
Annual Conference of the Prognostics and Health Management Society, 2010 

 1  

Effectiveness of Empirical Mode Decomposition Based 

Features Compared to Kurtosis Based Features for 

Diagnosis of Pinion Crack Detection in a Helicopter 
 

Canh Ly*
1
, Kenneth Ranney

1
, Kwok Tom

1
, Hiralal Khatri

1
,  

and Harry Decker
2 

1
U.S. Army Research Laboratory, Adelphi, Maryland, 20783, U.S.A 

*POC: canh.ly@us.army.mil  

kenneth.ranney@us.army.mil 

 kwok.tom@us.army.mil  

hiralal.khatri@us.army.mil 

 
2
VTD-Glenn U.S. Army Research Laboratory, Cleveland, Ohio, 44135, U.S.A 

harry.j.decker@us.army.mil 

   

 

ABSTRACT 

Features based on empirical mode decomposition 

(EMD) of measured vibration data were developed for a 

Bell OH-58 helicopter main rotor gearbox. A tooth on 

the input pinion of the gearbox was notched and run for 

an extended period at several over-torque conditions to 

induce a tooth fracture. Vibration data were recorded at 

regular intervals until a tooth fractured. The EMD 

features were found to be more sensitive to the gearbox 

condition than the kurtosis-based feature (FM4), and 

they diagnosed the onset of cracked tooth much earlier.
*
 

1. INTRODUCTION 

The National Aeronautics and Space Administration 

(NASA) Glenn Research Center has been working on 

improving diagnosis of gear damage since 1987. 

Experiments were conducted on the main rotor 

transmission of an OH-58 helicopter in NASA’s 500HP 

Helicopter Transmission Test Stand. The objective of 

the experiments was to evaluate vibration-based 

diagnostic tools for detecting gear crack initiation. The 

transmission, set-up of the experiment, vibration 

measurements, and some of the results are described in 

(Decker et al., 2003; Lewicki et al., 1987). Herein, we 

give the results of processing this data using empirical 

mode decomposition (EMD) and generate a new 

feature that gives more timely warning of gear crack 

and fracture. Since the FM4 vibration diagnostic metric 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

is one of the most popular metrics used (Stewart, R. M., 

1977; Decker et al., 2003; Lewicki et al., 1987), these 

results are compared with those obtained with the FM4 

metric. In addition, the kustosis-based technique does 

not follow a consistent trend (Shiroishi, et al., 1999). On 

the other hand, the EMD shows that the trend increases 

as a function of the run time. We first summarize the 

EMD procedure that was described in (Huang et al., 

1998; Khatri et al., 2008) for completeness, and then 

summarize the set-up of the experiment and 

measurements that were detailed in (Decker et al., 

2003; Lewicki et al., 1987). Finally, we describe the 

measured data and the results. 

2. EMPIRICAL MODE DECOMPOSITION 

The use of the EMD to create intrinsic mode functions 

(IMFs) for nonlinear and non-stationary time series 

analysis is described in (Huang et al., 1998). In this 

work, we also present a numerical procedure for 

performing the decomposition, and we illustrate the 

procedure using appropriate examples. Since EMD is 

based on the local characteristic time scale of the data, 

it can help generate new features for detection of faults 

in electromechanical systems (Khatri et al., 2008). 

Briefly, local maxima and minima of the data, )(tx , are 

identified, and the  maxima are connected by a cubic 

spline as the upper envelope. Similarly, a lower 

envelope is generated from the minima. The two 

envelopes should bracket all the data between them. Let 

)(tEu  and )(tEl  denote the values of upper and 

lower envelopes as a function of discrete time, t. The 

mean of the two envelopes is 
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The difference between the data and the mean of the 

envelopes gives the residue: 
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where the subscript of )(th denotes level of iteration. 

