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ABSTRACT

Airplane engines use sophisticated technologies
to improve their efficiency, reduce their weight,
reduce fuel consumption, limit NOx generation
and reduce the generated noise. On another hand,
airlines want to decrease their maintenance costs.
These changes may have an effect on engine re-
liability and there is a greater need to understand
and control the behavior of the engine. This is
the goal of PHM algorithms. However if such
algorithms are "easy" to build, V&V stay a chal-
lenge. To increase their readiness level, Snecma,
as engine manufacturer, tests all engines on bench
cells during development phases and before re-
ception. Now Snecma chooses also to use PHM
algorithms on bench tests. It helps the maturation
of the code itself but it is also a way to monitor
the bench cells.
The present document describes an implementa-
tion on a partial bench test cell of a generic abnor-
mality detector. The first section gives an outlook
at the implementation of some algorithms on a
real test cell. The second section is the descrip-
tion of the main algorithm: an online abnormality
detector able to automatically update when new
recurrent usual observations appear. Finally the
last section sketches some results obtained during
the execution of the algorithm.

1 ARCHITECTURE
During a bench test, the engine (or engine tested
components) as well as the test cell itself are mon-
itored using a wide set of sensors. During some
tests procedures in development phases we may reg-
ister more than a thousand sensors, including perfor-
mance measurements (pressures, temperatures, flows,
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gauges...) up to 100Hz, high frequency dynamic mea-
surements (tip timing, accelerometers, microphones)
up to 50kHz, and some context information that de-
scribes the test procedure.

Snecma’s test cells are monitored with specific SPC
(Statistic Process Control) tool that is able to regis-
ter each sensor at different acquisition frequencies and
presents in real time graphs with alert bounds.

This SPC software also uploads all data to real-time
databases.

Our PHM (Prognostic and Health Monitoring) ap-
plication is connected to the control system. Data is
transfered from the control system to the monitoring
system in real-time. Afterward the HM system bene-
fits of the database’s storages, hence it is possible to
redo computations in the lab.

Figure 1: Deployment. The PHM algorithms are on
a specific computer and communicate with the control
system and its database.

1.1 The currently implemented algorithms
They are in number of three. One of them uses low
frequency inputs. It is looking for performance ab-
normalities, and is instantiated many times to cover
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the biggest set of patterns known to experts. The two
others are high frequency vibration anomaly detectors.
One is looking at known patterns of bearing abnor-
malities and the other is seeking for unknown fleeting
events.

The performance abnormality detector is of our
main concern in this article. Giving some contextual
inputs, it automatically infers the current testing con-
ditions, and according to this specific category of test
context, it searches for an unusual behavior of some
endogenous variables. Each measurement is observed
at a given scale. The patterns of the curves and their
concurrent relations are explored. An abnormality is
detected when a curve pattern appears unusual accord-
ing to the other curves in the current contextual con-
ditions. This detector uses an unsupervised classi-
fication algorithm to identify current operating con-
ditions, a curve compression algorithm to automati-
cally identify curve patterns and a scoring algorithm
made of two parts: a normalization according to lo-
cal context and a fault identification based on a de-
pendency matrix and a Bayesian fusion for high level
decision. This last scoring algorithm was presented in
(Lacaille, 2009c). At least, a prognostic is proposed,
based on the detection of increasing score trends.

Due to the different possibilities to select the curves
and the scales at which one wants to explore the pat-
terns, a lot of configurations are possible. The current
application exploits the help of Snecma experts to se-
lect some configurations that may be representative of
particular system faults1.

The bearing abnormality detector searches for very
specific anomaly patterns. Each pattern is identified by
a set a vibration pointers corresponding to frequencies
in order domain for a given operational mode or shaft
speed (acceleration, deceleration or stationary at given
speeds). The way the pointers are linked together for
a given operating mode, a specific bearing component,
and an acquisition sensor may be complex.

This algorithm was described in (Klein, 2009). Each
pattern is compared to a normal baseline producing
scores for each bearing components. It looks for spe-
cific operating conditions and merges the results ob-
tained during a test procedure for different sensors to
confirm detection. This method is able to detect ab-
normalities days before a bearing breaks; thus it is
launched only once the test fulfilled, in general at the
end of the day. As it is not possible to record all infor-
mation for a late analysis during the night, one first de-
tects the interesting operating conditions to store only
the usable parts of the signal.

The fleeting event detector looks for vibrations
anomalies like FOD (Foreign Object Damages) and ro-
tor/stator contacts. It computes in real time some fre-
quency energies corresponding to specific bands and
looks for impact patterns.

