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ABSTRACT 

Although typical Health and Usage Monitoring Systems 
(HUMS) intend to support a transition from scheduled 
part replacements to performing maintenance upon 
evidence of need, they generally exhibit a limited 
ability to diagnose component faults early and 
accurately in complex systems such as a helicopter 
drive train. Consequently, the traditional approach to 
implementing Condition Based Maintenance (CBM) 
programs is slow, requires substantial amounts of 
human supervision (including case-by-case data 
analysis and results verification), and ultimately shuns 
prognostic activities. Causes of these limitations, which 
ultimately lead to an underrepresentation of prognostics 
in fielded CBM systems, include: (i) the sensitivity of 
sensors and condition indicators to signal noise and 
operating modes; (ii) use of empirical condition 
indicators not fully understood at the fleet-wide level; 
(iii) uncertainty in damage progression tracking; (iv) 
the inherent risk of condition prognosis; and (v) the 
lack diagnostic and prognostic validation with known 
fault cases. 
 
To improve the performance of CBM systems and 
facilitate transition from scheduled maintenance to 
reliable implementation of diagnostics and prognostics, 
a team of developers from Impact Technologies, the 
U.S. Army Research Laboratory and the Georgia 
Institute of Technology, with support from the U.S. 
Army have been working over the past 2½ years to 
develop a methodology that is capable of addressing the 
challenges listed. This work has been a part of the Air 
Vehicle Diagnostics and Prognostics Improvement 

Program (AVDPIP), a collaborative agreement to 
develop, test and evaluate modular software 
components that provide enhancements to diagnostic 
systems already in service, as well as add failure 
prognosis capabilities for critical Army aircraft 
components. This paper presents the integrated 
diagnostic enhancement and prognostic architecture, as 
well as the software suite developed under the 
collaborative program, and discusses how a hybrid and 
systematic approach to sensing, data processing, fault 
feature extraction, fault diagnosis, and parallel health-
based and usage-based failure prognosis can be used to 
improve the performance of a wide variety of HUMS 
and CBM activities in support of implementing 
prognostics. The software architecture contains generic 
components and algorithms building on model based 
and data driven methodologies that are applicable to a 
variety of critical components in complex systems such 
as those found in a helicopter drive train.* 

1. INTRODUCTION 

In recent years, the U.S. Army has witnessed various 
helicopter component failures that are currently driving 
the need for improved health monitoring and fault 
prediction that will be implemented under the broader 
initiative for Condition Based Maintenance (CBM) of 
the U.S. Department of Defense, known as CBM+. 
Since some of the most effective methods for 
                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 
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diagnosing faults in components involve the analysis of 
sensor signals and the derivation of condition indicators 
(Watson et al., 2007), existing hardware/software 
health monitoring systems and digital source collectors 
(DSC), such as VMEP/MSPU (Branhof et al., 2005) 
and IMD-HUMS/IVHMS (Dora et al., 2004), collect 
vibration and other pertinent flight regime data and 
attempt to detect a fault condition using condition or 
health indicators derived via data processing 
algorithms. However, there is room for improvement in 
two key general aspects: (1) developing supporting 
technologies to enhance fault detection performance 
and capabilities (Byington et al., 2007; Byington et al., 
2008a), and (2) predicting the remaining life or proper 
maintenance times for worn or failing components with 
sufficient warning time. 
 
To specifically address the improvement of fault 
detection and the implementation of failure prediction 
methods, the U.S. Army Research Laboratory, Impact 
Technologies, LLC, and the Georgia Institute of 
Technology have, for more than 30 months, worked 
collaboratively to develop, test and evaluate modular 
software components that provide enhancements to 
diagnostic systems already in service and add failure 

prognosis capabilities for critical Army aircraft 
components. This work is being carried out as part of 
the three-year “Air Vehicle Diagnostic and Prognostic 
Improvement Program” (AVDPIP), and its ultimate 
goal is to allow the modular software components to 
complement existing Army Digital Source Collector 
(DSC) systems and provide the Army with tools to 
warn operators and field commanders of impending 
failure conditions and assist maintainers in optimizing 
aircraft repair, maintenance and overhaul practices. 
These developments support the goals of CBM+ to 
improve readiness, safety, and maintainability of assets.  
 
The software modules developed intend to support the 
transition of vehicle component maintenance strategies 
from the current use of limits in the number of 
operational hours (“time before overhaul”, or TBO 
definitions), which is a type of scheduled maintenance, 
towards condition-based maintenance. The 
developments of the AVDPIP program support two 
types of complementary prognostic activities, hereto 
referred as “usage based” and “health based” 
prognostics. The general characteristics of these two 
types of prognostics are summarized in Table 1, but 
more details are provided throughout this paper. 

 
Table 1. Comparison of Preventive/Predictive Maintenance Strategies. 

