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ABSTRACT 

Operation and maintenance of offshore wind 

farms will be more difficult and expensive 

than equivalent onshore wind farms. 

Accessibility for routine servicing and 

maintenance will be a concern: there may be 

times when the offshore wind farm is 

inaccessible due to sea, wind and visibility 

conditions. Additionally, maintenance tasks 

are more expensive than onshore due to 

distance of the wind farm from shore, site 

exposure, and the need for specialized lifting 

equipment to install and change out major 

components
*
.  

 As a result, the requirement for remote 

monitoring and condition based maintenance 

techniques becomes more important to 

maintain optimum turbine availability levels. 

The development of a prognostics health 

management (PHM) capability will allow a 

strategy that balances risk of running the 

turbine against lost revenue. Prognostics 

would give an estimate of the remaining useful 

life of a component under various loads, thus 

avoiding component failure. 

 We present a state-space model for 

predicting the remaining useful life of a 

component based on vibration signatures.  The 

model dynamics are explained and analysis is 

performed to evaluate the nature of fault 

signature distribution, and an indicator of 

prognostic confidence is proposed. The model 

is then validated under real world conditions. 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

 

1 INTRODUCTION 

It is anticipated that 20% of the United States electrical 

energy will come from wind power by 2020. A larger 

percentage of that power will come from offshore wind 

turbines. Currently, initial capital costs are 30-50% 

higher for turbines located offshore. These costs are 

offset by higher capacity factors (anticipated at 31%) 

and higher mean wind speeds resulting in higher energy 

yields (as much at 30%, (Meyer, 2009)). 

 Offshore power has its challenges. Operations and 

Maintenance cost are higher. These locations are more 

remote than on shore systems. Additionally, they will 

typically be larger, requiring purpose-built lifting 

equipment to install and change out major components. 

Furthermore, there will be times when the offshore 

turbine is not accessible for maintenance due to poor 

weather conditions. Successfully addressing these 

challenges will require remote sensing and condition 

based maintenance techniques with diagnostic and 

prognostic capabilities, e.g. the development of a PHM 

system (Kuhn et al., 1997). 

 Diagnostics is concerned with detection of a 

changing condition related to a component failure. 

Once a changing condition is detected, prognosis 

provides the time to failure (remaining useful life or 

RUL) and an associated confidence in that prediction 

(Vachtsevanos et al. 2006). This information, RUL and 

confidence, is used in different ways by the maintainer 

and operator.  

 In general, prognostics will allow offshore turbines 

to be operated at lower cost by: 

 Opportunistic maintenance practices 

 Improved Readiness/Reduction in 

unscheduled maintenance 

 Activation of a “just in time” part delivery  

 A reduction in the overall number of spares 
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 Operating the turbine in a conservative 

manner to reduce the chance of failure. A 

prognostic gives a future state and tradeoff of 

life under different loads. By operating under 

less stressful loads, the life of a component 

may be extended until maintenance can be 

performed. 

2 STATE SPACE MODELS FOR 

PROGNOSTICS 

State-space representation of data provides a versatile 

and robust way to model systems. We start with the 

definition of the states, and the basic principles 

underlying the characterization of phenomena under 

study.  We then show how the states propagate as a 

stochastic process.  

 The choice of which type of state space model to 

use is driven by the nature of the system dynamics and 

noise source. If linear dynamic with Gaussian noise, a 

Kalman filter (KF) is used. If it is a non-linear process 

with Guassian noise, a sigma-point Bayesian process 

(e.g. unscented Kalman filter - UKF) or extended 

Kalman filter (EKF) is appropriate. For non-linear 

dynamics with non-linear noise, we use a sequential 

Monte Carlo method employing sequential estimation 

of the probability distribution using “importance 

sampling” techniques. This method is generally 

referred to as particle filtering (PF) (Candy 2009). 

2.1 A State Space Model  

A state space model estimates the state variable on the 

basis of measurement of the output and input control 

variables (Brogan 1991). In general, a system plant can 

be defined by:  

Cxy

BuAxx

          (1) 

where x is the state variable, x  is the rate of change of 

the state variable, and y is the output of the system. 

