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ABSTRACT 
 
This paper describes the use of vibration analysis 
with a fully automated diagnostics system to detect 
common machine faults such as imbalance and 
misalignment as well as bearing and gearbox faults of 
offshore machines. Other faults types, e.g. when a 
large object hits the propeller blades may be detected 
using the STFT. As the mechanical properties of the 
structure can change because of changes of 
temperature and oil quality, these (and other) state 
data are also stored.  The data fusion process is 
currently under work.  Experiments were performed 
on a home cooling fan system to demonstrate and 
illustrate the faults detection capability of the 
vibration and diagnostics system. Vibration data were 
also acquired from selected equipment on a small 
boat with different combinations (on/off status) of the 
engine, generator and hydraulic pump. The trending 
and alarm features were demonstrated for the 
different types of data.  The vibration and diagnostics 
system is implemented with threshold limits for the 
alerts and alarms corresponding to each technique.  
The model also allows for automatic storing of raw 
data periodically and after any deviations from 
normal conditions; i.e., when alerts are on.1  

1. INTRODUCTION 

Offshore machines are subject to high and varying 

                                                            

1This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

loads and extreme environment conditions; therefore, 
they require real time and remote monitoring 
strategies (Sloan et al., 2009; Beaujean et al., 2009) 
especially since access to these offshore machines is 
difficult and costly.  These strategies allow for early 
remedial actions to reduce both maintenance costs 
and/or premature breakdown. The first such machine 
being considered is an ocean (current) turbine; a 
generic depiction of the turbine is shown in Figure 1 
(Driscoll et al., 2008 (1); Driscoll et al., 2008 (2)).  
This turbine will be outfitted in the near future with 
vibration monitoring sensors as well as state (e.g., 
temperature) and safety sensors. 
 This paper discusses several traditional and more 
advanced approaches, procedures and techniques to 
evaluate the health of machines, using vibration data.   
Such methods have been shown to be efficient for 
evaluating equipment/component health (e.g. motors, 
engines, pumps, compressors and generators), provided 
the data are properly acquired and alarm thresholds 
properly set. A LabVIEW model for vibration condition 
monitoring that contains several advanced diagnostic 
techniques was developed and demonstrated. 
 Note that the current status of the ocean turbine did 
not permit side-by-side comparison of in-laboratory and 
ocean measurements at the time of this publication.  
Such comparison is of the upmost importance and will 
be the topic of a future publication.  Also, the objective 
of this paper is not a broad discussion on reliability 
issues of ocean turbines. For reference, a reliability 
assessment for ocean turbines was the topic of a 
previous publication (Sloan, Khoshgoftaar, Beaujean 
and Driscoll, 2009). 
 In addition, ANSYS modeling was used to estimate 
the dynamic response of the machine in it normal 
operating conditions and to determine the resonance 
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frequencies of its sub-components (Mjit, 2009). Finally, 
a LabVIEW program that may be used to perform 
resonance testing on the structures was also developed 
(Mjit, 2009).  
 One of the features of the analysis and diagnostics 
tool is the power spectral density (PSD) that is used 
for in-depth analysis of the vibration signal. The data 
are assumed stationary; however, the vibration data 
collected from the machine structure may be 
somewhat non-stationary in nature. Therefore, the 
PSD may not provide sufficient information about the 
presence of abrupt changes due to transients.  If the 
kurtosis indicates the existence of transients, a Short 
Time Fourier Transform (STFT) - waterfall and/or 
spectrogram - is used to better describe how the 
transients affect the data. 
 If the machine speed is not constant, the bandwidth 
of the PSD and the cepstrum over which to perform 
trending can be specified in the LabVIEW model.  
Two different data trending techniques are 
implemented:  basic trending with respect to the 
baselines and automatic trending of data relative to 
the previous ones (e.g., the average of the last 10 
measurements).  The later trending technique is more 
commonly used with new machines that do not have 
repeatable baselines, or after a major repair/overhaul. 
 The relationship between the impulse response of 
individual structural elements and the PSD of the 
vibration signal is not always obvious. Thus, the 
cepstrum is used to demodulate the vibration signal 
and allow for trending the quefrency peaks that 
correspond to the components of interest.  The ocean 
turbine contains a tachometer that may be used to 
measure the rpm variation induced by current 
variation.  These variations might need to be 
accounted for in the data processing by ordering the 
data; the power spectral density frequencies are 
normalized with respect to the rpm.   
 The vibration monitoring system has been 
developed by following the recommendations of the 
International Standards Organization (ISO) standards 
(ISO, 2002; ISO, 2005). These standards address the 
whole vibration monitoring process from sensor 
selection and data processing to diagnostics and 
maintenance recommendations.  To increase the 
reliability of the fault identification and state 
prognostics resulting from monitoring the health of 
offshore machinery, fusion between vibration data, 
temperature, pressure, oil quality and electric 
parameters (Cook, 2010) is under work  (Duhaney et 
al., 2010) and follows ISO standards (ISO, 2003 (1); 
ISO, 2003 (2); ISO, 2004).  Since early detection is 
more critical for these machines, features such as 

