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ABSTRACT 

With the advent of the next generation of aerospace 

systems equipped with fly-by-wire controls, electro-

mechanical actuators (EMA) are quickly becoming 

components critical to safety of aerospace vehicles.  

Being relatively new to the field, however, EMA lack 

the knowledge base compared to what is accumulated 

for the more traditional actuator types, especially when 

it comes to fault detection and prognosis. Scarcity of 

health monitoring data from fielded systems and 

prohibitive costs of carrying out real flight tests create 

the need to build high-fidelity system models and 

design affordable yet realistic experimental setups.  The 

objective of this work is to build an EMA test stand 

that, unlike current laboratory stands typically weighing 

in excess of one metric ton, is portable enough to be 

easily placed aboard a wide variety of aircraft.  This 

stand, named the FLEA (for Flyable Electro-

mechanical Actuator test stand), allows testing EMA 

fault detection and prognosis technologies in flight 

environment, thus substantially increasing their 

technology readiness level – all without the expense of 

dedicated flights, as the stand is designed to function as 

a non-intrusive secondary payload.  No aircraft 

modifications are required and data can be collected 

during any available flight opportunity: pilot currency 

flights, ferry flights, or flights dedicated to other 

experiments. The stand is currently equipped with a 

prototype version of NASA Ames developed prognostic 

health management system with models aimed at 

detecting and tracking several fault types.  At this point 

the team has completed test flights of the stand on US 

Air Force C-17 aircraft and US Army UH-60 

helicopters and more experiments, both laboratory and 

airborne, are planned for the coming months.* 

1. INTRODUCTION  

As mentioned earlier, EMA are being groomed to 

become the workhorse of the next generation fly-by-

wire aircraft and spacecraft.  The advantages of these 

devices over the traditional hydraulic controls are well 

understood – lower recurrent maintenance, lower 

overall weight (no need for heavy hydraulic reservoirs 

and lines), better survivability in combat situations and 

superior suitability for operation in harsh environments.  

What is not yet well characterized, however, are the 

EMA fault modes and the nature of their progression 

under varying operational and environmental 

conditions. 

 The motivation for this effort came from the 

realization of just how difficult it is to obtain high 

quality EMA performance data (under nominal 

conditions and even more so in the presence of a fault) 

suitable for prognostic work.  Manufacturers, 

understandably, in most cases consider this type of 

information to be proprietary.  EMA deployed in the 

field (in military or civilian aircraft, for example) are 

often not instrumented sufficiently to provide useful 

data.  While there have been some past efforts to collect 
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the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 



Annual Conference of the Prognostics and Health Management Society, 2010 

 2  

EMA performance data in flight (Jensen et al, 2000), 

they were done with nominal actuators and for 

relatively short periods of time. 

 The question often arises as to why go through the 

trouble of actually putting an actuator test stand on an 

airplane?  Why can’t the same type of data be collected 

solely on the ground, in laboratory conditions?  Our 

reasons for pursuing this path are twofold: 

• Some of the environmental conditions, such as 

background vibration, acoustic noise, and G-loads 

are difficult to reproduce in the laboratory 

environment.  Without testing the entire system in 

relevant conditions, one cannot be certain that, for 

example, a particularly clever feature extracted 

from accelerometer signals in laboratory 

environment is going to be as useful in an 

environment with a high external level of vibration 

• With PHM-augmented EMA driving a primary 

control surface of an aircraft being the ultimate 

demonstration, the FLEA is a necessary 

intermediate step needed to demonstrate 

technology maturity (for instance, the ability to 

operate in a real-time mode, among other 

benchmarks). Using an unobtrusive, self-contained 

system like the FLEA, this can be done in a 

relatively fast, inexpensive, and safe manner. 

 The design and fabrication of the test stand started 

at California Polytechnic State University under the 

guidance from the Diagnostic and Prognostic Group of 

the NASA Ames Research Center.  After a fast-paced 

development effort, resulting in a mechanically and 

electrically complete system, the stand was transferred 

to NASA Ames Research Center, where the 

development of the control, data acquisition, user 

interface, and data processing software was completed.  

Other work included expansion of the sensor suite and 

data acquisition capabilities, hardening of all the 

systems for flight environment, and developing 

components necessary for communication with various 

types of aircraft. 

 The remainder of the paper will expand further on 

the design considerations that guided the team in 

creating the FLEA, describe the hardware and the 

software components in Section 2, discuss the design 

philosophy of the experiments in Section 3, and go into 

details of the current health management system in 

Section 4.  Some ideas on future directions of this 

research will be outlined in Section 5. 

2. THE FLEA 

The key idea of this work is to design, build and fly a 

self-contained, lightweight test fixture containing three 

actuators: one nominal, one injected with faults, and the 

third providing dynamic load. The load is switched in-

flight from the healthy to the faulty test actuator, thus 

providing the fault injection capability for the test stand 

without having to modify the actuator in flight. The 

stand is connected to the aircraft data bus and the 

motion profiles for the test actuators, as well as the load 

applied to them, are derived from the corresponding 

real-time values for one of the aircraft’s control 

surfaces. 

