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ABSTRACT 

The traditional data-driven prognostic approach is to 

construct multiple candidate algorithms using a training 

data set, evaluate their respective performance using a 

testing data set, and select the one with the best 

performance while discarding all the others. This 

approach has three shortcomings: (i) the selected 

standalone algorithm may not be robust, i.e., it may be 

less accurate when the real data acquired after the 

deployment differs from the testing data; (ii) it wastes 

the resources for constructing the algorithms that are 

discarded in the deployment; (iii) it requires the testing 

data in addition to the training data, which increases the 

overall expenses for the algorithm selection. To 

overcome these drawbacks, this paper proposes an 

ensemble data-driven prognostic approach which 

combines multiple member algorithms with a weighted-

sum formulation. Three weighting schemes, namely, 

the accuracy-based weighting, diversity-based 

weighting and optimization-based weighting, are 

proposed to determine the weights of member 

algorithms for data-driven prognostics. The k-fold cross 

validation (CV) is employed to estimate the prediction 

error required by the weighting schemes. Two case 

studies were employed to demonstrate the effectiveness 

of the proposed prognostic approach. The results 

suggest that the ensemble approach with any weighting 

scheme gives more accurate RUL predictions compared 

to any sole algorithm and that the optimization-based 

weighting scheme gives the best overall performance 

among the three weighting schemes.
†
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1. INTRODUCTION 

To support critical decision-making processes such as 

maintenance replacement and system design, activities 

of health monitoring and life prediction are of great 

importance to engineered systems composed of 

multiple components, complex joints, and various 

materials, such as distributed manufacturing facilities, 

electronic devices, advanced military systems and so on. 

Research on real-time diagnosis and prognosis which 

interprets data acquired by distributed sensor networks, 

and utilizes these data streams in making critical 

decisions provides significant advancements across a 

wide range of applications. Maintenance and life-cycle 

management is one of the beneficiary application areas 

because of the pervasive nature of design and 

maintenance activities throughout the manufacturing 

and service sectors. Maintenance and life-cycle 

management activities constitute a large portion of 

overall costs in many industries (Dekker, 1996). These 

costs are likely to increase due to the rising competition 

in today’s global economy. For instance, in the 

manufacturing and service sectors, unexpected 

breakdowns can be prohibitively expensive since they 

immediately result in lost production, failed shipping 

schedules, no operational service, repair cost, and poor 

customer satisfaction. In order to reduce and possibly 

eliminate such problems, it is necessary to accurately 

assess current system health condition and precisely 

predict the remaining useful life (RUL) of operating 

components, subsystems, and systems.  

 In general, prognostics approaches can be 

categorized into model-based approaches (Luo, et al., 

2008; Gebraeel & Pan, 2008; Gebraeel et al., 2009), 

data-driven approaches (Schwabacher, 2005; Wang et 

al., 2008; Zio & Di Maio, 2010; Coble & Hines, 2008; 

Heimes, 2008) and hybrid approaches (Kozlowski et al., 

2001; Goebel et al., 2006; Saha et al., 2009). The 

application of general model-based prognostics 
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approaches relies on the understanding of system 

physics-of-failure and underlying system degradation 

models. Luo et al (Luo, et al., 2008) developed a 

model-based prognostic technique that relies on an 

accurate simulation model for system degradation 

prediction and applied this technique to a vehicle 

suspension system. Gebraeel presented a degradation 

modeling framework for RUL predictions of rolling 

element bearings under time-varying operational 

conditions (Gebraeel & Pan, 2008) or in the absence of 

prior degradation information (Gebraeel et al., 2009). 

As practical engineered systems generally consist of 

multiple components with multiple failure modes, 

understanding all potential physics-of-failures and their 

interactions for a complex system is almost impossible. 

With the advance of modern sensor systems as well as 

data storage and processing technologies, the data-

driven approaches for system health prognostics, which 

are mainly based on the massive sensory data with less 

requirement of knowing inherent system failure 

mechanisms, have been widely used and become 

popular. A good review of data-driven prognostic 

approaches was given in (Schwabacher, 2005). Data-

driven prognostic approaches generally require the 

sensory data fusion and feature extraction, statistical 

pattern recognition, and for the life prediction, the 

interpolation (Wang et al., 2008; Zio & Di Maio, 2010), 

extrapolation (Coble & Hines, 2008), or machine 

learning (Heimes, 2008) and so on. Hybrid approaches 

attempt to take advantage of the strength from data-

driven approaches as well as model-based approaches 

by fusing the information from both approaches. Garga 

et al. (Kozlowski et al., 2001) described a data fusion 

approach where domain knowledge and predictor 

performance are used to determine weights for different 

state-of-charge predictors. Goebel et al. (Goebel et al., 

2006) employed a Dempster-Shafer regression to fuse a 

physics-based model and an experience-based model 

for prognostics. Saha et al. (Saha et al., 2009) combined 

the offline relevance vector machine (RVM) with the 

online particle filter for battery prognostics. Similar to 

model-based approaches, the application of hybrid 

approaches is limited to the cases where sufficient 

knowledge on system physics-of-failures is available. 