Current TBO
Practice CBM Focus AVDPIP Approach

Strategies►
Characteristics▼ Life Limits Timely Fault 

Detection
Usage Based 

Prognosis
Health Based 

Prognosis

Means of 
realization Use of TBOs Health Monitoring Usage Monitoring + 

Wear/Life Model 
Health Monitoring + 

Damage Model

Requirements
Design 

specifications + 
usage tracking

System observables 
+ thresholding

Usage tracking + 
“Life consumption” 

model 

Damage 
assessment + 

progression model

Capabilities

Regular
replacements 
regardless of 

condition

Hazardous condition 
detection

Wear tracking & 
mission-adjusted 

replacement 
logistics

Condition 
assessment  (early 

detection) & life 
extension

Maintenance 
triggers / margin of 

response

Scheduled 
maintenance

Maintenance 
triggers with short or 
no time for planning

Planning triggers 
depending on usage 

of assets

Planning triggers 
depending on 

system condition

Risk/Reward for 
known fault mode

Short intervals can 
lower risk, but at 

high cost of 
maintenance 

Reduces risk of life
limiting approach 

through fault 
detection

Capable of tracking 
wear; reduces risk 

of life limiting
approach when 
usage is intense

Capable of tracking 
condition and 
providing early 
warnings and 
possible life
extension  

 
Although typical Health and Usage Monitoring 
Systems (HUMS) also support the transition from 
scheduled part replacements to performing maintenance 
upon evidence of need, they generally exhibit a limited 
ability to diagnose component faults early and 
accurately in complex systems such as a helicopter 
drive train. Consequently, the traditional approach to 
performing Condition Based Maintenance (CBM) 
requires extensive human supervision (including 

manual, case-by-case data analysis and results 
verification) and ultimately shuns prognostic activities.  
 
This paper presents a methodology and corresponding 
software architecture to integrate the operations of 
sensor data validation and pre-processing, fault feature 
extraction, fault diagnosis, and parallel health-based 
and usage-based component condition prognosis. This 
development contains generic software components and 
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algorithms that build upon model based and data driven 
methodologies that are applicable to a variety of 
components in complex systems such as those found in 
a helicopter drive train. Integral operation of the 
methodology is demonstrated with the case study of a 
helicopter drive train bearing. 

2. THE AVDPIP ARCHITECTURE  

2.1 Motivation and purpose 

CBM programs most commonly attempt to detect a 
fault condition in a component whose condition is 
under monitoring. Condition monitoring uses 
techniques to collect vibration or other sensory data, as 
well as other pertinent flight regime information, to 
derive condition or health indicators and interpret or 
classify them via data processing algorithms.  However, 
as suggested previously, it is not uncommon to find that 
early detection, fault diagnostic accuracy, and 
prognostic capability are inadequate in CBM systems. 
Causes of these limitations, which ultimately lead to an 
underrepresentation of prognostics in fielded CBM 
systems, include (Zakrajsek et al., 2006): (i) the 
sensitivity of sensors and condition indicators to signal 
noise, specific fault modes, and variations in 
environmental and operating conditions; (ii) the 
performance of diagnostic processes, which attempt to 
make a health assessment using condition indicators 
that, in many instances, are chosen empirically and 
without full understanding of their fleet-wide behavior; 
(iii) the uncertainties in damage or wear progression as 
well as in future usage, and the corresponding difficulty 
in implementing a reliable degradation tracking 
algorithm that reliably captures these uncertainties; (iv) 
the inherent risk of relying on an algorithm or 
prognostic system that attempts to predict how much 
longer a component can operate even if it is expected to 
fail; and (v) the lack of verified fault case studies with 
sufficient representative data as well as diagnostic and 
prognostic algorithm validation. 
 
It is possible to increase the performance, accuracy and 
detection capabilities of typical CBM systems by 
utilizing adequate data preprocessing techniques, 
advanced condition indicator evaluation, and detection 
and diagnostic enhancement algorithms. Furthermore, it 
is also possible to safely implement prognostic health 
assessments with the integral use of (a) the 
aforementioned enhanced diagnostic processes, (b) 
appropriate component degradation models, (c) 
uncertainty representation algorithms, (d) usage, 
loading and operating conditions data, and (e) the use 
of available calibration and validation data sets possibly 
supplemented with seeded fault tests. We here 
understand prognostics to refer to the monitoring or 

health assessment algorithms that are used estimate the 
future condition of a component and provide an 
indication of when it must be serviced or retired, thus 
implying that predictive capabilities are available. 
 
To improve the performance of CBM diagnostic 
processes and facilitate reliable implementation of 
prognostics, the AVDPIP team has developed a 
methodology and a set of software components that are 
capable of addressing the five challenges listed earlier 
(i through v). We refer to this methodology as the 
“AVDPIP architecture” for the integrated operation of 
fleet data analysis, diagnostic enhancement, and safe 
implementation of prognostics. 

2.2 Architectural components 

The AVDPIP architecture was developed with the 
objective of maintaining modularity to allow for 
extensibility to a wide variety of systems and 
components, but still uses a systematic approach to 
integrate sensing, data processing, fault feature 
extraction, fault diagnosis, and failure prognosis, as 
illustrated in Figure 1. 