 Some of the main constraints in designing the FLEA 

were size, weight, and cost.  It was desirable to make 

the stand compact enough to be able to fit into a 

standard 19-inch equipment rack present on some 

aircraft.  A compact size in general also allows 

placement aboard a wider variety of aircraft.  The same 

reason motivated the desire to keep the weight of the 

FLEA to a minimum, so that it can potentially even be 

flown aboard some of NASA’s unmanned aerial 

vehicles.  The cost was minimized by utilizing off-the-

shelf and in-house built components as much as 

possible. 

 The FLEA is a largely self-contained unit.  The only 

external interfaces required are those for the aircraft 

data bus and power.  Power is provided via 110V AC 

and 28V DC connectors.  The 110V AC line is used to 

power the processing and data acquisition unit via a 

340W power supply and the 28V DC line is used to 

power the actuators and some of the sensors. 

 

Figure 1. FLEA test stand engineering model 

2.1 Hardware 

Chassis 

The frame is constructed from T-slotted extruded 

aluminum segments connected with brackets and 

fasteners.  This allows for a relatively quick 

disassembly for servicing between experiments.  The 1 

cm thick center plate is attached to the frame and used 

for mounting the actuators and other components of the 

stand.  Rigidity of the central plate was an important 

design consideration, therefore analysis was performed 

that showed only negligible bending under the expected 

30 cm 

45 cm 

45 cm 
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loads. Before a flight, the sides of the chassis (except 

for the top) are covered with 3 mm thick aluminum 

plates.  These plates serve a dual purpose: as an 

additional safety measure in case of a crash and to 

provide EMI protection.  The top portion of the stand, 

where EMI emissions are not of a concern, is protected 

with a thick panel of high-strength Lexan™, which 

allows the operator to visually observe the test in 

progress. Structural analysis demonstrated that no 

internal components would be able to pierce either the 

aluminum or the Lexan panels during a crash up to 20g 

in deceleration.  EMI protection provided by the 

shielding satisfies MIL-STD-461. 

 

 

Figure 2.  FLEA aboard an aircraft with protective 

panels mounted 

 The overall weight of the FLEA, with all the 

components mounted, is approximately 35 kg.  The 

stand is typically mounted either in the aforementioned 

instrumentation rack or strapped/bolted to the floor of 

the fuselage. 

Processing Unit 

The processing unit, running the operating system, data 

acquisition, control, and health management software, 

is based on an off-the-shelf Pentium 4 3.2GHz ATX 

form-factor motherboard.  A standard set of 

input/output ports is supported (RJ-45, USB, PCI, 

ePCI, and RS-232).  

 Storage is provided by two solid-state drives.  A 

smaller, 32 GB one is used for the software, while a 

larger, 128GB one, is dedicated to data storage.  Solid-

state drives were chosen over traditional hard drives for 

their ability to operate at high altitudes without the need 

for pressurization. 

Sensor Suite and Data Acquisition System 

The data acquisition system consists of two NI 6259 

cards and supports a comprehensive sensor suite, which 

is described in Table 1.   

Table 1.  FLEA Sensor Suite 

Sensor Qty Type Location 

Load cell 1 Omega 

LC703-75 

Between 

the load 

actuator 

and the 

test 

actuator 

Accelerometer 2 Endevco 

7253C 

On the nut 

of the ball 

screw 

Thermocouple 4 T type On the 

ball screw 

nut and 

motor 

housing 

Rotary 

encoder 

2 UltraMotion 

E5DIFF 

optical 

encoder with 

differential 

output 

On the test 

actuator 

motors 

Linear 

potentiometer 

1 UltraMotion 

precision 

linear 

potentiometer 

Along the 

load 

actuator 

screw 

Voltage 

Sensor 
3 Custom 

Motor 

controller 

boards 

Current sensor 3 Custom 

Motor 

Controller 

Boards 

 

 The accelerometers are connected through custom 

fabricated conditioner boards that supply them with 

excitation voltage and remove the DC portion of the 

return signal.  The voltage and current sensors are 

implemented via voltage dividers on the motor 

controller boards. 

Control System 

The test actuators are controlled via a Polulu 

VNH3SP30 controller.  The load actuator is driven via 

a custom controller created at CalPoly.  Coupling of 

test actuators to the load actuator is accomplished via 

electro-magnets (shown on Figure 3), with coupling 

commands coming through the NI 6259 cards.  Only 

one test actuator at a time is normally coupled to the 

load actuator. 

