 

Resampling from time domain to angular domain is a 

signal processing step, when correctly done, aligns data 

with the angular position of the shaft and inhibits 

aliasing of high frequency signals into the measured 

time waveform.  Historically synchronous sampling 

(resampling) has been accomplished with an encoder 

and an externally clocked analog to digital converter.  

However, this technique does not inherently provide 

alias protection. Modern vibration monitoring systems 

employ 24 bit delta sigma analog to digital converters 

that provide excellent anti-aliasing filters and a wide 

dynamic range over 100dB.  A central element of this 

24 bit technology is an internal precision oscillator that 

clocks the internal filters of the converter.  Since the 

delta sigma converters rely on their internal oscillator, 

they cannot be externally clocked.   

 

Using resampling, data is digitized with a 24 bit (delta 

sigma) analog to digital converter at a high rate, 

sampling well above the highest frequency of interest.  

The delta sigma converter includes the anti-aliasing 

filter as it digitizes sensory information in the time 

domain.  Simultaneously, an encoder or tachometer 

signal is digitized to indentify the angular position of 

the rotating shaft.  Next, software determines the 

desired angular position where a process or vibration 

signal is desired and an interpolation algorithm 

generates a angular series data point from the existing 

time record that exactly aligns with the desired angular 

position.  A second stage low pass filter is then applied 

based on the desired samples per revolution.  Finally, 

the angular position waveform may be decimated to the 

desired number of samples per revolution of the 

rotating shaft (National Instruments 2009, Sound and 

Vibration).  Figure 4 graphically depicts the process.   

 

 

 
Figure 4:  Resampling Method 

 

As a result, both original time series time waveforms as 

well as angular position angular base waveforms are 

available for signal processing.  For example, the FFT 

of angular base waveform sensory signals produces 

Order Analysis results as described in section 2.2.  

 

All mathematical algorithms that are typically used for 

fault detection and diagnosis can work on either time 

waveforms or angular waveforms.  Mathematical 

algorithms expect a constant uniform increment 

between units of time, or angle.  With the original time 

waveform, and now the angular domain waveform, the 

unit of measure increment (time or angle) is constant.  

Further, the data blocks when acquired correctly are 

continuous from block to block.   

 

Again, the new angular waveform has removed the 

variability of speed from the data samples and now 

allows advanced signal processing to correctly 

identified desired metrics (as shown with the FFT in 

order analysis).   

3 ANALYSIS TECHNIQUES FOR IMPACT 

DETECTION IN MECHANICAL SYSTEMS 

Gear and bearing defects in rotating machinery are 

often associated with impacting between metal 

components such as roller balls and race or between 

teeth of pinion and output gears.  Impacting creates a 
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high frequency transient signal in the time waveform.  

Because the impact is transient in nature, and not 

periodic, the FFT does not adequately represent the 

transient in its frequency, or order domain.     

3.1 Transient Signals and the FFT 

Transients are sudden events lasting for only a short 

time in measurement.  Transients usually have low 

energy and a wide frequency band.  When transformed 

into the frequency domain or the order domain by a 

Fourier transform, the transient energy is spread over a 

wide frequency range.  Because of the transient’s low 

energy per frequency, it is difficult to recognize their 

existence in the frequency domain.  Figure 5 shows an 

unbalance vibration measurement from a 1800 RPM 

machine (30 Hz) with and without a transient impact.   

 

 
Figure 5:  Machine unbalance vibration measurement 

with and without a transient impact.   

3.2 Using Wavelets to Detect Impacts 

Wavelets, the reference used in wavelet analysis, are 

defined as signals with two properties: admissibility 

and regularity.  Admissibility means that a wavelet 

reference or mother wavelet must have a band-pass-

limited spectrum.  Admissibility also means that 

wavelets must have a zero average in the time domain.  

A zero average implies that wavelets must be 

oscillatory.  Regularity means that wavelets have some 

smoothness and concentration in both the time and 

frequency domains.  Regularity then means that 

wavelets are oscillatory and compact signals (Qian 

2002).   

 

As comparison, sine waves oscillate along the time axis 

forever in time without any decay, which means they 

are not compact.  In other words, sine waves do not 

have any concentration in the time domain.  On the 

other hand, sine waves have extreme concentration in 

frequency domain.  Sine waves have maximum 

resolution in frequency domain but no resolution in 

time domain.  

 

Wavelets have limited bandwidth in the frequency 

domain and compact bandwidth in the time domain.  