 Implicit relationship between the RUL and the 

sensory signals makes it difficult to know which 

prognostic algorithm performs best in a specific 

application. Furthermore, there are many factors that 

affect the prediction accuracy and robustness, such as 

(i) dependency of the algorithm’s accuracy on the 

number of units in a training data set, (ii) significant 

variability in manufacturing conditions and large 

uncertainties in environmental and operational 

conditions, (iii) the amount of effective sensory signals 

for RUL predictions, and (iv) the form of degradation 

trend (e.g., linear, nonlinear, noisy, smooth). Therefore, 

no single prognostic algorithm works well for all 

possible situations. Instead of using an individual 

prognostic algorithm, it would be beneficial to combine 

multiple algorithms to form a hybrid algorithm. 

Combining different approximate algorithms into an 

ensemble has found its applications in a wide variety of 

research fields, such as the development of committees 

of neural networks (Perrone & Cooper, 1993; Bishop, 

2005), the metamodeling for the design of modern 

engineered systems (Goel et al., 2007; Acar & Rais-

Rohani, 2009), the discovery of regulatory motifs in 

bioinformatics (Hu et al., 2006), the detection of traffic 

incidents (Chen et al., 2009), and the development of 

ensemble Kalman filters (Evensen, 2003). However, 

the utilization of the ensemble approach for the data-

driven prognostics is still in infancy. Most data-driven 

prognostic practices select a single algorithm with the 

best accuracy from the algorithm pool while discarding 

the others. This approach not only wastes the resource 

devoted to developing different algorithms, but also 

suffers from the lack of robustness.  

 Estimating the accuracy of a prognostic algorithm is 

important not only for evaluating its prediction 

accuracy but also for choosing the best algorithm from 

a given set (model selection), or combining algorithms. 

Many data-driven approaches (Schwabacher, 2005; 

Wang et al., 2008; Zio & Di Maio, 2010) use the so-

called holdout method, which divides the original run-

to-failure data set into two mutually exclusive subsets 

called a training set and a testing set, or holdout set. 

The holdout method is straightforward and 

computationally efficient. However, it often produces a 

large variance of the resulting estimate and requires the 

testing data set which increases the overall expenses for 

the algorithm selection.  

 To overcome the above shortcomings, this study 

proposes an ensemble approach that employs the k-fold 

cross validation (CV) to estimate the accuracy of a 

given ensemble and proposes three weighting schemes 

to determine the weight values. Assumptions for this 

study are listed below:  

(1) Multiple run-to-failure data are available, either 

from the computer simulation or field testing. 

(2) A single failure mode is considered, i.e., the RUL 

prediction is exclusively for this failure mode. 

(3) The underlying physics of the system fault 

propagation is not comprehensive or it is too 

expensive to derive a reliable physical damage 

model for a complex engineered system. Both cases 

entail the use of the data-driven prognostics.  

These assumptions define the application domain of 

this work, i.e., data-driven prognostics. The rest of the 

paper is organized as follows. Section 2 presents the 

proposed ensemble approach with the k-fold CV and 

three weight schemes. Applications of the proposed 
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methodology are presented in Section 3 and the 

conclusion of this work is given in Section 4. 

2. ENSEMBLE OF PROGNOSTIC 

ALGORITHMS  

It is essential to propose a robust prognostic solution 

that accurately predicts the RUL using data features 

extracted from multi-dimensional sensory degradation 

signals. For building such a unified structural health 

prognostic framework, this paper proposes (i) a 

weighted-sum formulation for an ensemble of 

prognostic algorithms, (ii) k-fold cross validation (CV) 

to evaluate the error metric associated with a candidate 

ensemble model; and (iii) three weighting scheme to 

determine the weight values for the member algorithms. 

This section is organized as follows. Section 2.1 

presents the basic weighted-sum formulation for the 

RUL prediction. Section 2.2 describes the background 

of the k-fold CV and how it can be applied for 

estimating the accuracy of a prognostic algorithm. 

Section 2.3 describes the three proposed weighting 

schemes. The overall procedure of the ensemble 

approach is described in Section 2.4. 

2.1 Weighted-Sum Formulation 

The weighted-sum and voting formulations are most 

often used for the algorithm ensemble. Since the RUL 

is not binary, the weighted-sum approach which 

combines RUL predictions from all member algorithms 

is more approximate than the voting formulation which 

retains only one RUL prediction while discarding all 

the others. A simple average of RUL predictions 

obtained using the member algorithms is acceptable 

only when the member algorithms provide the same 

level of accuracy. However, it is more likely that an 

algorithm tends to be more accurate than others. It is 

ideal to assign a greater weight to a member algorithm 

with higher prediction accuracy in order to enhance its 

prediction accuracy and robustness.   