Test Actuators 

The test articles used in the FLEA at present are 

UltraMotion Bug actuators. While architecturally 

equivalent to the larger (and considerably more  
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expensive flight-qualified EMAs), these ‘off the shelf’ 

units allow the team to conduct run-to-failure 

experiments in a cost-effective manner. Their high-

level specifications are presented in  

Table 2. 

 

Table 2.  UltraMotion Bug Actuator Specifications 

Mechanism type Ballscrew with a DC 

electric motor 

Screw thread pitch 0.125 in/rev 

Efficiency 98% 

Dynamic load 5000 lb*in/sec (100% 

duty cycle) 

Motor stall torque 41.3 oz/in 

Motor no-load speed 102.5 rev/sec 

Motor stall current: 8.11 amps 

Motor no-load current: 0.16 amps 

 

 

 

Figure 4.  UltraMotion Bug actuator 

2.2 System Software 

The system software consists of an actuator control 

system, data acquisition system, flight interface system, 

a diagnostic system and a prognostic system. All of 

these are implemented in LabVIEW™ on a Windows 

XP operating system. However the underlying 

algorithms for the diagnoser and prognoser are 

implemented in MATLAB™. The LabVIEW code has 

been implemented in modular fashion with modules for 

different functions and data sharing through 

synchronization structures like queues. The overall 

control architecture is illustrated on the following 

figure: 

 

Figure 5. FLEA control architecture 

The details of each of the subsystems follow next. 

 

Actuator Control System 

As described in the previous section, the actuator 

motors are controlled by a microcontroller board. This 

microcontroller is responsible for controlling the duty 

cycle of each actuator motor driver and returning their 

position. The microcontroller is controlled using serial 

communication over USB. LabVIEW VIs are used to 

send serial commands to control all three actuators as 

well as to determine their positions.  

 One of the more typical operations for a test 

actuator is to control it to a specific position. Hence we 

implemented LabVIEW code which implements a PID 

controller that uses a set point and feedback from the 

position sensor to maintain the position of the test 

actuator. The load actuator, as the name suggests, is 

intended to maintain a desired load profile and hence a 

similar PID controller was implemented that uses a 

load set point and feedback from the load cell.  

 Since the two test actuators are currently meant to 

be used one at a time, the actuator control also 

implements code to activate the electro-magnets, 

Aircraft Data 

Bus 

Stored 

Profiles 

Manual 

Control 

DAQ 

Diagnoser 

Prognoser 

Data Plotting 

Data Storage 

FLEA 

Figure 3. FLEA actuator coupling system 
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couple the actuators, re-couple the actuators (if they get 

de-coupled) and switch actuators when an experiment 

needs to be directed to the other test actuator. The front 

panel for the actuator control system that provides the 

entire range of control actions is illustrated in Figure 6.  

Examples of display windows, available with the 

manual control interface (as well as with other types of 

interfaces described further in the paper) are shown on 

Figure 7. 

 

 

Figure 6. Manual control interface 

Data Acquisition System 

The data acquisition is performed via two National 

Instruments 6259 cards. This allows for acquiring data 

from some of the sensors at low speed and others, like 

accelerometer channels, at high speed. The data 

acquisition is controlled by two corresponding 

LabVIEW DAQ tasks. The low speed data is acquired 

at 1 KHz sampling rate and the high speed data is 

acquired at 20 KHz sampling rate. Both tasks are run 

continuously in a while loop gathering 100 

milliseconds of data on each run. 

 Since the actuator positions can only be obtained 

through calls to the microcontroller, the DAQ software 

also includes code to read actuator positions once every 

100 milliseconds to be synchronized with rest of the 

data acquisition. In addition we also record other 

information, like PID controller outputs and desired 

position and load profiles for the purposes of analysis. 

 The acquired data is used for a variety of purposes, 

including plotting for visual inspection, saving to file 

for future analysis, and sending to diagnoser and 

prognoser for online reasoning. In order to achieve the 

above objectives in an efficient manner, a producer-

consumer architecture is implemented using a 

LabVIEW feature called “notifier”. Every time a 100 

milliseconds’ worth of data have been acquired, it is 

published by sending a notification. Other modules 

needing this data can wait for the notification (which 

comes with attached data) and then wake up when the 

notification arrives and process the data as needed. 

Figure 7. Data display windows 

Diagnoser 

The diagnoser is responsible for monitoring the sensor 

data and determining whether any faults are present in 

the system. The details of the diagnostic algorithm, 

which is implemented in MATLAB, are described in 

Section 4. The LabVIEW interface is designed to send 

the acquired data to the diagnoser and print the 

diagnostic results received from the diagnoser. The 

interface to the diagnoser/prognoser is illustrated in 

Figure 8. 

 

Figure 8.  FLEA reasoner (diagnoser or prognoser) data 

pathway 

 Matlab Script nodes are used to interact with the 

MATLAB code. First an initialize function is used to 

set up the diagnoser. Then the acquired data is awaited 

using a wait-for-notification module. When data is 

available, it is sent to the diagnoser which reasons upon 

it and returns information indicating if a fault has been 

detected and, if so, which fault is likely to have 

occurred. The software goes back to waiting for more 

data and each time data is available the process is 

repeated.  