So, wavelets have a good concentration and resolution 

trade-off between the time and frequency domain. 

Figure 6 depicts the differences between a sine wave 

and a wavelet in both time and frequency domains.   

 

 
Figure 6: Comparison of a sine pattern and a wavelet 

pattern 

 

The use of wavelets can be referred to as the 

application of wavelet filters.  In other words, the 

filtering process removes sensory signal components 

that do not “match” the wavelet pattern.  Figure 7 offers 

and additional example of wavelet analysis of a motor 

with internal impacting.  It is noted that the vibration 

time waveform in Figure 7 is more complex than that 

of Figure 5.   

 

 
Figure 7: Wavelet filter analysis of motor with internal 

impacting fault.   

 

In Figure 7, the white vibration trace contains both 

imbalance vibratory signatures as well as impacting.  

With wavelet “analysis”, only the signal components 

that match the characteristic pattern of the wavelet are 

passed to the resulting waveform, the red trace.  In 

addition, wavelet analysis results in wavelet 

coefficients that indicate the strength of the match 

along the same time instances.  The third or bottom 

graph in Figure 7 shows the wavelet coefficients and 

the strength of the match along a proportional time line.   

 

In effect, wavelets offer a method to detect bearing 

defect and gear mesh faults by extracting characteristic 

impacts from the time or angular waveform.    
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3.3 Using Cepstrum to Automatically Detect 

Harmonics in the FFT Result 

Traditional spectrum analysis of machinery vibration 

faults results in an FFT indicating excited mechanical 

forces such as imbalance, mechanical looseness, 

misalignment, bearing faults, and gear mesh faults.  

When the data acquisition is set-up per common rules 

of thumb, the frequency span of the FFT is ten times 

that of calculated or expected fault frequencies.  

Impacting in mechanical looseness, bearing faults, and 

gear-mesh creates harmonics of these fault frequencies 

that are visible in the frequency domain.  The vibration 

analyst typically uses harmonic cursors to manually 

identify these harmonics.  Identify of harmonics is an 

important aid in correct diagnosis of detected 

mechanical component degradation.   

 

However, the detection of harmonics as a manual 

human process step is time consuming and requires 

human intervention in the process.  Fortunately, there is 

a mathematical frequency analysis tool that can assist, 

the Cepstrum.   

 

A Cepstrum, which is an anagram of the word 

spectrum, is the Fourier transform of the natural 

logarithm of a spectrum (the original time waveform 

FFT). The estimated Cepstrum is used to identify 

echoes or periodic components in a time series. A 

Cepstrum also is useful for separating homomorphic or 

convolved components in a time series by transforming 

the time series into a domain where the convolution 

becomes a simple summation operation.  Cepstrum 

estimation methods treat frequency-domain data as 

time-domain data. The domain of a Cepstrum is called 

quefrency, which is an anagram of the word frequency 

(National Instruments 2009, Advanced Signal 

Processing). 

 

Figures 8 and 9 provide an illustration and comparison 

of the FFT and Cepstrum in analysis of roller bearing 

fault frequencies.   

 

 

 

Figure 8:  FFT (Power Spectrum) of bearing vibration 

signature.   

 

In Figure 8, the ball pass frequency outer race (BPFO) 

is 90 Hz.  Harmonics of 90 Hz are clearly visible in the 

Power Spectrum at 180, 270, 360, 450, and 540 Hz. 

Also, in Figure 8, the ball pass frequency inner race 

(BPFI) is 120Hz.  Harmonics of 120Hz are visible at 

240, 360, 480, and 600Hz.   However, a trained eye 

experienced in identification of bearing fault harmonics 

is often required to identify these harmonics.   

 

With Cepstrum, there is just one peak in the resulting 

Cepstrum graphic as shown in Figure 9.  Recall, from 

the definition above, that the X-axis in Figure 9 is 

quefrency as compared to frequency.   
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Figure 9: Cepstrum of bearing vibration signature.   

 

In Figure 9, harmonics of BPFO and BPFI are noted in 

a single location, quefrency of 11.2ms and 8.3ms 

respectively.  If we take the inverse of each of these 

quefrency, we get the base frequency of the harmonic 

series, 90Hz and 120Hz respectively.   

 

With the resulting series (Cepstrum) simplified, it is 

now possible to automate the detection of harmonics 

related to impacting mechanical faults including 

mechanical looseness, bearing faults, and gear mesh 

faults.  To carry this further, when using the angular 

waveform as the basis for the original spectrum, it is 

possible to remove spectral leakage skewing resulting 

from speed variations in the machine.   