 An observer is a subsystem used to reconstruct the 

state space of the plant. The model of the observer is 

the same as that of the plant, except that we add an 

additional term which includes the estimated error to 

account for inaccuracies in the A and B matrixes. This 

means that any hidden state (such as RUL) can be 

reconstructed if we can model the plant (e.g. failure 

propagation) successfully. The observer is defined as: 

xCyKBuxAx ˆˆ̂       (2) 

where x̂  is the estimate state and Cˆ x is the estimated 

output. The matrix K is called the Kalman gain matrix 

(linear, Gaussian case). It is a weighting matrix that 

maps the differences between the measured output y 

and the estimated output Cˆ x . A KF can be used to 

optimally set the Kalman Gain matrix. Figure 1 

represents a system and its full state observer. 
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Figure 1: Example of Plant and State Observer 

2.2 The General Case: Kalman Filter  

A KF is a recursive algorithm that optimally filters the 

measured state based on a priori information such as 

the measurement noise, the unknown behavior of the 

state, and relationship between the input and output 

states (e.g. the plant), and the time between 

measurements. Computationally, it is attractive because 

it can be designed with no matrix inversion and it is a 

one step, iterative process. The filtering process is 

given as: 

Prediction 

 Xt|t-1 = A Xt-1|t-1             State 

 Pt|t-1 = A Pt-1|t-1A’ + Q              Covariance 

Gain  

 K = Pt|t-1 C’ [C Pt|t-1 C’ + R]
-1

  

Update  

 Pt|t = (I – KC) Pt|t-1           State Covariance 

 X t|t = Xt|t-1 + K(Y-C Xt|t-1)      State Update 

where: 

t|t-1 is the condition statement (e.g. t given the 

information at t-1) 

X is the state information (x, xdot, x dot dot) 

A is the state transition matrix 

Y  is the measured data 

K is the Kalman Gain 

P is the state covariance matrix 

Q is the process noise model 

C is the measurement matrix  

    R is the measurement variance 

For nonlinear systems with Gaussian noise (UKF or 

EKF), the state prediction is now a function of Xt-1|t-1, 

and A. C is the Jacobian (e.g the derivative of the state 

with respect to the measurement) (Candy 2009).  

 For non-linear, non-Gaussian noise problems, 

particle filters (PF) are attractive.  PF is based on 

representing the filtering distribution as a set of 

particles. The particles are generated using sequential 
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importance re-sampling (a Monte Carlo technique), 

where a proposed distribution is used to approximate a 

posterior distribution by appropriate weighting. 

 An important consideration for Monte Carlo 

methods (such as PF) is that it requires an estimate of 

the posterior distribution using sample based simulation 

(Candy 2009).  Starting with Bayes rules: 

Y
XXY

YX
Pr

Pr|Pr
|Pr    (3) 

where X  is the distribution of the measurement, and Y 

is the resampled distribution, we can see that the 

performance is heavily conditioned on the selection of 

measurement PDF (distribution, first and second 

moment). However, this estimation of the X for the 

linear (KF) and non-linear (EKF) case is also 

important, as it determines the R in the measurement 

noise model. 

 For all models, the best estimate for the first 

moment is the state-space model itself. It is assumed 

that one of the states of interest is the expected value of 

the measurement. In general, the second moment 

(variance: 
2
) is assumed constant. This is a poor 

assumption as variance usually increase with 

component damage. In this study, an accessory 

calculation of variance was made using a recursive 

estimate: 
2

11|

2

1

2 |1 YYXEa ttttt C     (4) 

 Using a Butterworth filter design and a normalized 

bandwidth of 0.1, a is given as 0.2677. The 

implementation of the EKF and PF was done utilizing 

the fine Rao-Blackwellized  particle filters  Matlab 

toolbox from J Hartikainen and S. Sarkka (Hartikainen 

and Sarkka  2008). 

3 SYSTEM DYNAMICS  

The state space model can be constructed as a parallel 

system to the plant (e.g. the system under study). This 

requires an appropriate model to simulate the system 

dynamics. In general, failure modes propagating in 

mechanical systems are difficult to model at a level of 

fidelity that would generate any meaningful results (e.g. 

Health and RUL). We needed a generalized, data 

driven process that would model the plant adequately 

enough to generate RUL with small error. 