Prognoser 

After the diagnoser has determined that a fault has 

occurred in the system, the prognoser is responsible for 

DAQ Raw Data 
Reasoner 

Interface 

Queued 

Data 
Reasoner 

 

Reasoner 

Results 
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monitoring the sensor data and determining how the 

fault is progressing and how long of a useful life is 

remaining for the system. The details of the prognostic 

algorithm (which, like the diagnoser, is also 

implemented in MATLAB) are described later in 

Section 4. The LabVIEW interface is designed to send 

the acquired data to the prognoser and display the 

remaining useful life estimates received from it. This 

interface is also illustrated in Figure 8. 

 The prognostic algorithm is based on extracting 

features on a time-window of data points and 

estimating how these features are changing over time.  

It then determines when these features would reach the 

point where the system can be considered to have 

reached a failed state. In order to support this, the 

LabVIEW interface queues the acquired data and 

packages it into chunks to be sent to the prognoser. 

Flight Interfaces 

The FLEA is flown and expected to be flown on 

different types of aircraft, including the C-17 airlifters 

and UH-60 helicopters. Data from the operation of 

select actuators on these aircraft is fed to the FLEA 

control system, which exercises the test stand in an 

appropriately scaled manner. In order to enable this 

this, interfaces were created that allow data to be 

streamed from the data bus of each currently supported 

aircraft type. More interfaces will be added when the 

FLEA is prepared to fly on other aircraft types. 

 The C-17 flight interface uses a UDP packet parser 

to get data from the bus and then uses a specific set of 

conversion equations (depending on the type of C-17 

actuator being mimicked ) to convert the data into 

position and load information for the test and load 

actuators, respectively. The UH-60 interface reads data 

from a serial port and parses it based on a pre-defined 

UH-60 data format, then also computes the load and 

position profile information. 

 File Profile Interface 

In order to test the actuators in the FLEA under 

different conditions, the file profile interface has been 

created which allows the creation and execution of 

specific position (for test actuators) and load (for load 

actuator) profiles, as well specification of fault-

injection times. The data collected during the execution 

of such profiles on the FLEA is used to create, verify 

and test PHM algorithms. The file profile interface 

includes a profile creator/editor, a single-profile runner 

and a batch-profile runner. The latter executes a set of 

profiles separated by a predefined wait time between 

any two of them. 

 

3. DESIGN OF EXPERIMENTS 

The experiments were designed in such a way as to 

have a longer laboratory period of test article aging and 

fault progression monitoring followed by data 

collection on the same article in flight.  This allows to 

not only to ensure a sufficient number of data points for 

the purposes of the prognostic system, but also to 

observe both the aging process and the performance of 

our algorithms in contrasting environmental conditions.  

The faults currently injected into our test actuators are 

described in the following section. 

3.1 Injected Faults 

Jam 

Jam is injected by modifying the return channel of the 

ball screw mechanism with a small set screw that can 

be advanced into the channel, thus creating partial or 

complete blockage of it.  This prevents balls from 

circulating and rotating properly, ‘converting’ the ball 

screw from a highly efficient rolling friction 

mechanism to something closer to a regular lead screw 

with a lower efficiency sliding friction.  The jam cannot 

be injected while the actuator is in motion, but is 

otherwise easy to initiate. 

 

Spalls 

The term ‘spall’ refers to development of indentations 

in metal surfaces at high stress contact points. A severe 

case of a spall may result in metal flakes separating 

from the surface, creating potentially dangerous debris.  

In the case of a ball screw, where the contact surfaces 

of the nut and the screw (as well as the balls) may be 

subject to spalling, one of the consequences may be 

increased vibration, which can lead to damage of other 

actuator components. The likelihood of an EMA 

developing a spall in one of its components over its 

lifetime is not insignificant. 

 In the first set of experiments spalls were injected 

by machining a small “seed” imperfection onto the 

surface of the screw.  In subsequent experiments the 

team switched to using a more precise electro-static 

discharge injection method.  Figure 9 illustrates the 

locations on the screw where spalls were initiated.  In 

order to evaluate how the size of the initial spall affects 

the nature of its growth, cuts of three different widths 

are introduced – 0.3, 0.4, and 0.5 mm (with the 

diameter of the bearing balls being roughly 1 mm).  

The depth of all cuts is kept constant at 0.3 mm.  The 

cuts are made along the wall of the thread, extending 

from the top of it to the bottom of the curvature.  The 

cuts are alternated between the left and the right sides 

of the thread, to ensure that fault progression in half of 

the fault locations occurs during either direction of 

motion. 