3.4 Time Synchronous Averaging for Noise 

Reduction. 

In vibration fault frequency analysis, it is often desired 

to remove non periodic signal or noise from the initial 

time series waveform.  A proven technique is time 

synchronous averaging (TSA).  Here, the data 

acquisition of sensory information is synchronized to 

shaft position and each rotation’s data block is 

averaged with data blocks from other rotations.  By 

averaging the data blocks from individual machine 

rotations, any signal that is not an integer harmonic of 

rotational speed is averaged out of the time waveform.  

This technique is often used to enhance analysis of high 

frequency faults such as gear mesh, blade pass, 

looseness, and mechanical rotation of poles in a 

generator.  Several studies of TSA algorithms and noise 

reduction results are available.  One in particular cites 

the improvement of condition indicator calculations (in 

particular time domain statistics) with the use of TSA 

for gear applications (Bechhoefer 2009).   

 

Unfortunately, TSA also averages away bearing fault 

signatures as these are not exact integer harmonics of 

rotational frequency or speed.  However, early work 

suggests a synthesized reference tachometer (derived 

from the relationship of the shaft rotational speed and 

bearing cage rotational speed) can produce similar 

results for roller bearing signature analysis (McFadden 

2000). 

 

TSA is a widely used technique in predictive 

maintenance to assist in early detection of mechanical 

faults.  An illustration of TSA is provided in Figure 11.   

 

 
Figure 11:  Time Synchronous Averaging 

 

In Figure 11, the original time waveform is shown in 

the top time waveform plot.  The mechanical system 

exhibiting vibration is an unbalanced fan.  The red and 

white traces are acceleration in the vertical and 

horizontal direction.  A pressure sensor (microphone) 

measures pressure pulsation from seven blades and is 

shown in the blue trace.  The green trace is an encoder 

producing two pulses per revolution.  Visual inspection 

of the time waveform indicates noise in the sensor 

signals.   

 

The fan is not operating at a constant speed.  The 

bottom time series graph shows the speed profile over a 

seven second time period.  The speed of the fan during 

the acquisition and averaging process varies between 

1500 RPM and just over 4000 RPM.   
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To compensate for speed variations, the signals are 

resampled into the angular waveform and multiple 

revolutions are averaged together.  The middle graphic 

in Figure 11 depicts the TSA of the angular waveform 

after more than 2000 averages.  The mechanical 

signatures are clearer now that noise has been removed.  

In fact, on close visual inspection, the blade pass of the 

seven blades is visible in the blue trace.  The once per 

revolution triangular shape of the trace is a result of a 

missing blade.  The blade pass following the missing 

blade is absent the wake of the previous blade and 

hence produces a large pressure pulsation that decays 

over the rotation until the missing blade appears.   

 

With TSA of the angular waveform, it is now possible 

to identify the angular position of the missing blade, 

which is the third blade from top dead center of the fan 

shaft.    

 

There are two areas in TSA which will benefit from 

additional research.  The first area is research and 

development of embedded versions of time 

synchronous averaging that are able to execute on the 

up tower data acquisition system.  Given, the ability of 

the initial data acquisition system to filter and reduce 

sensory data with TSA, bearing and gear health 

information is readily available to transmit to the 

control system and the maintenance engineer’s desk.  

The second area is the development of additional case 

studies.  With additional data sets and installation in 

wind turbines, the application of TSA can be tuned 

more closely for specific turbine classes and 

applications.   

4 COMBINE SIGNAL PROCESSING WITH 

PERFORMANCE AND OTHER 

MECHANICAL MEASURES 

Vibration is not the only sensory measure used to 

evaluate the mechanical health of a wind turbine 

generator.  Metrics calculated from vibration measures 

should be integrated with performance and structural 

measures to create a more holistic view of the machine.  

Additional measures of choice include stress and strain 

forces on wind turbine blades, wind turbine rotational 

speed, turbine control functions including pitch and 

yaw, wind speed, temperature, electrical power output 

and others.   

4.1 Wind Turbine Blade Stress and Strain  

New developments in stress and strain measures are 

available to wind energy.  In particular, fiber optic 

sensors provide a means to monitor multiple stress 

points along the blade within a single fiber optic cable 

that is immune from electromagnetic noise, including 

lightning.  Figure 12 depicts a typical strain 

measurement layout for the blade roots in a wind 

turbine. 