Since 1953, a number of fault growth theories have 

been proposed, such as: net area stress theories, 

accumulated strain hypothesis, dislocation theories, and 

others (Frost et al 1999, Frost 1959). Through 

substitution of variables, many of these theories can be 

generalized by the Paris Law:  
m

KDdNda       (5) 

which governs the rate of crack growth in a homogenous 

material, where:  

da/dN is the rate of change of the half crack length 

D is a material constant of the crack growth 

equation 

K is the range of strain K during a fatigue cycle 

m is the exponent of the crack growth equation 

The range of strain, K is given as: 

 
2/1

2 aK      (6) 

here  

σ  is gross strain 

 is a geometric correction factor 

a is the half crack length 

 

The use of Paris’s law for the calculation of RUL was 

given by (Bechhoefer 2008) and (Orchard et al. 2007), 

but lacked a measure of confidence (e.g. how good was 

the prognostics). Confidence is an important 

requirement for a PHM system (Vachtsevanos et al., 

2006). 

These variables are specific to a given material and 

test article. In practice, the variables are unknown. This 

requires some simplifying assumptions to be made to 

facilitate analysis. For many components/material, the 

crack growth exponent is 2 (Frost et al. 1999). The 

geometric correction factor , is set to 1 (a constant 

which will accounted for in the calculation of D), 

which allows equation (6) to be reduced to: 

da dN D 4 2 a
              (7) 

The goal is to determine the number of cycles, N, 

remaining until a crack length a  is reached.  Taking the 

reciprocal of (7) gives: 

dN da 1
D 4 2 a

           
(8) 

Integrating gives the number of cycles (N) 

remaining.  Note that N for synchronous systems (e.g. 

constant RPM) is equivalent to time by multiplying 

with a constant. 

 

N dN da
ao

a f

1
D 4 2 a

da

1
D 4 2 ln a f ln ao

        (9) 

Equation (9) gives the number of cycles N from 

the current measured crack ao to the final crack length 

af. The measured component condition indicator (CI) 

will be used as a surrogate for crack length a. Given a 

suitable threshold set for af  (Bechhoefer and Bernhard 

2007) then N is the RUL times some constant (RPM for 

a synchronous system).  

The material crack constant, D, can be estimated as: 



Annual Conference of the Prognostics and Health Management Society, 2010 

 4  

adNdaD 24   (10) 

In practice gross strain will not be known. Again, a 

surrogate value, such as torque, will be as appropriate.  

3.1 A Prognostic and Confidence in the Prognostics 

In practice, a prognostic or PHM capability would be 

used to schedule maintenance or assist in assets 

management. Maintainers and operators will perform 

management of the offshore assets. They will need an 

intuitive, simple display that conveys information on: 

current health, RUL, and confidence in the RUL 

prediction. 

Model confidence is essential in any RUL 

prediction (Vachtsevanos et al., 2006). For any RUL 

calculation, given 1 hour of nominal usage, the RUL 

should decrease by 1 (e.g. dN/dt is approximately -1: 

one hour of life is consumed for each hour of 

operation). Further, a measure of model drift or 

convergence is the second derivative d
2
N/dt

2
: a value 

close to zero indicates convergence. When these 

conditions are met, the model used for calculation of 

the RUL is consistent, and is indicative of a good 

estimate of the remaining life of the component. 

We will use visual cues for of the prognostics 

based on model convergence. The prognostic color 

reflects the confidence:  

 Low Confidence: Yellow, abs(dN/dt-1) > 3 

and abs(d
2
N/dt

2
) >  0.5 

 Medium Confidence: Blue abs(dN/dt-1) > 2 

and abs(d
2
N/dt

2
) >  0.5 

 High Confidence: Green, abs(dN/dt-1) < 2 and 

abs(d
2
N/dt

2
) <  0.5 

 

Another aspect of the prognostic model is to 

predict what the health of the component will be some 

time in the future. For a given state space mode, the 

RUL or any predicted health is an expectation based on 

the current state and future usage (e.g. damage or 

strain). The Paris law is driven by delta strain: changes 

in strain will affect the RUL (eq 5). Future health is 

then based on the mean strain, and a bound on that 

strain. This strain information could be based on 

forecast weather or usage for a wind turbine. The health 

at any time in the future is then: 

a f exp ND 4 2 ln ao      (10) 

The upper and lower bound on the future health af can 

then be calculated through bounding the delta strain 

(e.g. 5% and 95% value of delta strain).  