 Let Y = {y1, y2,…, yN} be a data set consisting of 

multi-dimensional sensory signals (e.g., acceleration, 

strain, pressure) from N different run-to-failure units. 

An ensemble of prognostic member algorithms for 

RUL prediction can be expressed in a weighted-sum 

formulation as 

 ( )
1

ˆ ˆ ,
=

=∑ y Y
M

j j t

j

L w L  (1) 

where L̂ denotes the ensemble predicted RUL for the 

testing data set yt; M denotes the number of algorithm 

members in the ensemble; wj denotes the weight 

assigned to the j
th
 prognostic algorithm; ˆ

jL (yt, Y) 

denotes the predicted RUL by the j
th

 prognostic 

member algorithm trained with the data set Y. 

2.2 K-Fold Cross Validation 

The k-fold cross validation is used in the offline process 

to evaluate the accuracy of member algorithms and a 

given ensemble. It randomly divides the original data 

set Y into k mutually exclusive subsets (or folds) Y1, 

Y2,…, Yk having an approximately equal size (Kohavi, 

1995). Of the k subsets, one is used as the test set and 

the other k−1 subsets are put together as a training set. 

The CV process is performed k times, with each of the 

k subsets used exactly once as the test set. Let Im = {i: 

yi∈Ym}, m = 1, 2,…, k denote the index set of the run-

to-failure units whose sensory signals construct the 

subset Ym. Then the CV error is computed as the 

average error over all k trials and can be expressed as 

 ( )( )( )
1

1 ˆ ˆ, , \ ,ε
= ∈

= ∑∑
I

y Y Y
m

k
T

CV j j i m i

m i

S L w L L
N

 (2) 

where S(•) is a predefined evaluation metric that 

measures the accuracy of the ensemble-predicted RUL; 

N denotes the number of different run-to-failure units 

for CV; Li
T
 denotes the true RUL of the i

th
 unit. The 

above formula indicates that all units in the data set are 

used for both training and testing, and each unit is used 

for testing exactly once and for training k–1 times. 

Thus, the variance of the resulting estimate is likely to 

be reduced compared to the traditional holdout 

approach, resulting in superior performance when 

employing a small data set. It is important to note that 

the disadvantage of the k-fold CV against the holdout 

method is greater computational expense because the 

training process has to be executed k times. As a 

commonly used setting for CV, a 10-fold CV is 

employed in this study. 

2.3 Weighting Schemes 

This section will introduce three schemes to determine 

the weights of member algorithms: the accuracy-based 

weighting, diversity-based weighting and optimization-

based weighting. 

2.3.1 Accuracy-based Weighting 

The prediction accuracy of the j
th

 member algorithm is 

quantified by its CV error, expressed as 

 ( )( )
1

1 ˆ , \ ,ε
= ∈

= ∑∑
I

y Y Y
m

k
j T

CV j i m i

m i

S L L
N

 (3) 

The weight wj of the j
th

 member algorithm can then be 

defined as the normalization of the corresponding 

inverse CV error as 

 
( )

( )

1

1

1

ε

ε

−

−

=

=

∑

j

CV

j M i

CVi

w  (4) 

This definition indicates that a larger weight is assigned 

to a member algorithm with higher prediction accuracy. 
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Thus, a member algorithm with better prediction 

accuracy has a larger influence on the ensemble 

prediction. This weighting scheme relies exclusively on 

the prediction accuracy to determine the weights of 

member algorithms. 

2.3.2 Diversity-based Weighting 

The weight formulation in Eq. (4) relies exclusively on 

the prediction accuracy to determine the weights. 

However, the prediction accuracy of member 

algorithms is not the only factor that affects the 

ensemble performance. The prediction diversity, which 

measures the extent to which the predictions by a 

member algorithm are distinguishable from those by 

the others, also has a significant effect on the ensemble 

performance, especially on the robustness. More 

specifically, a larger weight should generally be 

assigned to a member algorithm with higher prediction 

diversity because of its larger potential to enhance the 

ensemble robustness. 

 We begin by formulating an N-dimensional error 

vector consisting of absolute RUL prediction errors by 

the j
th

 member algorithm as 

 ( ) ( )( )
T

1 1 1
ˆ ˆ, \ ,...,  , \= − −e y Y Y y Y Y

T T

j j j N m N
L L L L  (5) 

Repeatedly computing the error vectors for all M 

member algorithms gives M error vectors e1, e2,…, eM. 

The prediction diversity of the j
th

 member algorithm 

can then be computed as the sum of Euclidean 

distances between the error vector ej and all the other 

error vectors, given by 

 
1;= ≠

= −∑ e e
k

j j i

i i j

D  (6) 

The prediction diversity measures the extent to which 

the predictions by a member algorithm are 

distinguishable from those by any other. Based on the 

defined prediction diversity, the normalized weight wj 

of the j
th

 member algorithm can then be calculated as 

 

1=

=

∑
j

j M

ii

D
w

D
 (7) 

This definition suggests that a member algorithm with 

higher prediction diversity will be given a larger weight 

and thus contributes more to the ensemble predicted 

RUL. For example, if, among all the member 

algorithms, one algorithm consistently gives early RUL 

predictions while any of the others late RUL 

predictions, the former will likely be given a larger 

weight than the latter. It is also noted that the weight 

formulation in Eq. (7) considers the prediction diversity 

as the only criterion for the weight determination. 

