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ABSTRACT 
In this paper, we present a new diagnosis and 
prognosis method using the degree of 
randomness (DoR) measure and Laplace test 
procedure. The abnormal events are detected 
based on changes of randomness of vibration 
signals. The trend of randomness is resulted 
from faulty components such as roller 
bearings. We aim at the early detection of 
semi-failure events through the use of 
Laplace test statistic which measures the rate 
changes of abnormal event occurrence. 
Algorithms are data-driven and capable of 
making fault detections at its early stages. 
They have also been integrated into a real-
time diagnosis system.*

1     INTRODUCTION 
A bearing is one of the most common elements in 
many mechanical systems and its failure can 
sometimes have catastrophic consequences. In general, 
bearing faults can be reflected through rising 
temperature, periodic acoustic emissions, larger torque 
amplitude, higher vibration magnitude, increasing 
stator current, and wear debris accumulation. The 
vibration, stator current (Obaid, 2003), and wear debris 
related approaches (Dempsey, 2004) have dominated 
recent research, as evident by publications in the open 
literature. Among them, the vibration-based techniques 
have attracted more attention because vibration signals 
                                                 
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

mainly reflect the local properties and are not sensitive 
to operation environment changes.  

The dominant failure mode of roller bearings is 
spalling of the races related to the fatigue crack that 
commonly begins below the metal surface and 
eventually produces a small pit or spall as the crack 
propagates to the surface. Whenever a local defect on 
the bearing interacts with its mating element, abrupt 
changes in the contact stresses generate vibration that 
can sometimes be used to monitor the health status of 
the bearings. Although spalling-related frequencies can 
be estimated, they are usually buried in noise until 
damage becomes appreciable and system fault 
imminent (Roemer, 2007). 

Many diagnosis methods have been developed for 
monitoring bearing damage in rotating machinery. For 
example, the characteristic frequencies of bearing 
damage are used to monitor and detect certain 
frequency components emanating from vibration 
(Ilonen, 2005). The methods used to analyze these 
signals include shock pulse methods (SPM) (Morando, 
1996), wavelet (Tse, 2001), intrinsic mode functions 
(IMF) (Yang, 2007), independent component analysis 
(ICA) (Fan 2007), high order statistics (Antoni, 2006), 
and amplitude modulation (Stack, 2004). Although 
these approaches deal with the bearing fault diagnosis 
in different directions, the core problems that they face 
are quite similar. The local fault makes the bearings 
produce the vibrations that correspond to a linear 
modulation signal, which usually superimposes on 
other vibration sources in the rotating machinery.  

For diagnosis and prognosis of bearing faults, one 
key issue is how to make early fault detection. 
Common methods include monitoring the vibration 
magnitude and related kurtosis estimates. However, 
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these methods are often ineffective for the purpose of 
detecting system faults in their early stages. Because of 
the complexity of physics underlying the bearing 
failure progression, it is often difficult, if not 
impossible, to develop viable physics-based models for 
bearing diagnosis and prognosis. 

In our previous work (Ling et. al, 2009), we 
reported the development of a new approach for the 
diagnosis of ball bearing faults using Hidden Markov 
Model with degree of randomness (DoR) used as the 
features. We have demonstrated that the measure of 
degree of randomness is sensitive in detecting 
abnormal signals embedded in normal signals. In this 
paper, we present the latest algorithm improvement of 
DoR and Laplace test. We test the DoR trend and 
detect the fault events through its changes. We aim at 
the detection of semi-failures using Laplace test 
statistic. Test results using roller bearing data 
downloaded from NASA Prognostic Data Repository 
have shown that, with ground truth, our algorithms can 
detect the roller bearing faults about 10 days in 
advance of occurrence of failure. 

This paper is organized as follows: In Section 2, 
we present a new method for automated window size 
selection. Degree of randomness and its analysis is 
given in Section 3. Laplace test is introduced in Section 
4. Finally, in Section 5, test results of roller bearing 
data are given. 
 
2     AUTOMATED WINDOW SIZE SELECTION 

Data window size is important for signal processing. 
Features often extracted from the data segment 
windowed out with fixed or variable sizes. There is 
currently no systematic way to automatically estimate 
the data window size. In this paper, we present a data-
driven approach to estimate the window size. 

If the window size is selected appropriately, the 
data segment should possess enough information for 
signal processing such as feature extraction. If the data 
segment mostly contains random signals, it is generally 
impossible to extract meaningful features. Kolmogorov 
Complexity (Watanabe, 1992) can be used to measure 
the complexity of the data to be processed. 

The Kolmogorov Complexity (KC) is defined as 
the minimum number of bits into which a string can be 
compressed without losing information. This is defined 
with respect to a fixed, but universal decompression 
scheme, given by a universal Turing machine. In other 
words, Kolmogorov Complexity can be measured by 
the length of the shortest program for a universal 
Turing machine that correctly reproduces the observed 
string. The program can be as simple as copy and 
paste.  