2.3 Signal processing and CI/feature extraction 

Data is retrieved from an available repository such as 
preexisting databases, a digital source collector (DSC), 
a HUMS system, a data acquisition system, etc. The 
AVDPIP architecture allows for two types of data to be 
used: (1) “raw” data from sensors (i.e., unprocessed 
signals), or (2) condition indicators (features) 
preprocessed from the raw data by preexisting (e.g., 
traditional) methods and systems. In the case that raw 
data is available for processing, advanced feature 
extraction techniques can be used to derive condition 
indicators with increased accuracy and more desirable 
behaviors. A variety of techniques can support this 
task, including signal noise removal (or data de-
noising, active noise cancelation, etc.), sensor 
validation (to remove corrupted or invalid signals), 
advanced demodulation and filtering, and analysis band 
selection optimization (Patrick et al., 2009), among 
others. On the other hand, if preexisting condition 
indicators are used, the architecture can proceed to 
directly use them in analysis and post processing tasks 
as described below. 

2.4 Feature or condition indicator post-processing 

After features or condition indicators are generated, the 
AVDPIP architecture calls for their processing and 
analysis to perform: (1) anomaly or fault detection, (2) 
fault isolation and/or mode classification (source and 
category), and (3) fault identification (severity 
assessment), as necessary. Data processing and signal 
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conditioning techniques can be used to provide 
diagnostic evidence for performing these three tasks. 
Some relevant supporting techniques include feature 
normalization and fusion, statistical analysis and 

optimal threshold setting, and the use of anomaly 
detection and diagnostic algorithms. Details about each 
of these varying techniques are discussed in this paper.  

 

Raw data

Sensory “raw” 
data and

preexisting 
CI’s

Sensor 
validation and 

data pre-
processing

Baseliningand 
threshold 

setting

Fusion and 
post-processing

of CI’s

Prognostic 
Fusion

Enhanced
feature

extraction

AVDPIP database 
with existing and 

enhanced
CI’s

Traditional diagnostics

Anomaly detection

Diagnostic Fusion

Mission/usage/load
profiles

Maintenance events 
and evidence

Health Based 
Prognostics

Damage
propagation model

Model adaptation

Uncertainty representation

Usage Based 
Prognostics

Component design life 
model

Load/capacity characterization

Parameter uncertainties

Operating conditions 
and life factors

Risk-based Assessment 
of Time to Maintenance

Signal processing and CI/feature extraction Feature post-processing and diagnostics

Wear tracking and usage based prognostics

State prediction and 
health based prognostics

 
Figure 1: Block diagram of the AVDPIP architecture. 

2.5 Diagnostics and prognostics 

The processes listed above provide a means to improve 
the ability of diagnostic activities to detect early-stage 
faults and mitigate the adverse effects introduced by 
signal noise, difference in behaviors due to multiple 
fault modes, and variations in environmental and 
operating conditions (such as loads, speeds, flight 
regimes, etc.). Addressing these weaknesses is a key 
prerequisite for implementing effective prognostic 
algorithms. However, even if these techniques are 
proven successful at improving fault detectability and 
diagnostic performance, the realization of accurate 
prognostic health assessment is still challenging, and 
remains as an activity worth of care to minimize 
potential risks. One of the major risks of depending on 
a prognostic assessment for making maintenance 
decisions (as opposed to depending on diagnostics) is 
that, while a diagnosis will provide information of 
when the monitored system needs immediate 
maintenance because it has already reached a hazardous 
condition, a prognosis attempts to establish when the 
system will need such maintenance, potentially giving a 
false sense of near-term operational safety as a 
prediction places the maintenance event far into the 
future. To reduce this risk, the AVDPIP architecture 
combines two types of diagnostic assessment with two 
different approaches to prognostics. The operation, 

benefits and risks of these four techniques are as 
described in Table 2. 

3. USAGE BASED PROGNOSTICS 

The usage-based prognostics approach incorporates 
reliability data, life usage models and varying degrees 
of measured or proxy data to forecast durability of a 
component. The forecast is based on actual usage when 
such is known and a suitable representation (load and 
condition data series) is available. Incipient fault 
detection may not be available due to sensor or fault 
mode coverage limitations, but on the other hand, the 
usage based prognostic can make durability 
assessments even if no fault is detected. At the heart of 
the usage based prognostic algorithms of AVDPIP, we 
find the use of component life models that are used to 
determine the durability of vehicle components taking 
into account usage patterns and parameter uncertainties. 
The approach is illustrated in Figure 2. An example of 
use of this approach to estimate the durability of 
bearings is illustrated in Figure 3. It should be noted 
that, in line with the description of the general “usage 
based prognostics” approach, this algorithm is expected 
to be useful for anticipated types of faults. For example, 
in the case of a bearing, the model will be able to 
characterize specific degradation modes and 
parameters, including fatigue wear, effects of variable 
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loading, effect of certain operating conditions in the 
form of life factors (typical in bearing lifing), etc.  
However, certain types of faults cannot be 
characterized by the usage-based approach proposed. 

For example, faults that would make the usage-based 
prognosis inapplicable include manufacturing defects 
or anomalies, improper installation, inadequate 
maintenance or unaccounted-for operating conditions. 