This algorithm scans the high frequency signals in
real time.

1A future work will provide a solution based on infor-
mation theory to automatically select the best configurations
using some complex agent based genetic algorithm.

1.2 The process scheduler
Each algorithm is embedded into an executable pro-
cess with a common interface. This interface allows
a supervisor program to create and manage instances
of each algorithm (fig. 2). The supervisor launches
the algorithms and ensures that the computations are
working fine. Errors are intercepted and managed; re-
covery is implemented. The algorithms communicate
with the supervisor using a message scheme. When an
anomaly is detected, a message is sent to the supervi-
sor that is able to inform the SPC system.

This implementation deploys the algorithms on a
specific computer (the HM system) different from the
one running the test cell control procedures (the con-
trol system). In the future we thought of deploying
very mature solutions on the control computer, but
for V&V (Verification and Validation) purpose this
method seems sufficient even if some communication
delay may be considered.

Figure 2: The supervision system manages the algo-
rithm’s instances. Each instance runs a process with
its specific configuration of the algorithm.

1.3 Anomaly messages
The message content is not only a boolean indication
of abnormality. Each message contains a risk prob-
ability but also a quality information corresponding
to a precision of the result (PQV: Prediction Quality
Value) and a global adequacy of the current obser-
vations (AQV: Adequacy Quality Value) to the score
model (Lacaille, 2010). Let U be stochastic vector of
exogenous (contextual) measurements like bench con-
trol, speeds, and let X be the vector of parameters to
monitor (for example, shaft torque, vibration energy,
exhaust gas temperature, pressure...). At instant t, if
the observations are (ut, xt), then the risk, precision
and adequacy are defined as follow:

{ Risk(t) = 1− P(X = xt|U ≈ ut)
Precision(t) = tr[var(X|U ≈ ut

)
]

Adequacy(t) = P (U ≈ ut)
(1)

The adequacy is the probability that the current con-
text measurements resemble to some context observa-
tion seen previously. It may be computed as the likeli-
hood of the context observation if one has a model of
the context stochastic law.
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The ≈ sign in the equations means that for robust-
ness purpose the computation smooths the notion of
equality because we may assume that the behavior of
the engine is continuous near the measurement point
and that one can consider also observations with very
similar contexts. An empirical point of view is to
constrain the statistics to past observations with sim-
ilar contexts defined by a classification of operating
modes.

The precision in equation (1) is nothing else but the
local dispersion of the endogenous parameters when
the context is near the current one.

According to the adequacy computation, the super-
visor knows when it should launch new calibration of
models. Some algorithms may also be able to automat-
ically update by themselves (see section 2.2 and results
one figures 10 and 11).

A general quality indicator is defined from combi-
nation of precision and adequacy. Each algorithm will
also use risk computation and quality information to
send messages to the supervisor. Such alarm message
is raised when the risk crosses a minimum threshold
and when the measured quality is over another thresh-
old. In the following equation the continuous g func-
tion is the CDF (Cumulative Distribution Function) of
the precision law. In practical applications2, we as-
sume that it is possible to model this law with a χ2.

Quality(t) = Adequacy(t)×(
1− g(Precision(t))

)
g(ρ) = Pχ2(Precision ≤ ρ)

(2)

To get more information about messages, the super-
visor may also ask each algorithm to present a view
of the corresponding results. The plot method is spe-
cific for each algorithm, thus this is the charge of the
algorithm itself to locally store enough data when an
abnormality is detected. Through the supervisor, the
expert asks some display to investigate each detection.

2 GENERIC ANOMALY DETECTOR

The generic anomaly detector detects unusual behav-
ior. It analyzes observations according to the context
of acquisition. The first step of the algorithm is to clas-
sify the context measured from exogenous data into
different operating modes (OM). (Typically we detect
5 to 15 different operating conditions during one spe-
cific type of test.) The exogenous data, for operational
application when the engine is under the wing, corre-
sponds to aircraft attitude, flight configuration, bleeds
and pilot commands. During the test they are the result
of maneuver, rotation speed commands, and other in-
put configurations. Once an operating mode isolated,
a local diagnostic is applied, followed by a prognostic
on a given horizon (fig. 3).

2The precision is computed as a variance of compressed
coefficients that will be computed as regression residuals
in a scoring algorithm (see section 2.3). The scoring algo-
rithm use the hypothesis of Gaussian residuals, hence theχ2

model.

Figure 3: The diagnostic algorithm is applied with
models defined for each context class. A context class
is identified with an OM.