kurtosis trending/mapping and cepstrum analysis have 
been included as primary tools. For example, data from 
the oil quality sensor and the temperature sensor near 
the gearbox might be consistent in indicating that a 
problem/fault is developing, especially if the kurtosis 
has increased. 
 

 
Figure 1: Ocean Turbine, Conceptual View (Driscoll 

et al., 2008 (2)) 
 
 To gain experience in the acquisition, processing 
and interpretation of data similar to those expected 
from the ocean turbine, a dynamometer (Figure 2) that 
replicates the actual dynamics of the ocean turbine 
prototype was built. With the exception of fluid 
loading, the data acquired are similar to those expected 
from the actual turbine. Therefore, the monitoring 
algorithm developed here can be evaluated with inputs 
that are similar to those expected from the turbine 
sensors.  The dynamometer will be operated at several 
rpm (steady state and intermittently).  Data will be 
acquired to determine the process stationarity and the 
signal-to-noise ratio at selected frequencies (e.g., 
bearing frequencies). 
 The dynamometer contains a low speed motor, 
along with its shaft and bearings, connected to a 
gearbox (the gear box ratio is 25:1).  The high speed 
shaft is connected to the electric motor/generator 
used in the ocean turbine. Since the dynamometer 
was not operational at the time of this publication, 
some experiments were performed on a fan to 
demonstrate and illustrate the faults detection 
capability. Vibration tests were performed at 
different speeds of the fan to relate the peaks in the 
PSD to the rpm and its harmonics. A second phase of 
the experiments utilized the fan running normally 
with no faults and the fan running when an object 
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was added to one of its blades to simulate an 
imbalance.  Vibration data were also acquired from 
selected equipment on a small boat with different 
combinations (on/off status) of the engine, generator 
and hydraulic pump. 
 

 
Figure 2: Dynamometer, Conceptual View 

2. TECHNICAL DISCUSSION 

Vibration condition monitoring is accomplished using 
fault detection and diagnostics. Fault detection is 
mainly concerned with detecting abnormal conditions 
in running machines.  Fault diagnostics is the process 
of analyzing the data in order to accurately determine 
the type of fault, its severity and its location. Faults 
may be detected, and identified, by trending over 
equal intervals of time variations. A baseline 
spectrum is derived by either measuring the vibration 
levels on a machine in its normal operating conditions 
or derived statistically from a population of similar 
machines.  A subset of the common techniques used 
for fault detection and diagnostics using vibrations 
data are shown in Table 1.  They are described in 
(ISO, 2002; ISO, 2005), and discussed in (Beaujean 
et al., 2009; Mjit et al., 2010) relative to 
implementation for monitoring offshore machines. 
 It should noted that some faults do not necessarily 
result in an increase of the overall level thresholds; a 
strong vibration component from another source can 
mask a change and the machine could very well fail 
long before the fault can be detected. Therefore, it is 
highly desirable to compare and trend the vibration 
data to a baseline spectrum only when an adequate 
signal-to-noise ratio exists. De-noising techniques are 
being studied as a way of potentially mitigating the 
problem (Duhaney et al., 2010). 

2.1 Kurtosis  

The kurtosis is a statistical parameter, derived from 
the fourth statistical moment about the mean of the 

probability distribution function of the vibration 
signal and is an indicator of the randomness of that 
function. The kurtosis approach has the major 
advantage that the calculated value is independent of 
load or speed variations.  The kurtosis value is a good 
parameter for fault and transient detection, but it does 
not always give an indication of the cause of the 
problem.  The kurtosis will be equal to 3 for healthy 
machine and greater than 3 if the machine develops 
some faults that generate transients. 