 

 
Figure 12:  Fiber optic strain gauge sensor map of blade 

root.   

 

Fiber optic sensors and the associated light wavelength 

interrogator provide a noise immune sensor measure of 

stress and strain of blade roots.  Typical strain 

measurements are made approximately 10 times per 

second.  A common analytic technique used in 

evaluation of a material damage or degradation is 

fatigue analysis.  Fatigue analysis is the identification 

of a load or stress cycle and an accumulation measure 

of these cycles.  The accumulation is compared to an S-

N curve for the material of the structure.  The S-N 

curve indicates the number of stress cycles a material 

can sustain before fatigue occurs (National Instruments, 

2010).  In the case of dynamic strain, frequency 

analysis may also be used to characterize core cyclical 

components and compare to the resonant frequency of 

the blade.   

 

This time waveform may also be resampled into an 

angular waveform for easy correlation with the 

vibration measurements described earlier.  With time 

synchronized data acquisition devices, it is possible to 

correlate stress and strain on wind turbine blades with 

rotational speed and position of the wind turbine shaft 

as well as with vibration signatures.   

4.2 Other Measures in Wind Turbines 

There are many additional measures that enhance the 

operational performance and health of the wind turbine 

generator.  These include speed, pitch and yaw 

position, wind speed and direction, generator power 

output, oil particulate and viscosity measurements, 

temperature, and many others.  By integrating many of 

these measurements, a more holistic view of the wind 
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turbine is developed.  This holistic view offers the 

opportunity for development of additional cause and 

effect relationships.   

 

To make sense of these additional parameters, a data 

organizational scheme can be used.   

5 SORTING AND REPORTING 

Monitoring this wide range of sensory data without 

sorting, filtering, prioritizing, analyzing and correlating 

the data only produces more data than the human expert 

is able to utilize.   

5.1 Regime Sorting 

Now that measurements and important metrics are in 

place, the next step is to sort data into similar machine 

operational parameters.  In the case of a wind turbine, 

shaft rotational speed, wind speed, and power output 

are often key measures for organizing data.  The Center 

for Intelligent Maintenance Systems (IMS), 

www.imscenter.net, illustrates this process in Figure 

13. 

  

 
Figure 13:  IMS Center multi-regime sorting approach 

 

Example operating conditions include low, medium, 

and high load on the electrical power output side of the 

generator.  Other examples include low, medium, and 

high wind speeds.  Within these two external condition 

categories, turbine turning speed further separates data 

sets.  Finally, sensory output levels such as low, 

medium, or high vibration levels in each of these 

conditions adds to the number of conditions.  For 

example, a single data set might have the label 

including high load, high wind speed, high turbine 

speed, and medium vibration level.   

 

Once data is sorted into like operating conditions, 

comparing signal processing results from similar 

classified data sets produces more accurate 

maintenance information.  In fact, this regime sorting 

method played a key role in the IMS Center’s win of 

the 2009 PHM Data Challenge in October, 2009 (IMS 

Center 2009).  With sorted data, typical signal 

processing metrics were computed on like data to 

determine gearbox faults including cracks, missing 

teeth, bearing faults, and overall gear fatigue.   

 

In other words, it is important to organize data into 

similar operating conditions.  It is common practice in 

the field of vibration analysis to ensure time waveforms 

and associated analysis results are only compared with 

time waveforms of the same or like machines under the 

same operating conditions.   

 

A smart embedded data logging system for wind 

turbines will not only calculate key metrics, it will also 

record machine operating condition and other 

performance metrics along with high fidelity 

information such as frequency analysis metrics.  By 

recording operating conditions along with high fidelity 

metrics, it becomes possible to sort data.  Once data is 

sorted into like operating conditions, comparing signal 

processing results from data sets produces more 

accurate maintenance information.   

5.2 Pattern Matching to Identify Faults in Sorted 

Data Sets 

Now that data is sorted into like operating conditions, a 

range of statistical and model based pattern matching 

can be performed.  The IMS center has determined the 

applicability of several statistical and model based 

approaches to pattern matching in machinery health 

assessment applications (Lee, 2009).  These approaches 

are listed in Figure 14. 

 

 
Figure 14:  Statistical and model based tools for 

assessing performance and health of industrial 

machinery.  