To make the classification possible, as well as the
diagnostic, the input data must be converted to indi-
cators. The system works in real time: at every in-
stant one registers a small curve (20 seconds to 10
minutes) of past measurements for each parameter (ex-
ogenous or endogenous). Each curve is observed at a
given scale and is compressed into pattern combina-
tion. The selection of the scale and the patterns on
which to project the curve is part of the input configu-
ration of the algorithm’s instance.

2.1 The compression of curves
Any given number of input parameters may be used
for this algorithm. Each input is registered at a given
frequency. Then it is smoothed and sub-sampled ac-
cording to the scale one wants to analyze the curve
(fig. 4). The compression algorithm works curve by
curve and produces pattern indicators. All indicators
for all different inputs and different scales are joined
together to form a big input vector.

Figure 4: A scaling process, multiple and different for
each parameter is applied before curve the compres-
sion.

For one parameter, the scaling process is defined by
a buffer of size n, a sub-sampling rate r and averag-
ing polynomial filter a of rank p: a = [a0, a1 . . . ap] .
At time t, if xt is the observed parameter, then the se-
lected curve is defined by yt = [yt, yt−r . . . yt−(n−1)r]
where y = a ∗ x is the convolution of x by filter a:
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yt =

p−1∑
i=0

aixt−i (3)

The simplest (linear) compression algorithm uses a
decomposition in singular values (Mardia et al., 1979).
The first step is a normalization of each curve. Let
ȳt = (yt − µt)/σt, where for each instant t, µt and
σt are the mean and standard deviation of all the curve
points (computed with the n points of curve yt)3. Each
normalized curve can be projected on a well chosen
orthonormal basis {v1, v2 . . . vn} where each vi is a
vector of length n that may be interpreted as a curve
template.

yt =

k∑
i=1

αt,ivi + εt (4)

In equation (4), αt = |αt,1, αt,2 . . . αt,k] is the vec-
tor of projection coefficients for the curve ȳt on the
orthonormal basis. The compressed vector of indica-
tors is ỹt = [µt, σt, αt] (mean and variance must be
seen like any indicator). Finally εt is the residual error
of compression when only the first k base vectors v1
to vk (k ≥ 0) are used.

The selection of template curves (vi) and size k
optimizes the projection by minimization of the error
norm ‖εt‖. The calibration procedure to find the most
representative set of templates that minimizes the er-
ror of projection is obtained by principal component
analysis (PCA) of a set {ȳt1 , ȳt2 . . . ȳtN } of normal-
ized curves that were selected atN instants t1, t2... tN
randomly chosen.

Let Y = [ȳt1 ȳt2 · · · ȳtN ]′ be the (N × n) matrix
formed by all those curves juxtaposed so that each line
of the matrix corresponds to one curve. The singular
value decomposition (SVD) of symmetric (n×n) ma-
trix Y ′Y is

Y ′Y = V SV ′ with V ′V = I and S diagonal. (5)

The diagonal elements of S are the singular values of
Y ′Y : (σ2

1 · · ·σ2
n) which may be sorted in decreasing

order. The columns of V form an orthonormal basis
and the first columns are a good choice for the basis
(vi) because in that case the error norm of the com-
pression for each ȳti will be less than the sum off all
unselected singular values.

However it may not be the case for any normalized
curve ȳt different from the ones used in calibration
phase. So the best value for k (and for the selected
columns of V ) is obtained with a cross-validation
method. Our choice is the leave-one-out algorithm: for
any curve ȳti in the learning set, one computes matrix
Vi and Si using all curves except the ith, and one se-
lects the minimal ki as the number of first columns of
Vi that let the compression error on curve i under a
given threshold. Finally, the value of k is chosen as
the maximum values of all ki: k = maxi=1···n ki.

3If a signal is constant, it’s certainly coming from an un-
connected sensor, then no compression is needed, only the
mean is relevant.

2.2 The unsupervised classification
For a given configuration (input selection and scale),
ũt will denote the exogenous, context, vector of in-
dicators4. The classification algorithm automatically
selects an operating mode for the observation vector.

• During a calibration phase, a first learning-set of
input vectors {ũt1 , ũt2 . . . ũtN } is used to define
a first set of classes (or initial OM).
• During execution, each new input may be classi-

fied or not. If no class corresponds to input, the
vector is memorized until enough similar inputs
are detected, hence making it possible to build a
new class. Regularly, recent inputs (correspond-
ing to already defined classes) are also stored for
further update of any class according to a slow
evolution of the system (fig. 5).