2.2  Frequency Domain Vibration Analysis 

Typical frequencies associated with common faults 
are shown in Table 1.  Frequency–based analysis 
techniques are quite useful for analyzing and trending 
stationary signals whose frequency components do 
not change over time.  

  
Table 1: Common faults and corresponding 

frequencies 

     

 1. PSD and Constant Percentage Band (CPB) 
analysis:  The PSD is derived from the vibration 
waveform by performing a Fast Fourier Transform 
(FFT) or a CPB filtering operation. Because the speed 
of the shaft can slightly change over time, and to have 
accurate results, the LabVIEW program can normalize 
the power spectrum iteratively. The normalized 
fundamental frequency (measured by the encoder) is 
equal to 1.  The normalized peaks in the spectrum are 
related to machine components (e.g., the level of a peak 
at a frequency corresponding to the shaft’s rotation). In 
order to have accurate results, the sampled time period 
should be set so that it is a little longer than the period 
of revolution of the shaft. 
 2. Spectral data trending and baseline comparison:  
Trending the current spectrum and comparing it with 
the baseline spectrum was found to be a good 
indicator of many problems, including unbalance, 
misalignment, and bearing damage. The use of 
logarithmic scaling for the amplitudes was found to 
be very useful.  The use of fractional (third octave or 
greater) octave data has proven to be more efficient 
way of trending the data.  Once an alert/alarm is 
present, a more refined spectral analysis may be used. 
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2.3 Quefrency Vibration Analysis 

The real cepstrum is the spectrum of the logarithm of 
the spectrum; it is used to highlight periodicities in 
the vibrations spectrum, in the same way the 
spectrum is used to highlight periodicities in the time 
waveform. Thus, harmonics and sidebands in the 
spectrum are summed into one peak in the cepstrum 
(called rahmonic), allowing simplified identification 
and trending of specific fault frequencies. It has been 
found to be useful in bearing and gearbox analysis. 
 The cepstrum is a very good indicator for bearing 
and gearbox faults.  It is used for both faults 
detection and diagnostics.  For fault detection, the 
data of harmonics and sidebands are reduced to one 
line and is not subjected to amplitude and frequency 
modulation for fault diagnostic.   The application to 
operational modal analysis is based on the fact that 
the cepstrum of a response signal can be divided into 
its components from the forcing function and transfer 
function, thus allowing determination of the 
structural dynamic properties from response 
measurements alone.  The trending of the cepstrum is 
primarily used to detect low frequency bearing faults 
that cannot be easily detectable by trending the PSD.   

2.4  Time-Frequency Vibration Analysis  

When the rpm of the shaft is changing over time due 
to short transient effects or due to variances in load, 
or when the shaft begins to develop a fault, the 
frequency changes over time cannot be easily 
observed on a time-averaged PSD.  In some cases, 
two different signals, one stationary and the other 
with short transient effects can have the same 
spectrum, as shown in Figure 3.  The presence of 
transient is indicated by a high crest factor and/or a 
high kurtosis value.  In this case, a Time Frequency 
(TF) analysis is used, traditionally implemented with 
an STFT algorithm (Mjit et al., 2010), 

    

'2 ' ' 2 '( , ) ( , ) ( ) ( ) j ftPS t f STFT t f s t w t t e dt






   .   (1) 

( , )PS t f  is power spectrogram of the signal s(t) and 

w(t) is a real and symmetric window translated by t.   

TF analysis results are displayed in a spectrogram, 
which displays the vibration energy distribution in the 
time-frequency domain.  In Figure 3, the two signals 
are similar, with signal 2 containing transient effect.  
The power spectra of both signals are almost identical 
because the energy of this transient spike is low and 
spread over a wide range of frequencies but the two 

signals do not have the same spectrogram. 

 

  