Annual Conference of the Prognostics and Health Management Society, 2010 

 7  

 At the time of this paper the data sets collected for 

nominal, jammed, and spalled actuators are primarily 

used in tuning the sensor suite and aid in designing 

diagnostic and prognostic features.  They are also 

invaluable in planning for the next phase of extended 

duration experiments. 

 

 

Figure 9.  Spall injection 

3.2 Data Collection 

As briefly mentioned earlier, the data is collected in 

two sets of files – one for low speed measurements 

(current, load, voltage, position, and temperature) and 

another for high speed accelerometer data.  The files 

and the data within them are time-stamped and allow 

for an accurate correlation with the flight log after the 

airborne portion of an experiment.  In addition to the 

“follow” mode data collection, when the FLEA mimics 

movements and loads of an aircraft actuator, predefined 

profiles with set load levels and sinusoidal, triangular, 

or trapezoidal position trajectories are also executed 

both in laboratory and flight environments.  This is 

done in order to more precisely isolate and characterize 

the influence of environmental conditions. 

4. HEALTH MANAGEMENT SYSTEM 

DEVELOPMENT 

The health management system being developed 

consists of two essential parts – the diagnostic system, 

tasked with detecting and identifying fault modes, and 

the prognostic system, that, once a fault or faults are 

detected, tracks their progression and provides 

estimates of the remaining useful life (RUL).  Both of 

the components described below are at present 

considered to be proof-of-concept algorithms and more 

advanced versions, possibly based on different 

principles, are expected to be developed in the future. 

4.1 Diagnostic System 

Diagnostic approaches can be broadly divided into two 

types: model-based and data-driven (Gertler, 1998). 

Model-based methods rely on a system model built 

from a priori knowledge about the system, while data-

driven schemes do not require such models, instead 

requiring large sets of exemplar failure data, which are 

often not available. Some of the sensors outputs 

available in the FLEA (such as current and voltage), 

can be modeled using physics-based differential 

equations, and then used for model-based observer-

based diagnosis of faults. Modeling of accelerometer 

outputs, however, can be substantially more 

complicated, and, hence, a data-driven, feature-based 

diagnosis approach is better suited for leveraging 

accelerometer information for fault disambiguation. 

The FLEA diagnostic system synergistically combines 

model-based and data-driven diagnosis techniques in 

order to improve upon the either approach implemented 

individually. 

 The Transcend diagnosis approach (Mosterman and 

Biswas, 1999) is implemented as the model-based part 

of the diagnostic system ( 

Figure 10 illustrates its architecture). The observer, 

implemented as a particle filter (Arulampalam, et. al., 

2002), tracks the system dynamics and estimates the 

unobservable system states based on the input, the 

control signals, and sensor measurements. In our 

approach, the quantitative model needed by the 

observer is a system of first order differential state-

space equations systematically derived from the system 

bond model (Karnopp, et. al., 2000). Bond graphs are 

domain-independent, lumped-parameter models that 

capture energy exchange mechanisms in physical 

processes. The nodes of a bond graph represent energy 

storage, dissipation, transformation, and input-output 

elements, as well as two connection elements or 

junctions: 0- and 1-junctions (which represent parallel 

and series connections in the electrical domain). The 

connecting edges, or bonds, define energy pathways 

between elements. 

 

Figure 10. TRANSCEND diagnostic architecture 

For fault detection, a statistical Z-test (Mosterman and 

Biswas, 1999) is used on each sensor output to 

determine whether the deviation of a sensor output 

from its nominal, expected value is statistically 

significant, taking into account sensor noise and other 

uncertainties. Once a significant deviation is detected in 

any one measurement, the symbol generation module is 

initiated, and every measurement residual, 

)()()( tytytr
)

−= , where )(ty  is the observed 

measurement, and )(ty
) is the measurement estimate 

calculated based on the state estimates obtained from 

the observer, is converted into qualitative +, -, and 0 

symbols, based on whether or not the observed 

measurement is above, below, or at its expected 

nominal value.  

1 2 3 4 
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 Once a fault is detected, the qualitative fault 

isolation module determines the fault hypotheses, i.e., 

all possible system parameters and their direction of 

change that could explain the observed measurement 

deviation from nominal. To generate the fault 

hypotheses, a qualitative diagnostic model called the 

Temporal Causal Graph, or TCG (Mosterman and 

Biswas, 1999), is used, which, essentially, is a signal 

flow graph whose nodes represent system variables, 

edges denote causality information, and edge-labels 

denote how one variable affects another (both 

immediately and over time). Fault hypotheses are 

generated by propagating the first observed deviation 

backwards through the TCG.  