 
Table 2. Complementary diagnostic and prognostic strategies of the AVDPIP program 

 Technique Operation Advantages Limitations and risks 

D
ia

gn
os

tic
s 

Traditional 
Diagnostics 

Compares feature or CI 
values against pre-
established thresholds 
indicative of hazardous 
conditions; the 
thresholds are derived 
from statistical studies 
of fleet wide behaviors 
and known cases of 
faults 

Useful for monitoring fault 
modes that are known to 
be severe, frequent and 
“testable” on the basis of a 
Failure Modes, Effects, 
and Criticality Analysis 
(FMECA) 

Useful only for a finite number of fault 
modes with well identified and sufficiently 
understood behaviors. Good correlation 
between specific condition indicators and 
each fault mode must be sufficiently well 
established; monitoring is applicable to 
predefined and highly repeatable operating 
conditions, or else the risk for false alarms 
increases considerably 

Anomaly 
Detection 

Diagnostics 

Uses a model of the 
system under 
consideration and the 
observation of an 
“innovation” or 
“discrepancy” between 
the actual plant output 
and the model output, 
for all possible operating 
conditions, to detect an 
unanticipated fault 

Provides greater 
“coverage” in terms of the 
number of fault modes that 
can be detected, isolated, 
and identified. Can in 
effect detect a fault as an 
“anomalous” or 
“extraneous” behavior in 
the system that should be 
given attention 

Requires an accurate model of system 
behaviors and operating modes. 
Performance limited by model accuracy; 
fault mode coverage limited by model 
breadth or complexity. Requires a set of 
baseline (reference) conditions 
representative of healthy operating 
conditions that are difficult to define and 
bound adequately in the context of 
potential, not-fully-understood system 
anomalies. Inadequate “baselining” can 
lead to poor detection performance 

Pr
og

no
st

ic
s 

Usage 
Based 

Prognostics 

Combines usage 
monitoring (load/stress 
tracking) with a wear or 
life model to estimate 
the rate at which a 
component degrades, 
accumulates damage or 
“consumes” its design 
life. A prognosis is 
based on remaining 
design life at any given 
time 

Can track wear or 
degradation in parts and, 
by using planning triggers 
dependent upon usage of 
assets, can also offer 
support for replacement 
logistics that are “smarter” 
than scheduled 
maintenance programs. 
Reduces risk of life 
limiting approach when 
usage is intense 

Does not take into account unanticipated 
faults. Most applicable for components that 
degrade as intended by design, although it 
can use “life factors” or adjustments for 
well-established and well-understood 
conditions leading to modified rates of 
degradation (outside of nominal). Requires 
an estimate of future system usage to 
provide an accurate prognosis or else a 
“worst-case-scenario” must be assumed for 
future system usage, potentially leading to 
excessively conservative results 

Health 
Based 

Prognostics 

Combines health 
monitoring (damage 
assessment via 
diagnostics) with a 
damage progression 
model to estimate the 
rate at which a faulted 
component continues to 
degrade 

Capable of tracking a 
degraded condition (once a 
fault or anomaly is 
detected) and providing 
early warnings for 
components in need of 
maintenance due to 
unanticipated faults or the 
presence of damage. It can 
potentially support life 
extension of degraded 
components because 
prognosis estimates future 
damage progression in a 
faulty component 

Works only as a follow up to the detection 
of a fault or anomaly (i.e., requires a 
positive diagnosis of a fault or anomaly), 
which immediately implies that the 
prognosis is operating over a damaged 
component that is at risk of failing. Because 
planning actions are triggered depending on 
system condition, there is the risk that an 
error in the characterization of future 
damage progression can lead to (a) 
maintenance actions need to be rescheduled 
if the prognosis changes, or (b) a prognosis 
with a long lead time can lead to a false 
sense of safety 
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Initial 
Conditions 

Parameters of 
new component 

Planned 
missions/usage 

Component 
Life Model 
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Conditions 

Component 
Durability 

Component Lifing Module 

 
Figure 2. AVDPIP approach to model-based component lifing 
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load distribution 
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Durability 

Operating 
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Figure 3. Approach to usage-based bearing lifing used by AVDPIP 

 
4. HEALTH BASED PROGNOSTICS 

The health-based prognostics approach involves 
utilizing the assessed health or diagnostic fault 
classifier output to predict evolution of a component 
fault. Feature trending or physics-of-failure based 
prediction may then be used. Incipient fault detection 
and diagnostic isolation is absolutely necessary, and 
thus the health based prognostic system cannot operate 
until a fault is detected. The AVDPIP program uses 
Particle Filters to perform feature trend predictions 
(Zhang et al., 2008). Particle filtering is an application 
of Bayesian state estimation that calculates an a 
posteriori probability density function (PDF) of a state 
of a system based on a priori observations or 
measurements. If the calculation of the future state of 
the system is extended in multiple steps with the use of 
a model, the particle filtering algorithm can perform 
long term predictions. In this case, the system 
observations are initially used to build a PDF of the 
“present” or “current” system condition, as illustrated 
conceptually in Figure 4. 

 
Figure 4. Determination of the state of a system as a 

PDF based on feature values 

This PDF is then sampled into “particles” 
representative of potential system states with individual 
weights. Using the model, the prognostic algorithm 
simulates the progression of the weights in time to do a 
prediction of possible future system states, as illustrated 
in Figure 5. 