Figure 3: Time-Frequency Analysis 

3. HARDWARE AND SOFTWARE ANALYSIS 
TOOL 

The software developed is designed to collect, 
analyze, record, and post process recorded data, using 
the IO-Tech WaveBook/516E, WBK18 and WBK17 
acquisition systems and accelerometers.  It can 
collect, display and analyze multiple channels of data 
in real-time. The graphical displays consist on the 
time-domain data, frequency domain data, time-
frequency domain data and quefrency data (Beaujean 
et al., 2009; ISO, 2003 (1)). 
 The software also performs the computation of the 
overall vibration level (RMS, peak, crest factor, 
kurtosis).  The bandwidth of the PSD and cepstrum 
can be changed based on operating conditions 
(varying rpm).  To minimize false alarms, trending is 
performed over narrow frequency bands at low 
frequencies, and over wide frequency bands at high 
frequencies.  If the rpm changes exceed 10%, 
ordering may be needed. The software can perform 
the ordering operation of the PSD, third-octave 
spectrum and spectrogram with respect to the shaft 
speed (data from the tachometer). 
 This software is implemented with alerts and 
alarms criteria for all the diagnostics techniques 
features mentioned above. If the vibration levels 
exceed their respective baselines, an alert is activated 
and stays on until the vibration levels decrease 
sufficiently. This software can record the raw time 
signal on every channel, so that post processing with 
a different technique is possible.  For example, a raw 
signal may be played back using different FFT 
Window algorithms to increase resolution.  Once the 
desired results have been achieved, the new data may 
be exported to a different file and format, while 
preserving the original file.   
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 For long term monitoring, the model allows for the 
automatic storing of raw data periodically and after 
any deviations from normal conditions, i.e., when 
alerts are on.  This makes it possible to follow the 
progress of the faults without saving data 
continuously. 

4. EXPERIMENTAL RESULTS  

To illustrate the features of the monitoring system, 
some experiments were performed on a commercial 
fan and on a small boat in different situations.   For 
the experiments on the fan, the featured techniques 
were: 
 1. The determination of the minimum number of 
average, needed for this system running at 450 rpm. 
 2. The correlation of the peaks, in the PSD and in 
the cepstrum, to the forcing frequencies for the 
healthy system running at 450 rpm and 840 rpm. 
 3. The illustration of the effect of the imbalance 
fault on the PSD and on the cepstrum, and 
comparison with the theory. 
 4. Order “Normalization” analysis of the PSD for 
the system running at 450rpm. 
 5. The illustration of the effect of transient effect 
on the kurtosis and on the STFT by hitting the fan 
while running and using a hammer with a calibrated 
force transducer. 
 The fan has five blades and the sampling frequency 
was set to 1000Hz in order to pick two families of 
harmonics (1 time the rpm and 5 times the rpm, 
related to the five blades).  Cepstrum analysis was 
used to collapse the two families of harmonics into 
two peaks.  3000 scans were acquired each iteration 
giving a frequency resolution of 0.33 Hz. 
 The data were acquired from a low frequency 
accelerometer mounted on the fan casing using 
adhesive. The AC136-1A, low noise accelerometer 
had the following specifications: sensitivity of 500 
mV/g, pass band frequency response between 0.2 and 
3000 Hz, and very low noise PSD of 1.7 μg/√Hz at 
10 Hz.  An 8-pole Butterworth analog low-pass filter 
was used to achieve a good attenuation in the stop 
band and minimal distortion in the pass-band.  Its 
cut-off frequency was set to 200 Hz to avoid aliasing.  
 The power spectral density, displayed in decibel 
(dB) was computed using a Hanning window (to 
minimize the frequency distortion due to block 
averaging), in both RMS averaging mode and linear 
time averaging. 
 For the experiment on a small boat, the features 
techniques demonstrated were: 

 1. The correlation of the spikes in the PSD to the 
cylinders firing rate using three different speed of the 
engine 700, 1400 and 2100 rpm. 
 2. The illustration of the effect of each component 
separately on the PSD by running the experiment 
with different combination (on/off status) of the main 
engine, hydraulic pump and generator. 
 3. The comparison of the acquired data to their 
baseline in two different situations (Figures 18 and 
19). 
 The accelerometers (AC136-1A) were mounted on 
the gearbox (HF), main engine (LF), generator (HF) 
and pump (LF), respectively.  The sampling 
frequency was 8000Hz, and 8000 scans-per-second 
were acquired, leading to a frequency resolution of 
1Hz.  An 8-pole low pass filter was used with a cut-
off frequency was set to 2 kHz. In the following 
results, a data sample is defined as a 10 second 
average (80,000 scans).  

4.1  Fan results  

The minimum number of PSD averages for the fan is 
determined using the following rule:  record two 
spectra, the first one with N averages and the second 
with 2xN averages. If the spectra are significantly 
different, the number of averages should be doubled 
again and another spectrum recorded. If the latter two 
spectra are similar, then the previous number of 
averages is adequate for the vibration PSD analysis. 
 In Figure 4, two vibration signals are compared.  
The green signal is the result of averaging 10 samples 
and the red signal is from one sample. We notice a 
difference between the signals due to the noise errors. 
This noise will cancel out by the averaging process, 
thus, the importance of averaging the signal. 
 