Figure 5: Recalibration of the classification algorithm.
When the classification cannot target a known operat-
ing mode, it is a novelty and the input data is memo-
rized. When it recognizes a given OM, only a small
amount of new observations are memorized with part
of the original data that were used to calibrate the algo-
rithm. Finally, when the adequacy is low, a relearning
procedure is executed.

The classification algorithm in use there is the EM
(Expectation-Maximization) method for the identifica-
tion of a mixture of Gaussian densities (Dempster et
al., 1977; Bilmes, 1998). Our hypothesis is that the
stochastic vector of compressed indicators Ũ follows
a normal distribution inside each operating mode. The
EM algorithm is an iterative process that converges to
the model coefficients of each Gaussian law (mean,
variance and mixture a priori in the space of com-
pressed indicators).

This algorithm is initialized with a first number of
classes. In fact we use a loop on the number of classes
(fig. 6) and select the one that optimizes the BIC

4According to the compression method, the temporal in-
dex t may only take multiple values of the sub-sampling ra-
tio.
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(Bayesian Information Criterion) which is approxi-
mately the conditional likelihood of the observations
(here the exogenous context data) knowing the num-
ber of estimated parameter (or the number of classes)
(Akaike, 1978).

BIC = −2 log(L(ũ1 . . . ũN )) +K log(N) (6)

where{
L(U) = likelihood of observations

K = number of classes
N = number of observations

and the likelihood L is exactly what is optimized in the
EM classification. The use of this criteria limits the
risk of over-parameterization bounding the number of
classes.

Figure 6: The classification learning algorithm. A
loop that minimizes the BIC criterion selects the best
number of initial classes. Inside each loop the classifi-
cation algorithm EM is also an iterative process.

Once a class is recognized for a given input, the pro-
cess may continue: in our case it will be a new intra-
class compression of the original input curves followed
by the scoring algorithm (fig. 7). The new compres-
sion uses only curves that belongs to the same operat-
ing mode, hence the corresponding indicators become
specific and more sensitive.

After the scoring, a prognostic algorithm detects
trends in the risk computation and estimates a proba-
bility to cross a threshold at a future horizon.

2.3 The scoring algorithm
The scoring algorithms was already described in (La-
caille, 2009c). It is designed in two blocs:
• Context removal and normalization (CRN) sup-

presses the local dependency of the exogenous
context and replaces each measurement with the
difference of the observation to an estimation5.
• Fault detection and identification (FDI) is the

main scoring algorithm that computes the likeli-
hood of the vector of previous residuals according
to a normal behavior.

5Even inside a unique OM, the normalization gets rid
of the local variations of context and uses dependencies be-
tween endogenous parameters

Figure 7: Separate scoring processes execute for each
operating mode. Once the operating mode detected by
classification algorithm, the process continue with a
more sensitive compression of the input curves (local
to OM) and a scoring.

Let x = [x1, x2 . . . xp] be the measurement indi-
cators to analyze and u = [u1, u2 . . . uq] be the vec-
tor of compressed context indicators. The normal-
ization phase uses an estimation model (a regression)
to replace each xi by a corresponding residual yi =
xi − f(u, x−i) where f is the regression function and
x−i = [xj ; j 6= i] is the vector of all endogenous indi-
cators except the ith.

The regression function is calibrated on a set of in-
puts. We use the indicators coming from the same set
of curves that were used to calibrate the corresponding
OM class. The regression model is a generalized linear
model (GLM). It is a sort of three-layers perceptron:
the last layer is a linear projection and the intermedi-
ate layer is the result of the selection of specific and
physical computations6.

Figure 8: The generalized regression uses the knowl-
edge of the experts to propose a model for each en-
dogenous indicator. This knowledge is given either by
explicit physical formulation or with a numeric model
of physical behavior.

6This is not a kernel method, instead it uses mechanical
expert knowledge.
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When a system expert in Snecma analyzes a spe-
cific engine component it searches for usual faults that
may be described analytically by a set of formula or
modeled with a finite element program. Our interme-
diate layer comes from selection of members of theses
equations or result obtained from the physical simula-
tion. A cross-validation procedure helps to select the
meaningful indicators and get rid of outliers during the
calibration.