 

 

2.3.3 Optimization-based Weighting 

Neither the accuracy-based nor diversity-based 

weighting scheme takes into account both the 

prediction accuracy and diversity in the weight 

calculation. Thus, the two schemes cannot produce an 

ensemble algorithm to achieve both high prediction 

accuracy and robustness. In what follows, an 

optimization-based weighting scheme is proposed to 

maximize the accuracy and robustness of data-driven 

prognostics by adaptively synthesizing the prediction 

accuracy and diversity of each member algorithm. 

 In the optimization-based weighting scheme, the 

weights in Eq. (1) can be obtained by solving an 

optimization problem of the following form 

 
( )( )( )

1

ˆ ˆMinimize , , , 1,...,

Subject to 1

ε

=

=

=∑

y
i i

CV j j T

M

jj

L w L L i N

w

 (8) 

After the prediction of RULs using the M member 

algorithms through the 10-fold CV, the above 

optimization problem can be readily solved with almost 

negligible computational effort since the weight 

optimization process does not require the execution of 

member algorithms. Thus, the overall computational 

cost mainly comes from the training and testing in the 

CV process. We expect that, by solving the 

optimization problem in Eq. (8), the resulting ensemble 

of algorithms will outperform any of the ensemble’s 

individual member algorithms in terms of both 

accuracy and robustness. 

2.3.4 Overall Procedure 

Figure 1 shows the overall procedure of the proposed 

ensemble approach with the k-fold CV and three 

weighting schemes. This data-driven prognostic 

approach is composed of the offline and online 

processes. In the offline process, the offline 

training/testing process with the k-fold CV is employed 

to compute the CV error of an ensemble formulation; 

the weights of member algorithms are determined using 

the accuracy-based weighting, diversity-based 

weighting and optimization-based weighting. The 

online prediction process combines the RUL 

predictions from all member algorithms to form an 

ensemble RUL prediction using the weights obtained 

from the offline process. This process enables the 

continuous update of the health information and 

prognostic results in real-time with new sensory signals. 

STEPS 2-4 can be repeated to use new training sensory 

signals and to update the weights and RUL predictions. 

Since the computationally expensive training process 

with multiple algorithms is done offline and the online 

prediction process with multiple algorithms requires a 

small amount of computational effort, the ensemble 

approach raises little concerns in the computational 



Annual Conference of the Prognostics and Health Management Society, 2010 

 5 

complexity. Indeed, in many engineered systems, the 

prognostic accuracy is treated as of much more 

importance compared to the computational complexity 

since the occurrence of a catastrophic system failure 

causes much more loss than the increase of the 

computational efforts. Therefore, in cases where the 

ensemble approach achieves significant improvement 

in the prediction accuracy compared to any sole 

member algorithm, we should always prefer the use of 

the former.  

 

 

Figure 1: A flowchart of the ensemble approach 

3. CASE STUDIES 

In this section, the proposed ensemble of data-driven 

prognostic algorithms is demonstrated with two case 

studies: (i) 2008 IEEE PHM challenge problem and (ii) 

power transformer problem. In each case study, the 

ensemble approach combines RUL predictions from 

five data-driven prognostic algorithms, namely, a 

similarity-based interpolation (SBI) approach with 

RVM as the regression technique (RVM-SBI) (Wang et 

al., 2008; Tipping, 2001), SBI with SVM (SVM-SBI) 

(Wang et al., 2008; Smola & Schölkopf, 2004), SBI 

with the least-square exponential fitting (Exp-SBI) 

(Wang et al., 2008), a Bayesian linear regression with 

the least-square quadratic fitting (Quad-BLR) (Coble & 

Hines, 2008), and a recurrent neural network (RNN) 

approach (RNN) (Heimes, 2008; Cernansky et al., 

2007).   

3.1 2008 IEEE PHM Challenge Problem 

3.1.1 Description of Data Set 

The data set provided by the 2008 IEEE PHM 

Challenge problem consists of multivariate time series 

signals that are collected from an engine dynamic 

simulation process. Each time series signal comes from 

a different degradation instance of the dynamic 

simulation of the same engine system (Saxena & 

Goebel, 2008). The data for each cycle of each unit 

include the unit ID, cycle index, 3 values for an 

operational setting and 21 values for 21 sensor 

measurements. The sensor data were contaminated with 

measurement noise and different engine units start with 

different initial health conditions and manufacturing 

variations which are unknown. Three operational 

settings have a substantial effect on engine degradation 

behaviors and result in six different operation regimes. 