 
 

Figure 4: Spectral averaging of the fan vibration 
measurements (1 or 10 averages) at 450 rpm 
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 In Figure 5, the acceleration signal with two 
different averaging numbers (green one with 10 
averages, and the red one with 20 averages) are 
compared. The two acceleration signals are almost 
identical, thus 10 averages are adequate to study the 
vibrations of this fan. 
 

 

Figure 5: Spectral averaging of the fan vibrations (10 
or 20 averages) 

  
 In Figure 6, the PSD displays harmonics of 14 Hz 
(840 rpm).  In particular, the fundamental (14 Hz) 
and fifth harmonic (70 Hz, or the number of blades 
times the fundamental) are very strong.  The bearings 
tones are also observed at 4.2 Hz and 7 Hz (0.3 and 
0.5 times the fundamental).  

 

Figure 6: PSD of healthy fan running at 840 rpm 
 

 The cepstrum analysis is used to quantify 
periodical information of spectral data. As shown in 
Figure 7, the cepstrum summarizes all families of 
harmonics in the PSD within single values, e.g. the 
families of the peaks correspond to the rpm (1X, 5X) 
and their harmonics, bearings tones (0.3X, 0.5X) and 
theirs sidebands,  are reduced to singles peaks in the 

cepstrum. Still in Figure 7, the table below the graph 
displays automatically the four largest peaks 
quefrencies and frequencies and the bearings tones 
appear separately from the blades tones. 

 

Figure 7: Harmonic separation using the cepstrum 
analysis tool, for healthy fan running at 840 rpm 

 
 In Figure 8, the fan was running at low speed (450 
rpm) which resulted in bearing tones of lesser 
amplitude. In addition, bearings sidebands do not 
appear in the PSD plot. As in the previous case, all 
the families of harmonics in the PSD (0.5X, X, 5X) 
are reduced to single peaks in the cepstrum (Figure 
9). The imbalance fault was introduced by attaching a 
small load to one of the fan blades.  Figure 10 
illustrates the effect of the imbalance on the PSD. As 
expected from the theory, the imbalance generates 
strong vibration amplitudes at the fundamental 
frequency (1X) and its first and second harmonics 
(2X, 3X), but only some vibration at higher 
harmonics orders.  
 

 

Figure 8: PSD of healthy fan running at 450 rpm 
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Figure 9: Harmonic separation using the cepstrum 
analysis tool, for healthy fan running at 450 rpm 

  

 
Figure 10: PSD of healthy Fan (green curve) and with 

imbalance fault introduced (red curve) (450 rpm) 
 
 In Figure 11, The PSD is normalized with respect 
to the rpm, and the data are displayed in term of 
multiples and fractional of the rotational speed. The 
fundamental of the rpm and its harmonics are 
integers, and bearings tones are not integers. The 
advantage of this ordering technique is the ability to 
clearly identify the peaks related to the forcing 
frequencies and those that are caused by the inception 
of anomalies in the system. Another important 
advantage of the ordering process is that the spectra 
have peaks at the same orders during measurements 
and can easily be averaged without smearing. 
 

 
Figure 11: Normalized PSD with respect to the rpm 

(450 rpm) 
 
 In Figure 12, the kurtosis, STFT waterfall and 
spectrogram are acquired from the fan running at 840 
rpm. The kurtosis is constant with respect to time and 
does not exceed the thresholds limits. Thus the alert 
and alarm are “off”. In Figure 13, the kurtosis, the 
STFT waterfall and the spectrogram are acquired 
from the fan running at 840 rpm while a transient 
effect is produced by hitting the fan casing with a 
hammer. The kurtosis increases, exceeds the 
threshold limits and triggers an alert. For more details 
on how this transient effect affects the data, the 
waterfall and the spectrogram can be used.  Both 
plots show a high level of -30dB after 2.3 second in 
following frequency bands: 180-200 Hz, 90-150 Hz 
and 65-70 Hz. 
 