Time

Observed 
system states

Smoothed  
(filtered) states Sy
ste

m
 st

at
e 

/ d
am

ag
e 

State progression 
prediction curves 

Simulation 
samples/steps 

 
Figure 5. System state prediction and progression 

curves 

Just as with the initial state, future states of the system 
can be represented by PDFs. Once the progression of 
the system state has been determined, the algorithm can 
be used to predict the time required for the system to 
reach a condition of interest, such as a need for 
maintenance. The condition predicted is represented by 
a “prediction threshold” line. Because there is 
uncertainty in the future system states (as represented 
by the different state progression curves), there is also 
uncertainty in the predicted time to reach the threshold. 
This uncertainty in time is represented also by a PDF, 
referred to as the “time-to-threshold” (TTT) PDF. The 
definition of prognostic confidence is tied to how the 
area of the TTT PDF is divided. To determine the 
minimum time remaining to reach the prediction 
threshold, called the “just-in-time” point, a confidence 

PDF of 
current system 

state 

System 
observations 

(feature values) 

Present time Time

Expectation of 
current system 

state 

μ 

Sy
st

em
 st

at
e 

/ d
am

ag
e 

Filtered / smoothed 
estimate of state 

Diagnostic horizon Prediction horizon
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specification is required. Figure 6 illustrates how a 95% 
prediction confidence is used to determine the just-in-

time point. The AVDPIP software suite implements the 
processes and algorithms described above. 

 
Figure 6. Determination of the prediction time to reach a prognostic threshold with a given prognostic confidence 

(the inlay box provides an example using 95% confidence) 

 
5. THE AVDPIP SOFTWARE SUITE 

The AVDPIP software uses the AVDPIP architecture to 
integrate data pre- and post-processing with diagnostic 
and prognostic operations. The launch pad of the suite 
is the AVDPIP Director™ application, which provides 
a link to the major functional modules, as illustrated 
in Figure 7. The modules are described in Table 3. 
Development of some components of the AVDPIP 
software suite is presently ongoing, but the application 
is generally functional. This section presents current 
capabilities and discusses intended additions. 

 
 

Figure 7. The AVDPIP Director™ screen provides a 
link to the modules of the AVDPIP software suite. 

 
Table 3. Functional software modules of the AVDPIP software suite. 

 
Module name Primary purpose Description 
TEDS™: Toolkit for 
Enhanced Diagnostics 

Data validation 
and feature 
extraction 

Sensor validation, raw sensor data enhancement and 
preprocessing, and extraction of features (condition indicators) 
from vibration signals 

IMDx™: Integrated 
Mechanical Diagnostics 
Database Export Tool 

Feature exporting Exporting of condition indicators from Army HUMS databases 
into AVDPIP databases 

NBATS™: Normalization, 
Baselining and 
Thresholding Software 

Statistical analysis Analysis of feature value distributions, normalization of data, 
and determination of optimal detection thresholds 

Fusion Module Sensor and 
Feature Fusion 

Fusion of sensory data to decrease effects of noise and increase 
detectability of faults,  and fusion of feature data into “meta-
features” to improve classification and trending operations 

MPUGS™: Mission 
Profile Usage Generation 
and Simulation 

Usage profile 
definition 

Definition/creation of usage / loading / mission profiles driving 
wear and degradation rates in operational components 

PIP™: Prognostics 
Improvement Program 

Diagnosis and 
prognosis 

Analysis and determination of the progressing condition of a 
component using data from TEDS, IMDx, NBATS, Fusion 
module and MPUGS, as well as different diagnostic and 
prognostic algorithms. 

End-of-prediction threshold 

Timets=0  Present system condition 

Past system 
behavior 
(previous 

states) 

Sy
st

em
 st

at
e 

/ d
am

ag
e 

Progression 
curves 

PDF of
Time-to-threshold

Future state
PDF  

Future state
PDF 

PDF of 
current 

system state 

TTT PDF 

Time

Prediction
Threshold

Progression
curves 

Just-in-Time point 
(95% confidence) 

95% Area 
5% Area 
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TEDS: The TEDS tool performs advanced data 
processing and signal conditioning techniques aimed at 
providing enhanced diagnostic evidence for improved 
air vehicle diagnostics and prognostics. The tool 
utilizes such modules as: 
 
• The ImpactEnergy™ shock pulse amplification 

software, which uses a multi-step signal processing 
routine prior to feature extraction that increases the 
visibility of shock-pulse events indicative of specific 
bearing faults, thus uncovering frequency spectrum 
peaks that are otherwise hidden in the broadband 
spectrum, and allowing for detection of faults in their 
incipient state (Sheldon et al., 2007; Byington et al., 
2006a) 

• The ABS™ (Automated Band Selection) software, 
which maximizes fault detection capabilities by using 
techniques to identify the best regions of the 
broadband spectrum to perform more effective fault 
frequency demodulation (potential resonances) for 
bearing vibration feature/CI extraction 

• The FirstCheck™ software for real-time sensor 
validation, which uses time and frequency domain 
methods to detect various potential sensor faults 
including faulty connections, loose accelerometer 
mounts, and damaged accelerometer elements 