The 21 sensory signals were obtained from six different 

operation regimes. The whole data set was divided into 

training and testing subsets, each of which consists of 

218 engine units. In the training data set, the fault 

growth in a unit was allowed until the occurrence of a 

system failure when one or more limits for safe 

operation have been reached. In the testing data set, the 

time series signals were pruned some time prior to the 

occurrence of a system failure. The objective of the 

problem is to predict the number of remaining 

operational cycles before failure in the testing data set. 

3.1.2 Implementation of Ensemble Approach 

For the CV process, the training data set with 218 units 

were divided to 10 data subsets with a similar size. 

Each data subset was used for both training and testing 

and, more specifically, 9 times for training and once for 

testing.  The training data subsets contain complete 

degradation information while the testing data subsets 

carry only partial degradation information. The latter 

were generated by truncating the original data subsets 

after pre-assigned RULs. The RUL pre-assigned to 

each unit in a testing data subset was randomly 

generated from a uniform distribution between zero and 

its half life. This range in the uniform distribution was 

selected based on the following two criteria: (i) the pre-

assigned RULs should be small enough to allow the 

occurrence of substantial degradation; and (ii) the 

variation of the pre-assigned RULs should be large 

enough to test the robustness of algorithms.  

 Following the previous work (Wang et al., 2008), 

this study selected 7 sensory signals (2, 3, 4, 7, 11, 12 

and 15) among the 21 sensory signals for the use in the 

member algorithms: RVM-SBI, SVM-SBI, Exp-SBI 

and Quad-BLR. For the VHI construction, the system 

healthy matrix Q0 was created with the sensory data in 

a system healthy condition, L > 300, while the system 

failure matrix Q1 with those in a system failure 

condition, 0 ≤ L ≤ 4. The RVM employed a linear 

spline kernel function with the initial most probable 

hyper-parameter vector for kernel weights αm = 

[1×10
4
,…, 1×10

4
] and the initial most probable noise 

variance σm
2
 = 1×10

–4
. In the SVM, a Gaussian kernel 

function is used with the parameter settings as: the 

regularization parameter C = 10 and the parameter of 

the ε-insensitive loss function ε = 0.10. The 

implementation details of RNN can be found in 

(Heimes, 2008). In the RNN architecture, the numbers 

of the input, recurrent and output units are |I| = 22, |R| = 

8 and |O| = 1.  



Annual Conference of the Prognostics and Health Management Society, 2010 

 6 

 The evaluation metric considered for this example 

employed an asymmetric score function around the true 

RUL such that heavier penalties are placed on late 

predictions (Saxena & Goebel, 2008). The score 

evaluation metric S can be expressed as 

 
( )

( )

( )

exp /13 1, 0
ˆ ,

exp /10 1, 0

ˆwhere 

− − <
= 

− ≥

= −

i iT

i i

i i

T

i i i

d d
S L L

d d

d L L

 (9) 

where ˆ
i

L  and Li
T
 denote the predicted and true RUL of 

the i
th

 unit, respectively. This score function was used 

to compute the CV error εCV using Eq. (2) for the 

accuracy- and optimization-based weighting schemes. 

In this study the weight optimization problem in Eq. (8) 

was solved using a sequential quadratic optimization 

(SQP) method which is a gradient-based optimization 

technique. 

3.1.3 Results of Ensemble Approach 

The five selected member algorithms are RVM-SBI 

(RS), SVM-SBI (SS), Exp-SBI (ES), Quad-BLR (QB) 

and RNN (RN). The three weighting schemes are the 

accuracy-based weighting (AW), diversity-based 

weighting (DW) and optimization-based weighting 

(OW). Table 1 summarizes the weight optimization 

results of the ensemble approaches as well as compares 

the CV and validation errors of the individual and 

ensemble approaches. It is observed that the ensemble 

approaches with all three weighting schemes 

outperforms any of the individual member algorithm in 

terms of the CV error and that the one with the 

optimization-based weighting achieves the smallest CV 

error of 4.8387 on the training data set, a 38.62% 

improvement over the best individual member 

algorithm, ES, whose CV error is 7.8834. As expected, 

the accuracy-based weighting scheme yields better 

prediction accuracy than the diversity-based weighting. 

This can be attributed to the fact that the former assigns 

larger weights to member algorithms with better 

prediction accuracy while the latter does not consider 

the prediction accuracy in the weight determination. To 

test the robustness of the ensemble approaches, the 

testing data set with 218 units were employed to 

compute the validation errors. Note that the testing data 

set is different from the training data set that was used 

to determine the weights in the ensemble approach. It is 

remarkable that the ensemble approaches again 

outperform the individual member algorithms and that 

the one with the diversity-based weighting performs 

best, with a 34.7% improvement over the best 

individual member algorithm, SS. This suggests that 

the diversity-based weighting, compared to the 

accuracy-based weighting, provides a more robust 

ensemble of the member algorithms. It is noted that the 

optimization-based weighting scheme still achieves a 

comparable validation error to that of the diversity-

based weighting scheme. 