3.2 Normality of Plant/System Noise 

Selection of the appropriate state space model is 

dependent not only on the system dynamics, but the 

measurement noise of the system. We investigated the 

probability density function of the measurement noise 

by using a kernel smoothing density estimate of 100 

data points (49 prior and 50 after a point of interest) 

and compared this to a Gaussian distribution with mean 

and standard deviation of the kernel (figure 2). 

 

Figure 2: Estimate of PDF of the measurement noise 

 

For example, figure 2 displays the data (signal 

average RMS data associated with a hydraulic pump), 

and estimates of the measurement PDF at point 200 

(prior to fault propagation) and at point 750 (well into 

fault propagation). The PDF estimate is plotted against 

the Gaussian PDF based on the mean and standard 

deviation of the kernel. Even given that this data is 

inherently non-stationary, the kernel estimate is close to 

Gaussian. For this reason (non-linear dynamics, 

Gaussian noise), an EKF was used for the state space 

model. 

4 DEMONSTRATION OF PHM 

For this application of a state space observer, it was 

determined that the system dynamics were nonlinear, 

and that the measurement noise was Gaussian. For this 

reason, an EKF model was constructed. The states of 

the model are: 

 a: half-crack length which is linear with the 

measurement  

 da/dN: rate of change of half crack length 

with respect to the number of cycles, which is 

linear with time 

 N: the number of cycles remaining, which is 

linear with time (synchronous system) and is 

non-linear with respect to half crack length 

(nature log) 

 dN/dt: rate of change in number of cycles 

with respect to time, which is linear with time 

 d
2
N/dt

2
: the acceleration of the number of 

cycles, which is linear with time 
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A five state model was developed, with an 

accessory estimation of measurement noise made using 

a recursive estimate of measurement variance (eq 4). 

The velocity and acceleration of N was used to define 

confidence in the estimate. Error bounds for the 

prognostics were based on 5% and 95% of load, and 

5% and 95% of bound on the estimate of a. 

4.1 PHM Test Article 

In June of 1999 the United Kingdom Civil Aviation 

Authority mandated vibration health monitoring 

(VHM) systems due to several helicopter accidents 

earlier in the decade (CAP753, 2006).  As a result, the 

helicopter industry has matured this technology faster 

than the industrial market. The helicopter industry has 

close to 30 years development in VHM, with over 1200 

systems installed: a large database of faults is being 

developed.   

 There are a number of similarities between 

helicopter transmissions and wind turbines: similar gear 

ratios (80:1) and throughput power. As such, we are 

demonstrating prognostics with the hydraulic pump on 

a utility helicopter. This component is driven at 

constant RPM by an auxiliary gearbox off of the drive 

train gearbox. The helicopter has a VHM system that 

generates condition indicators (CIs) associated with the 

hydraulic pump drive shaft, but was not configured to 

measure health of the hydraulic pump. While reviewing 

VHM data, it was observed that the time synchronous 

average (TSA) RMS were trending upward. The shaft 

order 1, 2 and 3 values (which give indications of shaft 

condition) were nominal. Along with CI values, raw 

time domain data was also collected on this shaft. 

Analysis of this time domain data showed that the 

elevated TSA RMS was driven exclusively by a 9 per 

rev (acceleration corresponding to 9 times the shaft 

RPM, or SO9), which is associated with the 9 piston 

hydraulic pump driven by this shaft. The peak-to-peak 

acceleration of the pump was seen to be up to 30 Gs 

prior to failure.  

Because there are no vibration-based limits applied 

to this component, we can set a limit that would be 

appropriate for industrial monitoring, such as .75 inch 

per second (ips) peak-to-peak. Given the shaft 

operating speed of 11,806 RPM, the conversion from 

RMS to ips peak-to-peak is: 

HI TSA RMS* 32.174 ft sec2 *12in ft / 2 *

60sec/min/11806rpm* 2 /9rev

TSA RMS*0.049     
Figure 3 displays the raw pump and state observer 

health vs. flight hours. 

 

Figure 3: Raw CI and State Space for CI 

 

Figure 4 is the RUL of the pump. Prior to time 100, the 

RUL is effectively infinite because dH/dt is close to 

zero. At time 120, corresponding to an increase in the 

pump HI value, the RUL decreases rapidly. At time 270 

(55 remaining flight hours) the estimated RUL tracks 

with the actual RUL. 