 
TEDS allows a user to control how the analysis 
algorithms will be applied to raw vibration data files to 
extract feature values. It uses a robust database 
structure allowing to catalog data from different data 
sources (aircraft platforms), vehicle components, and 
sensors. Detailed meta-data (descriptive information) 
and date/time information is included in the catalogs. 
Feature extraction can be performed on data subsets 
selected by the user and saved the options for a given 
extraction saved into “analysis” files that allow for 
repeated, comparable extractions over different data 
sets. Analysis options include the selection of feature 
extraction algorithms, sensor validation, and vibration 
data filters among other advanced processing options. 
Additionally, TEDS is prepared to perform near real-
time analysis on data that is streamed continually, 
opening the possibility to realize condition monitoring 
of operating assets. 
 
IMDx: The Integrated Mechanical Diagnostics 
Database Exporting Tool (IMDx) is designed to extract 
Condition Indicators from the Army’s Integrated 
Mechanical Diagnostics (IMD) database for performing 
diagnostic/prognostic analyses with the PIP software 
(see below) but using condition indicators that the 
Army systems already generate. IMDx allows a user to 
export data for individual aircraft (catalogued in groups 
of aircraft platforms), individual flight regimes, and 
specific aircraft components and sensors. 

NBATS™ and Fusion module: these tools are still 
under development, and will provide feature pre-
processing and post-processing algorithms to enhance 
the performance of diagnostic and prognostic analysis 
on series of feature values for groups or individual 
aircraft. The tools will include a variety tools for: 
 
• Feature data normalization and rescaling to allow for 

more effective analysis of data across fleets, 
operating conditions and flight regimes.  

• Definition and analysis of baseline distributions of 
feature values for different fleets, aircraft, operating 
conditions, flight regimes, etc. 

• Design of optimal detection and prediction thresholds 
to enhance diagnostic/prognostic performance. 

• Fusion at the sensor level, combining vibration 
signals of multiple sensors to decrease the effects of 
random noise and increase visibility of subtle signs 
of a fault (Byington et al., 2008b) 

• Fusion of feature series into meta-features that 
maximize fault class separation, increase fault 
detection confidence, and exhibit improved 
monotonicity and correlation with fault conditions. 

 
MPUGS: MPUGS is a tool for generating/assembling 
mission or usage profiles for Army helicopters. The 
tool can generate a set of loads on components for a 
usage pattern that an analyst specifies. The load sets 
can be representative of known past operation of a 
given aircraft (i.e., cataloguing missions already flown 
and the corresponding operating conditions experienced 
by the asset) or sets of expected/planned missions that 
aircraft are expected to undergo. The definition of 
expected/planned missions can be used to perform 
prognostic analyses and what-if-scenario simulations 
accurately. MPUGS allows an analyst to store load 
profiles into files that are readable and ready for use by 
the prognostic algorithms (PIP tool). 
 
PIP: The Prognostics Improvement Program software 
application is used to perform diagnostic and 
prognostic assessments of the health of a given aircraft 
component based on feature values extracted from 
sensory data and on usage and maintenance information 
as specified by a user. The feature values are obtained 
from the AVDPIP database, which contain feature data 
as generated by the TEDS, IMDx, NBATS and Fusion 
modules. Figure 8 illustrates how PIP displays feature 
values generated by TEDS. The usage information can 
be made available to PIP using the MPUGS tool. 
Known maintenance events can also be specified by the 
user to define maintenance actions that have a potential 
impact in the life of a component that is to be 
analyzed. Figure 9 shows some of these options in one 
of the PIP screen interfaces. 
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Figure 8. Feature value plots in the PIP tool. 
 

 
 

Figure 9. Basic options for setting up an analysis in the PIP tool. 
 

Similarly to the TEDS tool, PIP is intended to 
potentially perform near real-time processing with 
feature data to monitor assets during operation. PIP is 
capable of using two different diagnostic algorithms to 
perform feature value analyses. The results of the two 

algorithms can be fused using different techniques 
according to the user specifications. The diagnostic 
algorithms include an Anomaly Detector (Zhang et al., 
2008) and the traditional threshold-based detection 
process, which is currently in use by the Army. The 
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Anomaly Detection technique compares a predefined 
baseline distribution of feature values (fixed) with a 
distribution of “current” feature values (changing as 
more data is processed). The baseline distribution can 
be defined by the user directly in PIP or determined 
using NBATS. False alarm rate, probability of 
detection, and other diagnostic settings can be 
configured for a given analysis. Two thresholds are 
utilized in diagnostic operations: a warning threshold 
(or “yellow” condition) and an alarm threshold (or 
“red” condition). The traditional thresholding 
diagnostic technique uses predefined warning and 
alarm thresholds (for the “yellow” and “red” 
conditions, respectively), which can be specified by the 
user or potentially generated by an NBATS analysis. 
 
PIP allows for the use of both of usage-based and 
health-based prognostics. The usage-based approach to 
prognostics uses three types of loading profiles to 
define how an asset is used: 
 
• Past usage: These are the missions or load profiles 

that a component is assumed or known to have 
undergone from the start of a prognostic analysis up 
to the “current” processing time. The “current” time 
is continually updated as the analysis progresses and 
more data is processed. This time horizon represents 
loading that the component has already experienced. 