 Under the optimization-based weighting scheme, 

the RUL predictions by two individual algorithms, ES 

and QB, with the largest weights and the ensemble 

approach are plotted for 218 training and testing units 

in Figure 2. The units are sorted by the RULs in an 

ascending order. It is seen that ES tends to give 

consistently early RUL predictions while QB tends to 

provide consistently late RUL predictions. We also 

observed that QB exhibited a significant “unbalanced” 

prediction feature while ES possesses this feature to a 

relatively small extent. Such a feature of QB is due to 

the fact that the Bayesian linear regression with a 

quadratic projection scheme, as its online prediction 

technique, cannot fully capture the exponential 

degradation trend and often over-project the 

degradation trend. In contrast, the ensemble approach 

gives RUL predictions closer to the true values while 

eliminating many outliers produced by the two 

individual algorithms. The optimization-based 

weighting scheme provides better performance since 

the scheme employs an optimum ensemble formulation. 

 

Table 1: Weighting results, CV and validation errors for 2008 PHM challenge problem 

 
RS SS ES QB RN 

RS-SS-ES-QB-RN 

 AW DW OW 

Weight by AW   0.3063   0.3029   0.3137   0.0151   0.0620 --- --- --- 

Weight by DW   0.1478   0.1488   0.1488   0.3354   0.2191 --- --- --- 

Weight by OW   0.0000   0.0470   0.7462   0.2068   0.0000  --- --- --- 

         

CV error   8.0743   8.1646    7.8834 163.3376   39.8583   6.9159  7.0852  4.8387 

Validation error  10.2393    9.3907  10.4710 247.0079   20.1499   8.5544  6.1280  6.1955 
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(a) 

 

(b) 

Figure 2: RUL predictions of training units (a) and testing units (b) for 2008 PHM challenge problem 

(optimization-based weighting) 

 

3.1.4 Comparison of Different Combinations of 

Member Algorithms 

Out of the five member algorithms, 31 different 

combinations can be chosen to formulate an ensemble 

approach. It would be interesting to study how a choice 

of combination affects the performance of an ensemble 

approach. Table 2 summarizes the CV errors for 

ensemble approaches with all possible combinations of 

the member algorithms under the optimization-based 

weighting scheme. Three important remarks can be 

derived from the results. First of all, it is observed that 

the ES, as the individual member algorithm with the 

best performance, always serves as a member algorithm 

of the best ensemble approach. We also observe that 

the ES, when involved in the ensemble approach, 

always had a larger weight than any other. It indicates 

that the best member algorithm exhibits good 

cooperative performance which can be identified by the 

optimization-based weighting scheme. Secondly, the 

QB, which gives the worst individual performance, was 

surprisingly selected as an important member of the 

best ensemble approach. These results, though 

counterintuitive, suggest that the ensemble approach 

can adaptively synthesize the prediction ability and 

diversity of each individual algorithm to enhance the 

accuracy and robustness of RUL predictions. Indeed, 

the QB is prone to give late RUL predictions as shown 

in Figure 2 and thus possesses higher prediction 

diversity. Thirdly, both the mean and standard 

deviation of CV errors decrease as the number of 

member algorithms increases. The mean and standard 

deviation of CV errors of ensemble approaches with a 

single member algorithm are 45.4636 and 67.3188, 

respectively, and they monotonically decrease to 

5.1896 and 0.7440, respectively, by the ensemble 

approach with four member algorithms. Thus it would 

be beneficial to have more member algorithms to 

enhance the prediction accuracy and reduce the 

uncertainty of this accuracy. 

3.2 Power Transformer Problem 

3.2.1 Model Description 

Power transformers are among the most expensive 

elements of high-voltage power systems. The 

monitoring of power transformers enables the transition 

from the traditional time-based maintenance to the 

condition-based maintenance, resulting in significant 

reductions in maintenance costs (Leibfried, 1998). 

Since it is very difficult, if not impossible, to obtain 

direct measurements of the health condition of 

transformers, indirect measurements are most often 

used to diagnose the health condition and predict the 

RUL of transformers (Rivera et al., 2000).  

Damaged joint
 

Figure 3: A power transformer FE model 
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Table 2: Comparison of CV errors of different combinations of member algorithms (optimization-

based weighting) 

Combination CV error Combination CV error Combination CV error 

RS 8.0743  RS-SS 8.0769 RS-SS-ES 7.8834 

SS 8.1646 RS-ES 7.8834 RS-SS-QB 4.9123 

ES 7.8834 RS-QB 4.9162 RS-SS-RN 6.7983 

QB 163.3376  RS-RN 6.8002 RS-ES-QB 4.8391 

RN 39.8583  SS-ES 7.8834 RS-ES-RN 6.5194 

Mean 45.4636     

Std
a
 67.3188     

      

RS-SS-ES-QB 4.8387 SS-QB 4.9362 RS-QB-RN 4.9162 

RS-SS-ES-RN 6.5194 SS-RN 6.8376 SS-ES-QB 4.8387 

RS-SS-QB-RN 4.9123 ES-QB 4.8391 SS-ES-RN 6.5194 

RS-ES-QB-RN 4.8391 ES-RN 6.5194 SS-QB-RN 4.9362 

SS-ES-QB-RN 4.8387 QB-RN 17.5868 ES-QB-RN 4.8391 

Mean 5.1896 Mean 7.6279 Mean 5.7002 

Std 0.7440 Std 3.7182 Std 1.1234 
      

RS-SS-ES-QB-RN 4.8387     
a
 Standard deviation 

 

 This case study aims to use sensory measurements 

of the transformer vibration responses induced by the 

magnetic field loading to predict the RUL of a winding 

support joint against a mechanical failure (loosening). 