 Once identified for each fault hypothesis, the 

direction of change is propagated forward along the 

TCG to generate fault signatures, i.e., an ordered set of 

two symbols - one for magnitude, and the other for 

slope - which represent how each measurement residual 

would deviate if that fault was the only fault in the 

system (in this work the discussion is restricted to 

single faults). Once the fault signatures are generated, 

qualitative diagnosis involves comparing an observed 

deviation with the expected fault signatures of each 

fault for that measurement, and removing any fault 

hypothesis that does not explain the observed deviation 

from consideration, thereby refining the fault 

hypotheses set. Ideally it would be desirable for the 

qualitative module to reduce the fault hypotheses set to 

a singleton set. But this is not always possible in real 

world engineering systems. For example, in the FLEA, 

the spall and jam faults have similar effects on non-

accelerometer sensors. Hence, qualitative model-based 

approach alone is not sufficient. In the described 

methodology, model-based component is combined 

with a data-driven component to further disambiguate 

faults and obtain better diagnostic results. 

 The first step for the data-driven component is to 

determine the features of interest to be computed from 

the accelerometer data. In this work, standard deviation 

of readings from different accelerometers is utilized for 

the feature set. Then, in consultation with domain 

experts, for each fault in the pre-defined fault set the 

effect on the feature were established. Note that for the 

purpose of this system, a single symbol determining 

whether or not the feature increases or decreases from 

nominal is sufficient to compute fault signatures for 

accelerometer features. Hence, a fault signature for the 

data-driven module is represented by a single symbol, 

as opposed to the two-symbol fault signature in the 

model-based diagnostic component.  

 Once the fault signature of each fault (and for each 

of the features) is determined, every time the qualitative 

diagnosis module refines its fault hypotheses set, a 

decision tree based on the remaining fault hypotheses is 

generated.  The tree provides the sequence of features 

to be computed in order to disambiguate the maximum 

number of fault hypotheses in the fastest manner 

possible. 

 The model-based and data-driven modules run in 

parallel. When the qualitative diagnoser refines its fault 

hypotheses, so does its data-driven counterpart (and 

vice versa). As explained above, the fault signatures for 

features derived from expert knowledge are used for 

generating the next best sequence of features needed 

for effective disambiguation.. These features can be 

used to further refine fault hypotheses using an 

artificial neural network (Sorsa & Koivo, 1998). By 

combining model-based and data-driven approaches, 

the number of distinct features needed for 

disambiguation of the fault set is kept to a minimum. 

4.2 The Prognostic System 

A data-driven algorithm based on Gaussian Process 

Regression (GPR) was chosen for the initial 

implementation of the prognostic system. This choice 

was primarily governed by two factors. First, a 

computationally inexpensive algorithm was preferred 

for the initial flight phase while the entire system is 

being tuned for performance in a real-time 

environment. Second, GPR does not require explicit 

fault propagation models but only a heuristic rule 

regarding fault growth expectation. The observed data 

is then used to extrapolate the trend. 

 A Gaussian Process (GP) is a collection of random 

variables any finite number of which has a joint 

Gaussian distribution. A real GP f(x) is fully specified 

by its mean function m(x) and co-variance function 

k(x,x’) defined as: 

 

[ ])()( xfExm = ,    (1) 

 

( )( )[ ])'()'()()()',( xmxfxmxfExxk −−=  (2) 

 

( ))',(),(~)( xxkxmGPxf    (3) 

 

 The index set ℜ∈X  is the set of possible inputs, 

which need not necessarily be a time vector. Given 

prior information about the GP and a set of training 

points ( ){ }n1,...,i|f,x ii = , the posterior distribution over 

functions is derived by imposing a restriction on a prior 

joint distribution to contain only those functions that 

agree with the observed data points (Rasmussen and 

Williams, 2006). These functions can be assumed to be 

noisy, since in real world situations we only have 

access to noisy observations rather than exact function 

values (i.e. yi = f(x) + ε, where ε is additive IID 

N(0,σn2)). Once we have a posterior distribution, it can 

be used to assess predictive values for the test data 
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points. The following equations describe the predictive 

distribution for GPR (Williams and Rasmussen, 1996): 
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 A crucial ingredient in a Gaussian process predictor 

is the covariance function, K(X,X’), that encodes the 

assumptions about the functions to be learnt by 

defining the relationship between data points. GPR 

requires prior knowledge about the form of covariance 

function, which must be derived from the context (if 

possible). Furthermore, covariance functions consist of 

various hyper-parameters that define their properties. 

Setting the right values of such hyper-parameters is yet 

another challenge in learning the desired functions. 

Although the choice of a covariance function must be 

specified by the user, corresponding hyper-parameters 

can be learned from the training data using a gradient-

based optimizer - such as maximizing the marginal 

likelihood of the observed data with respect to hyper-

parameters (Mardia and Marshall, 1984). 

 Now that the fundamentals of GPR are described, 

the methodology followed for the initial phase of FLEA 

tests can be outlined.  The tests are expected to serve a 

dual role for the overall research agenda. First, they 

will facilitate demonstration of an integrated diagnostic 

and prognostic system in a real-time environment. 