 

http://www.imscenter.net/
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Similar to recognizing harmonics in the FFT, as 

discussed earlier, these pattern matching and 

classification tools are able to automatically organize 

operational signatures into both operating and 

mechanical health categories.  In fact, these tools were 

used to facilitate the Academic and commercial wins of 

the PHM Society 2009 Data Challenge (IMS Center 

2009).   

 

Two examples in the performance assessment row of 

Figure 14 are Logic Regression and Statistical Pattern 

Matching (SPR). Logic regression allows the prediction 

of group membership such as faulty bearing under 

speed and load, or normal behavior.  Logic regression 

is useful when the number of extracted features used is 

5 or less.  Statistical Pattern Matching compares the 

distribution of features for the current state to the 

distribution of features in a known normal state and/or 

a faulty state.  Additional details of the Watchdog 

Agent
TM

 tools are provided in the toolbox 

documentation (Intelligent Maintenance Systems, 

2007) 

 

It is important to recognize the advantage of automatic 

analysis, correlation, and sorting of wind turbine 

measurements.  Much of this work can be 

accomplished in the data recording device installed at 

the wind turbine.   

 

With recorded data and metrics that are sorted or 

tagged with specific operating conditions, a wind farm 

site data server can then begin making a wider range of 

correlations.  Statistical and model based pattern 

matching can be performed on the data server which 

pulls date from multiple wind turbines.  Now it is 

possible to compare like wind turbine behavior to 

determine best operating procedures, best performing 

mechanical components, and common failure modes.  

With this additional knowledge or information, the 

wind farm asset health monitoring information system 

can learn new data relationships and apply these 

relationships to future data sets.   

5.3 Creating Reports to Facilitate Action 

With sorted and pattern identified data sets, data 

visualization in terms of reporting is a key next step.  

To accompany the pattern and operating regime 

information, the IMS center has developed a series of 

graphics to assist operations management in 

determining the risk of failure and scheduling 

maintenance activities.  These graphical reports are 

shown in Figure 15. 

 

 
Figure 15: Smart Prognostic Graphics for Reporting 

 

These graphics provide visual display of health 

information.  The Confidence Value trend chart shows 

the mechanical health of a specific machine component 

using a measure of 1 (very healthy) to 0 (badly 

damaged).  The confidence value is commonly 

calculated using statistical pattern matching described 

earlier.  The Health Radar Chart shows the confidence 

value of multiple components on a single chart.  For 

example a wide circle shape indicates a healthy 

machine.  When one angular direction of the circle 

begins to collapse, a specific machine component is 

showing signs of degradation.   

 

The Health Map combines machine operational states 

with machine failure modes.  The Health Map is based 

on a self-organizing map concept which organizes 

clusters of data points into machine states.  For 

example, electrical load, wind speed, and turbine 

turning speed provide operational states.  These are 

coupled with bearing and gear degradation states to 

produce a health map with machine health states 

combined with operational states.  The health map 

provides a high level view of the wind turbines’ current 

operational and health states as well as other empirical 

operational and health states.  

 

The Risk Radar Chart combines machine state and 

health indicators along with safety and financial 

parameters to indicate an element of risk.  A health risk 

radar chart, similar to the health radar chart, indicates 

high plant operational health when the circular 

circumference is along the outer boundary of the chart.  

Mechanical health problems are magnified or 

diminished based on the financial or safety impact of a 

failure.  For example, detected bearing health 

degradation on a lower power wind turbine with easy 

access and spare parts availability will not impact the 

risk radar chart.  However, a high power off-shore wind 

turbine gearbox degradation indication will be 
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magnified by challenging access and higher cost of 

revenue.   

 

Armed with these reports, operations and maintenance 

teams are best prepared to make operational and 

maintenance decisions.  Of course these end reports 

depend on solid data collection and signal processing 

techniques described earlier.  Without solid data and 

informational metrics, the pattern matching and 

reporting process will not be effective.   

6 CONCLUSION 

Advanced signal processing techniques including 

resampling, order analysis, wavelets, Cepstrum analysis 

and time synchronous averaging work to address the 

challenges of wind turbine generators.  These 

techniques compensate for variable speed and load 

conditions which the wind energy generator is 

subjected to.  By combining the results of these 

techniques with time correlated performance and 

operational information, signal processing results are 

sorted, matched with similar data sets, and organized in 

reports which improve operations and maintenance 

actions.  The end result is improvements in reliability 

of individual wind turbines, wind farm operations, and 

a promise of reduced power generation costs.   
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