This process is iterated with )(1 th
, 

representing a new 

time series whose upper and lower envelopes and mean 

envelope, )(1 tM , are computed to obtain the value for 

next iteration:
 

 

 
... 2, 1,     where),()()(1  itMthth iii   (3) 

 

Ideally, this process is continued until the residue, 

)(thi , satisfies the conditions specified for IMFs: (1) 

the number of extrema and the number of zero 

crossings in )(thi , must either be equal or differ by at 

most one; and (2) 0)( tM i  for all t.  It is not always 

advisable or efficient to test for these conditions. 

Instead, the iteration process is terminated when the 

value of the standard deviation, SD, 
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is below a selected value, generally in the range of (0.2-

0.3), as suggested in (Huang et al., 1998). This value 

was defined by (Huang et al., 2005) as the stoppage 

criterion. The results given here for IMFs were 

obtained when the stoppage criterion was less than 0.3 

or the number of iterations in the IMF calculation was 

greater than 10000. It was a good practice to use the 

combination of these two criteria to prevent the infinite 

loop of the calculation. In addition, the stoppage 

criterion was predetermined based on the engineering 

judgment. Note that when )()( 1 thth ii   for all t, no 

further reduction in residue is possible, so )(thi  is 

considered to have converged and SD = 0. The value of 

SD is used to gauge the level of convergence. 

 

This gives us the first IMF, denoted as

)()(1 thtc i . To obtain subsequent decompositions,

)(tci , i = 2, 3…, treat the residue, )(tri , 

 tctrtr iii ),()()( 1    with   txtr ),()(0   

 

as the signal to be decomposed, and repeat the previous 

procedure to obtain the IMF of the residue.  This 

decomposition process can be stopped based on 

predetermined conditions. Note that if n IMF’s are 

obtained, then the signal, )(tx , can be found: 

  

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3. HELICOPTER TRANSMISSION 

EXPERIMENT 

Experiments were conducted on the main rotor 

transmission of an OH-58 helicopter. Following is a 

brief description of the system and the experiments as 

they pertain to the results obtained with EMD.  

 The main rotor transmission is a two-stage 

reduction gearbox (Decker et al., 2003). The first stage 

is a spiral bevel gear set with a 19-tooth pinion that 

meshes with a 71-tooth gear. The article reports on one 

of the experiments where a notch, shown in Figure 1, 

was machined into the fillet region of one tooth of the 

spiral-bevel pinion using electro-discharge machining. 

The dimensions of the notch were approximately 0.1 in 

wide by 0.005 in tall by 0.005 in deep.  After a 

significant amount of run time at extreme torques, it 

was determined that the notch was not of a sufficient 

size to facilitate crack initiation. The notch was 

machined in the same area, and the dimensions of the 

notch were increased to 0.12 in wide by 0.01 in tall by 

0.08 in deep. This second notch geometry was 

sufficient to initiate a crack. A suite of sensors 

consisting of a tachometer, a proximity probe, and five 

accelerometers were mounted to facilitate the detection 

of crack initiation and propagation. 

 
Figure 1: Photograph of notch 
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A tachometer signal (once per revolution) was used 

to synchronize measured acceleration to shaft position 

so as to compute average acceleration (time 

synchronous averaging) as a function of shaft position. 

A proximity probe was mounted inside the transmission 

on one of the support webs to detect the passing of the 

top land of the teeth. 

The five accelerometers (A1-A5) were mounted on 

the gear box at selected locations shown in Figure 2. 

The locations were selected based on previous 

experience (Lewicki et al., 1987). Accelerometer 1 is 

located on the input bevel gear housing immediately 

above where the input shaft connects to the pinion and 

is aligned to be most responsive in the vertical 

direction. Accelerometer 2 is at the same location and 

is aligned to the rotational axis of the input shaft. 

Accelerometers 3 and 4 are mounted around the 

circumference of the ring gear housing and are located 

45° and 225° from the input pinion gear, respectively. 