 
Figure 4: Pump Actual and Estimated RUL 

 

The derivative of the RUL is given in figure 5. An 

automated maintenance action could be triggered based 

on the dRUL/dt is close to -1, reporting hours 

remaining. 
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Figure 5: Derivative of Estimated RUL 

 

The derivative converges to a value of -1 at 270 to 300 

hours (pump failed at 335 hour). Consider that the CI is 

not a direct measure of any feature on the hydraulic 

pump. With a CI directly measuring SO9, one could 

assume that the prognostics capability would be 

increased. 

4.2 Confidence in the Prognostics 

In practice, a PHM system would be used to schedule 

maintenance or assist is assets management. The 

Maintainer or Operator will need an intuitive, simple 

display that conveys information on: current health, 

RUL, and confidence in the RUL prediction. The state 

space model contains all of the information needed to 

support a PHM process by: 

 Giving a bound on error. The state space 

covariance and current state health is used to 

bound the RUL by 5% to 95% and to project 

the expected condition of the component out 

into the future.  

 The state space model fit (e.g. dRUL/dt = -1) 

is used to validate the model and give a visual 

cue that the prognostic has value. 

Using state space model, the component condition is 

plotted over a window of 100 hours of past history to 

100 hours into the future (this length scale is based on 

the logistic timeline of the component. For example, 

100 hours of flight time is approximately 1 month. For 

wind turbines, 2000 hours may be more appropriate).  

 
Figure 6: Prognostics with Error Bounds at time 107 

Hours 

 

Figure 6 displays the hydraulic pump health at time 107 

hours as the component fault just starts to propagate. 

Figure 7 shows the state space model at time 204 hours.  

The model confidence has improved (blue line) 

indicating that dRUL/dt is approaching -1. The bounds 

on error have increased, reflecting increased 

measurement noise of the system. 

 
Figure 7: Prognostics with Error Bounds at time 204 

Hours 

 

Figure 8 shows the prognostic at time 284 hours with 

approximately 55 hours of remaining life. The 

prognostic suggests that if the component was operated 

at a lower power setting (e.g. at 45% torque vs. a 

nominal 60% torque) the component life could be 

extended to 100 hours.  
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Figure 8: Prognostics with Error Bounds at time 284 

hours 

 

The ability to see the effect of operating condition on 

the life of a part is a powerful management tool. Note 

the prognostic is remarkably close to the actual fault 

propagation trajectory once the model has converged.  

 The ability to reconstruct the damage or 

component state and to estimate RUL using the Paris 

Law fault propagation model is robust. It requires only 

one a priori configuration item: a value for plant noise.  

Equally important to the PHM system is a means to 

quantify model fit and confidence, which is 

conveniently calculated from the first derivative of 

RUL.  

 An explanation as to why the model did not 

converge until 270 flight hours could be a result of the 

CI not directly measuring SO9. Initially, the TSA RMS 

is driven by shaft order 1, 2, 3, and a 92/rev spur gear. 

The performance likely would be improved using only 

SO9 amplitude data. At some future point this may 

become a new CI for this component resulting in a 

better model fit and corresponding increase in 

prognostic capability. 

5 CONCLUSIONS 

Evaluation of component health or the ability to predict 

incipient failure remains difficult. State space modeling 

may be shown to facilitate the maturation of a PHM 

system to allow robust condition monitoring and 

prognostics capability. In this paper we applied the 

concept of a state space model, taken from control 

theory, as tool for developing a PHM system.  

 Presented are techniques taken from control theory 

to “observe” hidden states associated with component 

health. This technique has been shown to work with 

high speed input shafts, bearings (real world and test 

stand see (Bechhoefer 2008)) and a complex device, 

such as the hydraulic pump. It is anticipated that similar 

performance would be observed with gear failure.  

 The power of the techniques is in the generality of 

the approach and the ability to successfully determine 

the remaining useful life with limited data. In this one 

example, only signal average RMS from a hydraulic 

pump was used to predict failure 55 flight hours in the 

future. While this technique appears a step closer to 

achieving reliable prediction of remaining useful life, 

additional work needs to be done to implement in a 

system. The next goal is to implement an actual PHM 

system on a wind turbine generator. 
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