• Future loading (immediate): this mission is used by 
the prognostic algorithms only once, starting at the 
“current” time. This time horizon represents loading 
that the asset will undergo imminently. 

• Future loading (extended): this mission is run for as 
many times as needed until the prognostic simulation 
reaches a critical or failure condition, starting right 
after the immediate future mission. Multiple uses of 
the extended future loading are needed to allow the 
prognostic algorithms to determine the time at which 
a component fails or needs maintenance. 

 

The health-based prognostic algorithm is run by PIP 
only after a fault is detected by the fusion of the 
Anomaly Detection and Traditional Thresholding 
diagnostic algorithms. The health-based prognostic 
extends the trend of a feature progression being 
analyzed by using a degradation progression model and 
predicts times of needed maintenance actions based on 
when the predicted feature trend reaches an “end-of-
life” condition as specified by the user. Some 
configuration parameters of PIP for both of the health-
based and usage-based prognostic algorithms are 
shown in Figure 10. 
 
When PIP performs an analysis, it returns diagnostic 
and prognostic results. For diagnostics, PIP displays a 
series of results as illustrated in Figure 11. The results 
include feature value graphs and normalized PDF plots 
of system conditions, as well as a series of system 
health indicators in the form of traffic lights displaying 
either of a green, yellow or red condition. 
 
The health indicator traffic lights provide the final 
result for the diagnostic and prognostic processes, after 
the fusion of available evidence and following the 
settings specified by the user or analyst. As feature data 
is processed, diagnostic and prognostic results are 
updated. Figure 12 shows an example of fault detection 
by the anomaly detection algorithm. 
 
The prognostics results screen of PIP displays usage-
based and health-based prognosis assessments 
separately, as illustrated in Figure 13. The ‘PDF of 
Time to Maintenance’ histogram shows the normalized 
probability density of the expected time (in hours) at 
which point maintenance action will be required. The 
histogram provides a more detailed view of the 
information conveyed by the intersection of the 
predicted damage progression curves (lower, expected, 
and upper bounds) with the maintenance threshold 
(horizontal red line). 

 

 10 



Annual Conference of the Prognostics and Health Management Society, 2010 

 
 

Figure 10. Prognostic configuration options of the PIP tool. 
 

Figure 11. PIP diagnostics results screen (before fault detection) 
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Figure 12. PIP diagnostics results screen (after fault detection) 

 
Figure 13. PIP prognostics results screen 
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6. PROGNOSTIC VALIDATION 

Because appropriate validation of fault detection 
techniques is an ever important aspect of engine and 
drive train monitoring technologies, (Byington et al., 
2006b) fleet data and seeded fault tests are being used 
to demonstrate and validate the ability of the diagnostic 
enhancement and prognostic software modules to 
detect component faults early and accurately, as well as 
predict the rate of wear or damage progression. Early 
fault detection and failure/wear prediction methods are 
used to determine safe times for performing 
maintenance actions (planning and servicing) on an 
aircraft component. The example platform providing 
validation data is a bearing used by the oil cooling 
subsystem of the H-60 series of helicopters deployed 
by the U.S. Army (Smith et al., 2009). The software 
modules allow for performing a thorough analysis of 
the durability and behavior of failing oil cooler 
bearings, as well as adjusting and comparing the 
performance of a set of diagnostic enhancement and 
prognostic methods for realizing a reliable monitoring 
system. Case studies are being performed to compare 
diagnostic and prognostic results to ground truth data 
sets and known cases of fault in the helicopter fleet. 
Prognostic validation of these cases is planned 
separately for the usage based and health based 
prognostic algorithms. The following approach has 
been proposed for each. 

6.1 Health based prognostics validation 

To evaluate the accuracy of a health based prognostic 
assessment, it is necessary to utilize components that 
have experienced a fault and remain in operation so that 
the fault progresses. This is necessary because the 
health based prognosis algorithm initiates operation 
once a fault is detected in its early stages, and proceeds 
to make predictions for a time when the fault will reach 
a more severe condition of interest with progressed 
damage. Hence, the following procedure can be used 
for validation of the predictions of times to reach the 
progressed damage condition: 
 
1) The health based prognostic algorithm activates 

upon initial detection of a fault by the diagnostic 
system, which corresponds to the crossing of a 
yellow condition threshold. 

2) The health based prognostic algorithm is 
configured to continually predict or estimate the 
operational time it will take for the system to reach 
the red condition threshold (time of required 
maintenance action). 

3) As the system continues to operate, the time 
prognosis is automatically updated by the 
prognosis algorithm, so that the prognosis 

performance curve can be generated, as illustrated 
in Figure 14. 

4) Once the system reaches the red condition, the 
damaged component is retired. The performance of 
the prognostic algorithm can be evaluated on the 
resulting prognosis performance curves: just-in-
time line and expectation line. 

 
Clearly, this approach is applicable to both of seeded 
fault testing and known cases of faults with fleet data. 
 