Accelerometer 5 is mounted on an attachment bolt near 

accelerometer 4. Accelerometers 3, 4, and 5 are 

mounted in the axial-transverse plane, and have 

sensitivities in both directions. The accelerometers are 

linear to 20 kHz and have a resonance frequency of 90 

kHz. 

 

Figure 2: Accelerometer locations 

 

 The vibration, speed, and proximity probe signals 

were sampled through a low-pass, anti-aliasing filter 

with a 56 kHz cutoff frequency. These analog data 

were sampled at 150 kHz rate with 12-bit precision, 

and a record length of 1.5 s was taken every 15 s. 

 The pinion was run at the design speed of 6060 

revolution-per-minute (rpm) (101 Hz) and the torque 

level was varied, with the run time in million-cycles 

and run time history in hours, as shown in Figure 3. 

Initially, the pinion was run at 80% of the maximum 

design torque, and the torque was gradually increased 

to try to speed up the propagation of the crack. Visual 

inspections using a 60X microscope were carried out at 

the periods shown in the figure by inverted triangles. At 

80 h run time, the notch was deepened (solid square 

symbol) and the test was continued to failure, which 

occurred at approximately 101.6 h. This paper presents 

results of processing the accelerometer data acquired 

after the notch was deepened with torque settings at 

120%, 140%, and 150% of the maximum design 

torque. There were 2523 records (each 1.5 s) collected 

at 120% torque, 1623 records collected at 140% torque, 

and 1054 records at 150% torque. Due to the 

intensively computational time in calculating IMFs for 

all data files, we only processed selected records (files) 

at each of the torque levels—namely, 23, 25, and 17 

records at 120%, 140%, and 150%, respectively. These 

records covered the time zone of each torque level 

fairly uniformly. 

Figure 3: Loading history of the pinion 

4. DATA PROCESSING AND RESULTS 

First, we show samples of recorded data at the three 

torque levels in Figure 4—(a) 120 %, (b) 140 % and (c) 

150%. For the demonstration of the feasible 

investigation of the EMD algorithm, we show the data 

for accelerometer #1 because it was the most 

responsive to the fault.  

 

 The nominal period of shaft rotation is10 ms, so we 

show the first 10 ms data from the 1.5 s record length. 

The data have been normalized by their respective root-

mean-square (RMS) values. Figure 4(a), the top plot, 

shows the collected data soon after the notch was 

deepened at approximately 80 h of run time (Torque 

120%). The data depicted in Figure 4(b), the middle 

plot, was collected at approximately 91 h of run time 

(Torque 140%),  and the data depicted in Figure 4(c), 

the bottom plot, was collected at approximately 98 h of 

run time (Torque 150%). The figure shows the 

correlation between the vibration levels and the 

engagements of the 19 teeth of the pinion.  We do not 

have an explanation for the low noise level in the data 

for the 150% torque case; however, one can speculate 
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that this may be because of higher torque or crack 

progression. 

 

 

(a) 

 

 

 

(b) 

 

 

(c) 

Figure 4: A sample of collected data for three different 

torques (a) 120%, (b) 140%, (c) 150% at near 80, 90, 

and 98 h (run time) after crack test was begun. 

 

 Figure 5 shows the power spectral densities of these 

three data sets. The power spectrum should peak at 

about 1900 Hz because the shaft rotates at 101 Hz 

(6060 RPM) and there are 19 teeth on the pinion. There 

is no significant change in the spectrum to reliably 

detect crack propagation. 

 

 

Figure 5: Amplitude spectrum of the three data samples 

given in Figure 4 

 

The root-mean-square (RMS) values of the amplitudes 

measured by accelerometer # 1 are shown in Figure 6 

for the selected 65 records. The RMS values are in the 

same range for 120% and 140% torques, but the data 

set at 150% torque has much lower RMS values. The 

exact cause of the difference in the RMS levels is 

unknown. One may reason that as the torque level 

increases, the gear has less room to spin. As a result, 

there will be less noise in the data. Consequently, the 

RMS values are much less than other torque levels. 