Second, the tests will result in data collected in flight 

operating conditions that will be extremely valuable in 

developing algorithms robust against environmental 

noise. However, these two disparate goals impose some 

non-overlapping requirements on the data-collection 

methodology, which is described in the following 

paragraphs. 

 It is expected that once the diagnostic system 

confirms the onset of a fault mode, the prognostic 

system is immediately triggered. Data collected 

henceforth is processed in real-time by computing 

relevant features. These features are then fed to the 

GPR algorithm for a certain period to train the 

algorithm parameters. The longer is the training period, 

the better are the chances for the algorithm to learn the 

true fault growth characteristics. However, a balance 

must be struck between the length of the training period 

and the risk of missing out on a sufficient prediction 

horizon. After the training is complete, the algorithm 

starts predicting trajectories of fault growth. Based on 

pre-specified failure threshold levels, predicted End of 

Life (EoL) is determined by where these trajectories 

cross the thresholds. Estimated EoL values can then be 

specified in relative terms by computing the Remaining 

Useful Life (RUL) values, if needed. As time passes 

by, more data is collected. The GPR model is updated 

with new observations and, subsequently, the 

predictions are updated. It must be noted that GPR runs 

into scalability issues if a long data history is utilized, 

as its computational complexity is O(n3). This can be 

alleviated using a variety of techniques.  For instance,  

a ‘forgetting factor’ may be introduced to disregard old 

data as more recent data becomes available or a down-

sampled input may be used for older data points. 

 In addition to demonstrating in-flight diagnostic and 

prognostic capabilities, an important aspect of the 

FLEA experiments is to be able to collect suitable data 

for further development of PHM algorithms between 

the flights. This data is required to have certain 

characteristics that will make them suitable for such 

purposes. For instance, prognostic algorithms require 

availability of run-to-failure data. It is quite challenging 

to obtain continuous run-to-failure data during a limited 

number of relatively short duration flights, as most of 

the real faults take longer than that to grow and reach 

the desired failure levels. Furthermore, a slow fault 

growth characteristic leads to a very large amount of 

data (multiple sensor readings combined with a high 

sampling frequency) with a relatively small information 

gain from the prognostics point of view. To alleviate 

this problem, several approaches are currently being 

tested. For instance, one could store several snapshots 

of high sampling rate data during a flight at 

predetermined intervals. This way, under the 

assumption of slow fault growth, we do not expect to 

lose important trend information with a smaller amount 

of data. It must be noted that this approach is not used 

for the diagnostic system, which requires continuous 

data at a lower sampling rate (and, possibly, for a 

smaller set of measurements). Once a fault is 

confirmed, a trigger is used to activate the prognostic 

algorithm and the higher sampling frequency data 

collection. 

4.3 Feature Extraction 

Feature extraction is a significant step in diagnostic and 

prognostic algorithm development. Real operating 

environments make it challenging to extract relevant 

features from data due to sensor noise in and variations 

in operating conditions. In the FLEA experiments two 

sets of features are used. The first is used for the 

diagnostic system. Since these features need to be 
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extracted on a continuous basis, they are kept relatively 

simple and computationally inexpensive. However, for 

a more targeted and detailed information extraction 

needed for prognosis, feature extraction methods with 

greater sophistication are employed. While the feature 

extraction process should ideally be guided by offline 

data analysis (if such data was already available from 

the plant), in the initial phase we use our prior 

experience with similar data sets collected in lab 

environments in order to narrow down the relevant 

feature set. Furthermore, the fault and nominal models 

developed for the EMAs help guide the feature 

extraction process. Features from the accelerometer 

data, such as various statistical moments, kurtosis, and 

spectral energies are some of the candidates most 

commonly used in analysis of rotating machinery. 

Indirect features may be developed using other 

measurements, such as those for current, voltage, 

temperature, position, and load (Balaban et.al., 2009a). 

The final selection of the feature set for the FLEA 

PHM system will be made after the initial data 

collection and analysis phase is complete and the noise 

levels and peculiarities of operating conditions are well 

understood. 

5. LABORATORY EXPERIMENTS 

The team conducted the first complete round of 

laboratory experiments, where several types of faults 

were injected into test actuators and various motion and 

load profiles were executed by each of them.  

Corresponding data on nominal actuators was recorded 

as well. Motion profiles included periodic sinusoidal, 

triangular, trapezoidal and sine sweep trajectories, 

while the load profiles featured constant compressive 

and tensile forces of 10, 40, and 70 lbs, as well as zero-

load scenarios. The nominal actuator experiments were 

conducted first, followed by jammed and spalled 

actuator experiments conducted using an identical set 

of motion and load profiles.  Experiments with injected 

motor, load sensor, and position sensor failures were 

run next.  More sensor faults, such as “dead sensor”, 

bias, drift, and scaling were introduced in software for 

various sensors by post-processing the nominal data 

sets.  