 
 

Figure 12: Kurtosis, STFT waterfall and kurtosis and 
its alert and alarm features for the fan running at 840 

rpm 
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Figure 13: Waterfall, Spectrogram, kurtosis and its alert 
and alarm features for the fan running at 840 rpm while 

a small transient effect was introduced 
 

 In a second test, the kurtosis, STFT waterfall and 
spectrogram are acquired under the same conditions 
except for a stronger hammer impact, The kurtosis 
increases and exceeded both alert and alarm 
thresholds limits, Figure 14. This time (after 1.5 
second), the transient effect affect the following 
frequency bands: 120-200 Hz and 90-96 Hz. 
 

 

Figure 14: Kurtosis, STFT waterfall, spectrogram, alert 
and alarm features for the fan running at 840 rpm while 

a large transient effect is produced 

4.2 Boat results 

With the small boat experiment, we demonstrate the 
correlation of the PSD spikes to the cylinders firing 
rate using three different speed of the engine: 700, 
1400 and 2100 rpm. We then illustrate the effect of 
each component on the PSD separately by running 

the experiment with different combination (on/off 
status) of the main engine, hydraulic pump and 
generator.  A high frequency accelerometer was 
mounted on the gearbox. Figure 15 shows the PSD of 
the data acquired at three different speed of the main 
engine: 700, 1400 and 2100 rpm. The harmonics 
corresponding to the cylinder firing rate for each 
speed (5.8, 11.6 and 17.5 Hz) clearly appear. 
 

.  
Figure 15: PSD of the data acquired at three different 

speeds 700, 1400 and 2100 rpm (one sample) 
 
 To illustrate the effect of the generator on the PSD, 
two different vibration tests were performed; the 
green and red curves in Figure 16 correspond to the 
PSD of data acquired when the main engine alone is 
on, and when both the main engine and the generator 
are on respectively. As expected, the generator 
introduces some noise and more peaks on the PSD.  

 

Figure 16: PSD of the data acquired in two different 
situation: engine on, both engine & generator on (one 

sample) 
 
 To show the effect of both the generator and the 
hydraulic pump on the PSD, the experiments were 
performed when the main engine alone is on (green 
curve), and when the main engine, generator and 
hydraulic pump are on (red curve), Figure 17. The 
generator and the hydraulic pump generate more 
peaks in the PSD. 
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Figure 17: PSD of the data acquired in two different 
situations: engine on, and engine, generator and pump 

on (one sample) 
 

 This experiment also includes the comparison of 
the acquired data to their baseline in two different 
situations (Figures 18 and 19). In Figure 18, the 
current third octave is compared to the previous one for 
the engine running at 2100 rpm.  Nothing changes and 
alert and alarm are off.  In Figure 19, the third octave of 
the vibration data acquired at 2100 rpm is compared to 
the third octave of the data acquired at 1400 rpm 
(baselines). The discrepancy in multiple third-octave 
bands results both in an alert and alarm. 
 

 

Figure 18: Combined vibration data processing, alerts 
and alarms, 2100 rpm (one sample) 

 

 

Figure 19: Combined vibration data processing, alerts 
and alarms, regime change from 2100 rpm to 1400 rpm 

(one sample) 
 
 Each third-octave band producing an alert or alarm 
can be closely analyzed using the PSD output.  As an 
example, in Figure 19, the third-octave bands at 
center frequencies 40, 125, and 250 Hz produce 
alerts. As shown in Figure 20, the spikes that cause 
the three third octave bands to exceed their respective 
baselines are: (1) 35.7 Hz for the first band; (2) 
122Hz and 139.2Hz for the second band; (3) 
227.1Hz, 243.8Hz, 262Hz and 278.6Hz for the third 
band. These frequencies correspond to harmonics of 
the cylinder firing rate (17.5 Hz). 
 

 

Figure 20: PSD analysis (one sample), red curve 
represents the PSD baseline (2100 rpm) compared to 

the green curve (1400 rpm) 
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5. CONCLUSION 

The vibration monitoring and diagnosis tool has been 
presented in this paper.  This tool, designed to initially 
monitor an ocean turbine, has the following 
capabilities:  (1) automatic storage of raw data 
periodically and after any deviation from normal 
conditions; (2) multiple trending techniques; (3) early 
failure identification of the faults through generation of 
alerts before dangerous vibration condition of the 
machine occurs; (4) ordering of the frequency data with 
respect to the shaft rpm; (5) reduction of maintenance 
cost by isolation, localization and diagnosis of vibration 
causes.  At-sea demonstration of this tool will be 
performed on an ocean turbine prototype in the near 
future.  In the meantime, it has been tested on a small 
boat and on a fan system and is now being installed on 
a dynamometer. 
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