 

Figure 6: Root-Mean-Square values of the acceleration 

measured by accelerometer #1 at sampled run time. 

 

4.1 Empirical Mode Decomposition of vibration 

data 

We use cubic splines to generate the upper and lower 

envelopes of the measured vibration data. These splines 

introduce transients near the start and end points of the 

time series. As a result, the calculated IMFs have large 

values (errors) for a portion of samples in the vicinity 

of the start and the end of the time series. For this 

reason, we discard a fixed amount of data—

approximately the initial and the final 5.6% of the total 

number of samples in any record. This corresponds to 

approximately 25,000 out of the 225,000 IMF samples 

available, and it leaves us with 200,000 samples for 

generating the results presented here.  

We had generated 10 IMFs of the 65 selected data 

files, but the first seven respective IMFs show greater 

differences between one another, so we use only those 

seven IMFs in our condition monitoring algorithm. The 

plots of two IMFs, along with their single-sided 

amplitude spectrums, are shown in Figures 7-10, and 

they illustrate the manner in which the IMFs change as 

the damage to the gear tooth progresses. For example, 

in Figure 7, it is apparent that the energy in IMF 1 for 

the first two plots (120% Torque and 140% Torque) is 

greater than that in the third plot (150% Torque). The 

plots in Figure 10, however, lead us to conclude that 

the energy for 150% torque is greater than the energy 

for 140% torque, which in turn is greater than the 

energy for 120% torque. All of these observations 

suggest a new statistical, fault-detection feature suitable 

for a condition monitoring algorithm.   

Note that we used non-time synchronous averaging 

(TSA) data to calculate IMFs. This is beneficial 

because collecting TSA data is not a trivial task, since it 

requires a tachometer sensor to capture synchronization 

data for all pulses and computational resources to 
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perform an average of many pulses for one data point. 

This is a major drawback of the FM4 calculation. 

 

  

 
Figure 7: The IMF No. 1 for the three selected data sets 

given in Figure 4 near 80, 90, and 98 h (run time). Note 

the larger energy in the waveforms of the first two 

plots. 

 

 

 
Figure 8: The amplitude spectrum of IMF No. 1 for the 

three selected data sets given in Figure 4 near 80, 90, 

and 98 h (run time). Again, notice the larger amount of 

energy in the waveforms of the first two plots. 

 

 
Figure 9: The IMF No. 7 for the three selected data sets 

given in Figure 4 near 80, 90, and 98 h (run time). 

Notice (in this case) the larger amount of energy for the 

case of 150% torque. 

 

 
Figure 10: The amplitude spectrum of IMF No. 7 for 

the three selected data sets given in Figure 4 near 80, 

90, and 98 h (run time). Notice (in this case) the largest 

amount of energy for the 150% torque, and the second-

largest amount of energy for 140% torque. 

4.2 Algorithms for monitoring the condition of the 

gearbox 

As described above, certain relative, qualitative 

differences in the IMF series of the three selected data 

sets were evident for each of the seven modes. These 

differences are apparent in the amplitude spectrums 

shown in Figure 8 and Figure 10.  Specifically, the 

peak values and the frequency distributions of 

spectrums of the IMFs are quite different.  

We propose to monitor the condition of the gear-

box with an algorithm based on the three sets of 

features: (1) the centroids of the amplitude spectrum of 

each of the seven IMFs, (2) the second moments of the 

spectrums about the centroids of each of the seven 

IMFs and (3) the energies of each of the seven IMFs, 
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referring to the amplitude square of each of the seven 

IMFs. Here, we refer to the center of mass of the 

amplitude spectrum as the centroid, and we calculate it 

according to the equation: 

 

 ,


 
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i

i

ii

s

sfreq

centroid  (6) 

 

where freqi is i
th

 element of the frequency index and si 

is the i
th

 element of the amplitude spectrum. 