 
Figure 14. Proposed path to health based prognostics 

validation  

6.2 Usage based prognostics validation 

Because usage based prognosis focuses on assessing 
durability of components with regards to their expected 
design life (even if with the use of life modification 
factors for certain potentially harsh operating 
conditions), to evaluate the accuracy of a usage based 
prognostic assessment it is necessary to utilize 
components that have not experienced an unexpected or 
uncharacterized fault. Furthermore, the components 
must typically remain operational: (1) under known 
conditions so that the component life models can make 
a valid assessment of component degradation for the 
corresponding operating conditions, and (2) until the 
end of the design life of the component is reached. 
Generally speaking, this last requirement may be 
needed because the end of the design life of a 
component might be the only “verifiable” condition or 
event in the internal degradation process (operational 
wear) of a component, unless partial degradation of the 
component can be accurately quantified at any point 
during its operational lifetime. For example, when 
estimating the operational life of a bearing, it is not 
generally possible to reliably measure the amount of 
damage it has accumulated at some point in time as a 
percentage of its total design life. If one intends to 
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compare the durability of a bearing against a calculated 
life (design life estimate), the bearing must necessarily 
operate until it completely consumes its life, or else a 
measurement of the bearing durability will not be 
available for comparison with the calculated durability.  
 
Unfortunately, running a system component until its 
end of life is reached is generally not feasible in 
operational systems and equipment. For example, we 
cannot keep operating a bearing in a helicopter until the 
bearing fails for purposes of validating a usage-based 
bearing-life prognosis algorithm. Nevertheless, this 
run-to-failure scenario may be attained in certain test 
platforms. For example, one may use an appropriate 
test rig that can support run-to-failure tests of bearings. 
 
Hence, under these conditions and for components in 
real world service (as opposed to testing), it is 
generally more difficult to validate the performance of 
a usage based prognostic assessment of a component’s 
end-of-life than the performance of health-based 
prognostics. Nonetheless, using a combination of real 
world service time followed by run-to-failure testing, it 
may be possible to compare durability calculations to 
actual component lengths-of-service. The following 
procedure is thus proposed for validation of usage 
based component life predictions: 
 
1) A component (e.g., a bearing) is retired from 

service in operational (non-test) equipment before 
its design life is consumed (e.g., service time limit 
is reached); there may be no obvious damage or 
wear present in the component. 

2) No unexpected or out-of-design damage or wear is 
detectable in the retired component. Furthermore, 
the approximate loading / stressing / mission / 
usage profile experienced by the component 
throughout its service life is known. 

3) The component is installed in suitable test 
equipment and run until failure (end of design life) 
with a predetermined, known loading profile 
(controlled usage). 

4) Using necessary adjustments, the in-service and in-
test times are added to determine the actual total 
durability/life of the component. 

5) Using necessary adjustments, the “predicted” or 
modeled durability of the component is calculated 
as follows:  
a. Use the in-service loads and the in-service 

time with the component life model to 
calculate the percent of life consumed during 
the in-service period. 

b. Use the in-test loads to calculate the time 
needed to consume the life of the component 
that was not consumed during the in-service 
time. 

c. The addition of this calculated time with the 
in-service time provides the “predicted” 
component durability. 

6) The performance of the usage based prognostic 
algorithm can be evaluated by comparing the 
“predicted” component durability (step 5.c) to the 
actual component life (step 4). 

7. CONCLUSION 

This paper describes an integrated software architecture 
developed to support helicopter drive train component 
diagnostics and prognostics but generally applicable to 
a wide variety of complex systems. Implementation of 
the software into modular components has been part of 
a collaborative program spanning more than 30 months 
and an upside of this effort is the completion of initial 
versions of the various software modules and their 
demonstrated integrated operation, which is an 
important undertaking not often seen in the PHM/CBM 
arena. The effort demonstrates that it is possible to 
build comprehensive tools for enhanced, state-of-the-
art diagnostics and prognostics. However, the effort 
also demonstrates that validation of operation of such 
type of complex developments is an undertaking on its 
own. Originally, the development team envisioned 
utilizing extensive fleet data from the Army fleet of 
helicopters so as to validate the data processing, feature 
analysis, diagnostics and prognostics algorithms 
developed. However, finding sufficient data with well-
described fault cases and cases of fault progression (for 
prognostic validation) was always a challenge. In the 
end, the team had to supplement some of these data 
gaps with seeded fault test data. Even so, validation of 
the software is not complete, because we cannot 
assume that data from a seeded fault test setup is 
sufficiently representative of an aircraft setting. As 
mentioned in the paper, this is a challenge that is 
common in the implementation of CBM systems in 
general. Hence, a key development of the AVDPIP 
program is the validation methodology proposed in the 
latter section of this paper. The AVDPIP program has 
reached its concluding activities, but the team will 
continue to interact with the U.S. Army to support their 
efforts to improve diagnostic performance and 
implement prognostic capabilities for aircraft 
component CBM. Future efforts are likely to make use 
of the validation methodology proposed, and the team 
believes that this methodology may also serve as a 
source of good reference for the implementation and 
validation of diagnostic and prognostic algorithms for a 
variety of engineering systems. 
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