The fault and identification part produces a global
score of the previous residuals. It is also able to clas-
sify the different damages according to Bayesian rules
but we didn’t implement this feature yet for bench test
cells. Our main goal is to detect unusual behavior, the
identification part will be addressed in the future. The
score model makes the assumption that the vector of
residuals is Gaussian with zero mean. Then the cali-
bration of the scoring algorithm is limited to the com-
putation of the covariance matrix Σ = var(y), which
is computed with the same previous set of observa-
tions OM by OM. Finally the global score is the Ma-
halanobis distance y′Σ−1y and the risk probability is
obtained using the corresponding χ2 distribution with
the adequate freedom degrees.

3 RESULTS
The application is tested on a Snecma test cell where
sensors register either data from the engine and from
the test cell itself. The measurements to analyze are
dynamic strength gauges for a specific shaft. The cor-
responding exogenous context measurements are the
shaft speed, input air pressure, and temperature. Fig-
ure 9 gives some examples of input data. The com-
mands (top line) show the different maneuvers exe-
cuted by the pilot. Some of the endogenous corre-
sponding observations are on the bottom line. The al-
gorithm detects unusual behaviors of endogenous mea-
surements according to the executed maneuvers.

The scaling process extracts time intervals of 20 sec-
onds at 10Hz and compress all the segments the same
way.

The figures 10 and 11 (page 9) present the risk, pre-
cision and quality computed by the algorithm.

On figure 10 is the beginning of the execution (first
two hours of execution). The red curve (-o-) is the
adequacy result (AQV); at the beginning this quality
indicator is very low, then when the application starts
to learn new observations it increases. The blue line
which stays most of the time on the bottom is the risk
probability; and the green one (between 0.7 and 0.8)
corresponds to the precision (PQV) which is almost
stable in our case because the same amount of obser-
vations is used at any time.

The clear blue (cyan) vertical dashed lines represent
the repartition of observations stored in the database as
learning set (0 corresponds to the oldest data and 1 to
the new ones at any instant). During the first hours of
treatment the diagnostic often detects some abnormal-
ities, but as soon as those observations are common
they are added to the learning set and will not be diag-
nosed as unusual again.

After less than 3 hours, the system stabilizes and
the adequacy raises. The algorithm doesn’t add a lot

more observations in the database and less unusual be-
havior are detected. However one sees some crisis
around 14000s (4h) and a short detection just before
21000s (5h30). These detections need investigation by
experts.

4 CONCLUSIONS
Using PHM algorithms on bench test cells is a great
way to validate the codes. It is also a way to under-
stand how the system will behave once embedded on
aircrafts but with the possibility to maintain the code
without the cost of certification.

The currently deployed solution (detection of un-
usual behavior on transitory measurements) needs a lot
of improvement in term of configuration. The chal-
lenge now that we are in a position to implement and
test this diagnostic is to validate FMECA specific to
system components and known faults.

But to begin with this application, we want to reach
some confidence from the test engineers. Answering
their need for a supervision of the test cell itself, and be
able to detect abnormalities without much false alarms.
Thus the next point is to defined some key performance
indicators (KPI) like false alarm rate (PFA) and prob-
ability of detection (POD).

ACKNOWLEDGMENTS
This work is a collaboration of the PHM team and the
bench test department of Snecma; without such collab-
oration, this work should not have been possible.

NOMENCLATURE
BIC Bayesian Information Criterion
CRN Context removal and normalization
EM Expectation-Maximization
FDI Fault Detection and Identification
FMECA Failure Modes, Effects and Criticality Analysis
FOD Foreign Object Damage
GLM Generalized Linear Model
HM Health Monitoring
IQR Inter Quantile Range
KPI Key Performance Indicator
OM Operating Mode
PCA Principal Component Analysis
PFA Probability of False Alarm
PHM Prognostic and Health Monitoring
POD Probability Of Detection
SPC Statistic Process Control
SV D Singular Value Decomposition
V&V Verification and Validation
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Figure 10: Beginning of some experimentation results. The time unit is in seconds. The red curve (-o-) corre-
sponds to the adequacy. It is low at the beginning then increases progressively when the system learns. The
risk (bottom blue line) shows some variation, but mostly because the system is not completely functional. The
precision (top green line) is almost stable (around 0.75). Its main variations identify the changes of operational
conditions. Finally the cyan vertical lines represent the interquartile range (IQR) of the distribution of time index
of the learning set (0 are oldest data and 1 are the latest). The supplementary points for each IQR represent the
position of the first and last measurements included in the database.

Figure 11: Six hours of test. This figure is similar to the preceding one (fig. 10) but the time axis spanned to a
little more than 6h. When the process stabilizes after less than 3 hours (9500s), the adequacy stays up and the
system mostly detects unusual behavior at time 14000s (4h) and before 21000s (5h30).

9