Since the calculations of IMFs using EMD is 

extremely computationally intensive, we use a subset 

from the whole data set (covering run time 80-81.7 h) 

as the standard (baseline) and use the mean values of 

the amplitude spectrums, the second moments, and the 

energy of each of the seven IMFs from the subset. The 

energy is defined as the amplitude square of the 

frequency spectrum or FFT of each of the seven IMFs. 

Thus, we have a 21-dimensional mean vector of the 

features, denoted by mfi. We also compute the 

variances of these features, vfi, for normalizing 

distances of test cases. The proposed algorithm 

computes the distance from the mean as follows: 
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where fi is the i
th

 feature vector. Normally, the distance 

is computed only with respect to the mean of the 

baseline. We have normalized this with the variance of 

the baseline feature values. We refer to this as the 

modified radial basis distance. The advantage of the 

normalization is to avoid the uncertainty in each data 

file.  

 In order to illustrate the effectiveness of the 

algorithm and the FM4, Figure 11 shows the amplitude 

of the proximity probe, defined in Section 3, versus 

Run Time history in hours. The onset of the fault 

occurred at around 101 h, which indicated when the 

broken tooth occurred. 

 The results of applying this algorithm to the 

processed data are shown in Figure 12(a). For 

comparison, Figure 12 (b) shows the corresponding 

values of the FM4 feature given in (Decker et al., 

2003). Although there are many techniques to compare 

with the proposed algorithm, we chose the FM4 method 

in this paper for the comparison purposes because FM4 

is a well-established, kurtosis-based algorithm and its 

value is near 3 when the measured data is Gaussian. If 

there is a fault, the data is expected to be non-Gaussian 

and FM4 deviates substantially from 3. By considering 

the baseline data collected at the beginning of the test, 

we can identify a similar threshold for the test statistic, 

R. Based on this data (shown in Figure 12(a)), we 

conclude that a value of 30 would be a reasonable 

choice. 

Since the range of values assumed by R is large, we 

display the results for run time up to 96 h in Figure 

13(a) to better show the change in R before the pinion 

fails. Using the threshold identified above, the 

algorithm output warns us of a failure after 90 h, which 

is much earlier than the FM4 warning. Note that in 

Figure 13(b), while the value of FM4 rises to the 

amplitude of 4, it does not persistently increase after 85 

h. In other words, the FM4 method does not provide a 

confident warning of early failure.   

 

 
Figure 11: Proximity probe signal 

 

 
Figure 12: Comparison of outputs of the proposed 

algorithm and FM4 
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Figure 13: Comparison of outputs of the proposed 

algorithm and FM4 for 80-96 hours 

5. CONCLUSION 

EMD has been shown to be a useful tool for feature 

extraction of information related to the characteristic of 

the modified radial basis distance. The performance of 

EMD-based features compares favorably with the 

performance of a well-known feature FM4, based on 

the fourth order statistics (i.e., kurtosis). Although the 

EMD is not suitable for a real-time or on-board 

implementation because of its computational intensity, 

it certainly is an important concept that merits 

exploration with a larger, more extensive data set. Our 

results indicate that the algorithm output produce a 

failure warning after approximately 90 h of operation, 

which is much earlier than the FM4 warning after 

approximately 102.5 h of operation. This may be an 

advantage for developing the prognostic algorithm.  

 As we note that EMD outperformed the FM4 

statistical technique for the gear box on selected sample 

data files, we also stress that further analysis is critical 

in order to determine the consistency of the EMD-

based feature calculation across a wide variety of data 

sets. While the available data set was too limited in size 

and scope to draw statistically significant conclusions, 

it still provided a qualitative indication of the potential 

of the approach. We plan to extend this concept to the 

analysis of data obtained from ball-bearing defects due 

to corrosion, defective inner races, defective outer 

races, or defective cages. The results of this proposed 

analysis will be presented in another paper. 
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