The finite element (FE) model of a power transformer 

was created in ANSYS 10 as shown in Figure 3, where 

one exterior wall is concealed to make the interior 

structure visible. The transformer is fixed at the bottom 

surface and a vibration load with the frequency of 120 

Hz is applied to the magnetic core. The three windings 

have a total number of twelve support joints, with each 

having four support joints. The joint loosening was 

simulated by reducing the stiffness of the joint. The 

random parameters considered in this study are listed in 

Table 3, which includes the material properties of 

support joints and windings as well as the geometries of 

the transformer. The uncertainties in vibration 

responses propagated from these uncertain parameters 

will be accounted for when generating prognostic data.

Table 3: Random geometries and material properties for power transformer problem  

Component Physical meaning  Distri. type Mean Std 

x1 Wall Thickness Normal 3 0.015 

x2 Angular width of support joints Normal 15 0.075 

x3 Height of support joints Normal 6 0.03 

x4 Young’s modulus of support joint  Normal 2E+12 1E+10 

x5 Young’s modulus of winding Normal 1.28E+12 6E+8 

x6 Poisson ratio of joints Normal 0.27 0.0027 

x7 Poisson ratio of winding Normal 0.34 0.0034 

x8 Density of joints  Normal 7.85 0.000785 

x9 Density of windings Normal 8.96 0.0896 

 

 

 



Annual Conference of the Prognostics and Health Management Society, 2010 

 9 

3.2.2 Prognostic Data Generation 

The failure mode considered in this study is the 

loosening of a winding support joint (see Figure 3) 

induced by the magnetic core vibration. The failure 

criterion is defined as a 99% stiffness reduction of the 

joint. To model the trajectory of change in stiffness 

over time, this study uses a damage propagation model 

with an exponential form as (Saxena & Goebel, 2008) 

 ( ) ( )( )0 1 exp= + −
E E

E t E b a t  (10) 

where E0 is the initial Young’s modulus of the joint; aE 

and bE are the model parameters; t is the cycle time. 

The initial Young’s modulus E0 follows the same 

normal distribution with x4 (see Table 3). The model 

parameters aE and bE are independent and normally 

distributed with means 0.002 and 4E+12, each of which 

has a 10% coefficient of variation. 

 Since data-driven prognostic approaches require a 

large amount of prognostic data, it is computationally 

intolerable, if not impossible, to simply run the 

simulation to generate every data point. To overcome 

this difficulty, this study employed the univariate 

decomposition method that only uses a certain number 

of univariate sample points to accurate construct the 

response surface for a general multivariate response 

function while achieving good accuracy (Xu & Rahman, 

2005). 

 This study selected 5 sensors from the optimally 

designed sensor network consisting of 9 sensors and 

thus requires the construction of 5 responses surfaces. 

The data generation process involves four sequentially 

executed procedures: (i) four univariate sample points 

were obtained from the harmonic analysis to construct 

response surfaces, along the damage propagation path, 

that approximate the strain components at five sensor 

locations as functions of random variables detailed in 

Table 3; (ii) 400 randomly generated samples of E0, aE 

and bE were used in conjunction with Eq. (10) to 

produce 400 damage propagation paths were produced 

with randomly generated, of which 200 paths were 

assigned to the training units and the rest to the testing 

units; (iii) the constructed response surfaces were used 

to interpolate the strain components at five sensor 

locations for a given set of randomly generated 

geometries and material properties and damage 

propagation path, and repeatedly executing this process 

for 400 times gives the training data set with 200 

training units and the testing data set with 200 testing 

units; (iv) measurement noise following a zero mean 

normal distribution was added to both the training and 

testing data sets to finalize the data generation. The 

cubic spline was used as the numerical scheme for the 

response surface construction and interpolation. 

Simulated measurements by sensor 1 are plotted against 

the adjusted cycle index, defined as the subtraction of 

the cycle-to-failure from the actual operational cycle, in 

Figure 4, for all 200 training units in the training data 

set. 

 

Figure 4: Simulated measurements by sensors 1 

 

3.2.3 Implementation of Ensemble Approach 

The training data set with 200 units were equally and 

randomly divided to 10 subsets. Similar to the first 

example, when used for the testing in CV, each unit in 

a subset was assigned with a randomly generated RUL 

from a uniform distribution between zero and its half 

life. All the five member algorithms used the same 

parameter settings with those detailed in Section 3.1.2. 