 At the time of writing, the diagnoser is being tested 

on the above data, with feature extraction algorithms 

and fault detectors being tuned. Results so far are 

encouraging and will be described in detail in 

subsequent publications. 

 Long duration jam effects progression experiments 

are also being conducted, where two test actuators with 

jammed return channels are used. Figure 11 and Figure 

12 illustrate one of the symptoms of a ball screw jam – 

increase in current consumption.  Figure 11 

demonstrates this for a single experimental run 

(“sine14”) using real-time current consumption, 

whereas Figure 12 shows it for average current values 

over the entire set of experiments. 

  

Figure 11. Current for nominal vs. jammed actuator 

 

Figure 12. Current for nominal vs. jammed actuator - 

average values for a set of experiments  

 Work on analyzing fault propagation trends on the 

jammed actuator is continuing, with the first results 

expected soon.  Aging experiments on the spalled 

actuators are slated to begin in the immediate future as 

well. 

6. FLIGHT EXPERIMENTS 

There have been several FLEA experiments on aircraft 

to-date.  Flights on C-17 aircraft served to mature 

FLEA’s hardware and software, while subsequent 

experiments on UH-60 helicopters, conducted at NASA 

Ames, provided valuable data sets on nominal and 

spall-injected actuators. This section offers a brief 

overview of the data collected on the UH-60, with a 

more extensive description and analysis to be done in a 

separate publication. 

 During the experiments, the test stand executed 

rigorous motion sequences, matching those of the target 
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UH-60 actuator (forward primary servo, an actuator 

responsible for pitch control of the main rotor blades).  

Load profiles executed by the FLEA’s load actuator 

were derived using flight conditions information 

(obtained from the aircraft data bus), as well as some of 

the models developed by NASA's Subsonic Rotary 

Wing Project. The graphs below are presented for 

illustration purposes only, to provide the reader with 

some insight into the nature of the data set.  Figure 13 

shows a typical motion profile executed over a period 

of about twenty minutes.  Figure 14 shows the desired 

(computed) load profile. 

 

 

Figure 13. Test actuator motion profile during a UH-60 

flight segment 

 

Figure 14. Desired load profile during a UH-60 flight 

segment 

Spall fault was injected during the flight by switching 

the load path from the nominal to the faulty actuator. 

All the usual sensor readings were recorded. 

7. FUTURE WORK 

The team has extensive plans for the FLEA going 

forward. New faults, such as winding shorts and 

backlash, will be added to the experiments.  Laboratory 

aging runs will be combined with further flight 

experiments on UH-60 helicopters and other aircraft to 

collect data on fault progression.  The team is planning 

to continue improving the accuracy of the diagnostic 

and prognostic models and test several new algorithms.    

Another direction of work is making the FLEA capable 

of flying in an autonomous, unsupervised mode, where 

researchers will be able to specify ahead of time the 

desired time or condition of fault injection.  There are 

also plans to expand the fault coverage from the 

actuator itself to the control and power components, 

eventually transforming the FLEA in a multi-subsystem 

IVHM technology demonstration. 

8. CONCLUSION 

While improvements to the FLEA are no doubt to 

continue, it already constitutes a capable platform for 

airborne and laboratory aging, diagnostic, and 

prognostic experiments.  It has the capability to support 

a wide variety of injected fault conditions and features 

a capable sensor suite and data acquisition system.  The 

FLEA can be quickly adapted to fly aboard a variety of 

aircraft and will soon be capable of autonomous 

operations.  Data collection flights can be performed 

relatively inexpensively in a “piggy-back” mode, 

alongside other experiments or during pilot proficiency 

flights.  The first test flights performed this year 

provided the team with useful insights on the ways to 

improve the test stand further and allowed to collect 

initial data sets to be used for feature design and next 

phase experiment planning (which will consist of both 

laboratory and airborne segments).  The diagnostic and 

prognostic algorithms developed by the team are also 

being tested and refined using the new data sets.  

Finally, in the future the team hopes to open the FLEA 

to experiments conducted by research partners from 

other NASA organizations, industry, and the academia. 
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NOMENCLATURE 

PHM  Prognostic Health Management 

FLEA  Flyable Electro-mechanical Actuator 

testbed 

GP  Gaussian Process 

GPR  Gaussian Process Regression 

EMA  Electro-Mechanical Actuator 
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EMI  Electro-Magnetic Interference 

IVHM  Integrated Vehicle Health 

Management 

RUL  Remaining Useful Life 

y(t)  observed measurement 
     )(ty

)
  measurement estimate 

r(t)  residual 

f(x)  Gaussian process (GP) 

m(x)  mean function for GP 

k(x,x’)  covariance function for GP 

y  noisy observations from the system 

x  set of training points 

ε additive IID Gaussian noise with 

N(0,σn2) 
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