The score function in Eq. (9) was again used to 

compute the CV error εCV for the accuracy- and 

optimization-based weighting schemes. 

3.2.4 Results of Ensemble Approach 

Table 4 summarizes the weight optimization results of 

the ensemble approaches as well as compares the CV 

and validation errors of the individual and ensemble 

approaches. Compared to the first example, similar 

results can be observed: (i) the ensemble approaches 

with all three weighting schemes yield smaller CV 

error than any of the individual member algorithm and 

the one with the optimization-based weighting gives the 

smallest CV error of 2.7258 on the training data set, a 

66.48% improvement over the best individual member 

algorithm, RN, whose CV error is 8.1323; (ii) the 

accuracy-based weighting scheme yields a comparable 

CV error to that of the diversity-based weighting; (iii) 

the optimization-based weighting scheme achieves a 

validation error of 5.6138, which is comparable to the 

smallest validation error of 5.6119 by the diversity-

based weighting scheme. 
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 Under the optimization-based weighting scheme, 

the RUL predictions by two individual algorithms, ES 

and QB, with the largest weights and the ensemble 

approach are plotted for 218 training and testing units 

in Figure 5. It can be observed that ES and QB are 

prone to produce late and early RUL predictions, 

respectively, while the ensemble approach gives RUL 

predictions closer to the true values with a much 

smaller number of outliers. 

Table 4: Weighting results, CV and validation errors for power transformer problem 

 RS 

 

SS 

 

ES 

 

QB 

 

RN 

 

RS-SS-ES-QB-RN 

 AW DW OW 

Weight by AW  0.2128  0.2265  0.2343  0.0677  0.2588 --- --- --- 

Weight by DW  0.1488  0.1486  0.1688  0.3290  0.2048 --- --- --- 

Weight by OW  0.0000  0.0000  0.6303  0.2336  0.1361 --- --- --- 
         

CV error  9.8922  9.2945  8.9849 31.0891  8.1323  3.4874  3.4124  2.7258 

Validation error  6.5737  6.8847  7.8251 20.0356 15.2265  5.7825  5.6119  5.6138 

 

 

(a) 

 

(b) 

Figure 5: RUL predictions of training units (a) and testing units (b) for power transformer problem 

(optimization-based weighting) 

4. CONCLUSION 

This paper proposed a novel ensemble approach for the 

data-driven prognostics, which employed the k-fold 

cross validation and three weighting schemes. By 

combining the predictions of all member algorithms, 

the ensemble approach achieves better accuracy in 

RUL predictions compared to any sole member 

algorithm. Furthermore, the ensemble approach has an 

inherent flexibility to incorporate any advanced 

prognostic algorithm that will be newly developed. To 

the best of our knowledge, this is the first study of an 

ensemble approach with three weighting scheme for the 

data-driven prognostics. Since the computationally 

expensive training process is done offline and the 

online prediction process requires a small amount of 

computational effort, the ensemble approach raises 

little concerns in the computational feasibility. Two 

engineering case studies (2008 PHM challenge problem 

and the power transformer prognostics problem) 

demonstrated the superb performance of the proposed 

ensemble approach for the data-driven prognostics. 

Among the three weighting scheme, the optimization-

based weighting scheme showed the capability of 

adaptively synthesizing the prediction accuracy and 

diversity of each member algorithm to enhance the 

accuracy of RUL predictions. Considering the 

enhanced accuracy in RUL predictions and flexibility 

in algorithm incorporations, the proposed ensemble 

approach is a promising methodology for the data-

driven prognostics. 
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NOMENCLATURE 

aE  1
st
 degradation model parameter  

bE  2
nd

 degradation model parameter  

C  regularization parameter 

di  difference between i
th

 predicted and true RULs 

Dj  diversity of the j
th

 member algorithm 

ej  error vector the j
th

 member algorithm 

E  Young’s modulus 

E0  initial Young’s modulus 

|I|  numbers of the input units 

Im  index set the m
th
 subset 

k  number of folds in cross validation 

L̂  ensemble predicted RUL  

Li
T
  true RUL of the i

th
 unit 

ˆ
j

L  predicted RUL by the j
th
 prognostic algorithm  

N  number of run-to-failure units 

|O|  numbers of the output units 

Q0  system healthy matrix 

Q1  system failure matrix 

|R|  numbers of the recurrent units 

S(•)  evaluation metric 

t  cycle time 

Y  prognostic data set 

wj  weight of the j
th

 prognostic algorithm 

αm  initial most probable hyper-parameter vector 

σm
2
   initial most probable noise variance 

ε  parameter of the ε-insensitive loss function 

εCV  cross validation error 

CV  cross validation 

RUL  remaining useful life 

RVM  relevance vector machine 

SBI  similarity-based interpolation  

SVM  support vector machine 
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