Definition of Kolmogorov Complexity: For 
every language L, the Kolmogorov complexity of the 
bit string x with respect to L is defined as 

)(min)(
)(:

plxC
xpLp =

=               (1) 

where p is a program represented as a bit string, L(p) is 
the output of the program with respect to the language 
L, and l(p) is the length of the program, or more 
precisely, the point at which the execution halts. 

In his work on algorithm complexity, Kolmogorov 
intended to formalize the notion of a random sequence 
(string). In theory, if a string x is an element of a 
“simple” finite set A, the Kolmogorov Complexity, 
C(x), cannot be much greater than the binary logarithm 
log|A| , where |A| is the size of the finite set. 

There are basically two different approaches of 
Kolmogorov Complexity (KC) for window size 
estimation: 

Approach 1 – Fix the window size of data, and 
calculate the Kolmogorov Complexity over time. 
If KC converges to a constant, one concludes that 
the data shows certain deterministic patterns over 
time. 
Approach 2 – Get sets of data with varying 
window sizes and subsequently calculate KC 
associated with each set. If KC converges to a 
constant as the window size increases, one 
concludes that there is a smallest window size 
which provides enough discrimination power. 

For automated window size estimation for our bearing 
diagnosis application, we have chosen the second 
approach. 

The original KC is known to be computationally 
intractable. Instead the Lempel-Ziv measure (Lempel, 
1976) can be used to approximate KC . For a string of 
length n, it has been shown by Lempel and Ziv that, for 
almost all x ∈ [0, 1], the complexity C(x) tends to the 
same value, which can be expressed as 

n
nxC

n
2log
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              (2) 

The philosophical implication of Eq. (2) is that almost 
all strings that correspond to a binary representation of 
a number x ∈ [0, 1] should be random and have the 
maximum complexity, n/log2n. If C(x) is large, one 
may conclude that the string is more random. However, 
if C(x) is small, the corresponding string is less 
random, or the string exhibits some “deterministic” 
patterns.  

We have developed this automated window size 
estimation algorithm using various types of data 
including those of ball bearing vibration, roller bearing 
vibration, battery voltage, and acoustic emission of air 
pumps. Figure 1 shows the vibration data of a roller 
bearing. 
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Figure 1: Roller bearing vibration data 
 
We selected a number of data points from this data set 
and form a sequence of data segments with increasing 
window sizes. Kolmogorov Complexity is estimated 
for each of the data segments. Figure 2 shows a curve 
of KC values associated with data segments with 
increasing lengths.  
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: A curve of KC values v.s. window size 
 
From Figure 2, it can be seen that KC-curve 

decreases sharply when data window size is small and 
gradually becomes flat at the window size about 
12,000. This implies that KC approaches to a relatively 
constant once the window size is larger than 12,000. 
This also implies that data in the window with size of 
12,000 or larger are less random, or showing certain 
patterns. The corresponding smallest window size can 
be selected as the window size for subsequent signal 
processing. The raw data were used in the estimation of 
window sizes. 
 
3     DEGREE OF RANDOMNESS 

We hypothesize that the vibration signal associated 
with faulty bearings is primarily superimposed of two 
independent vibration signals –one from the 
surrounding environment such as bearing platform and 
the other from the faulty bearings. This concept is 
illustrated in Figure 3. 
 

 
 
 
 
 
 
 

Figure 3: Linear combination of random signals associated 
with surrounding environment and faulty components 

 
Let X and Y be two statistically independent 

random variables. For example, in a bearing system, X 
can be the vibration signal associated with the platform 
such as bearing housing, and Y the vibration signal 
from faulty bearings. The properties of sum of two 
random variables (discrete or continuous) have been 
studied over the past several decades. Suppose the 
random variables X and Y have density functions fX(x) 
and fY(y), respectively. It is known that the sum Z = X + 
Y is also a random variable with density function fZ(z) 
as the convolution of fX and fY given as 
                 (3) dyyfyzfzffzf YXYXZ )()())(()( ∫

∞

∞−

−=∗=

Although the probability density function of a 
random variable can be used to derive many useful 
statistical properties, it is not effective in estimating the 
degree of randomness (DoR) of random variables. In 
fact, the variance derived from a density function 
cannot be used to infer the degree of randomness. For 
example, suppose X is a uniformly distributed variable 
over an interval of [-1 1]. It can be shown that var(X) = 
1/3. One can easily generate a random variable with 
variance larger than 1/3. However, it is known that the 
uniformly distributed variables have the largest degree 
of randomness, which implies that the variance is not 
an effective measure of randomness.  

We are more interested in the measure of 
randomness of a random variable. Denote DoR of X 
and Y as RX and RY. Specifically, we want to estimate 
DoR of the new random variable, Z = X + Y. In other 
words, if we define DoR of z as RZ, we want to know 
whether or not the following inequality holds 
        RZ ≥ max(RX, RY)                         (4) 
If Eq. (4) is satisfied, we conclude that the random 
variable X + Y is more random than X or Y. 

The majorization technique has been used to 
define the randomness of a random variable (Hickey, 
1983). Majorization is a partial ordering on vectors 
which determines the degree of similarity between the 
vector elements. Let Θ denote the class of all discrete 
probability vectors. For P = (p1, p2, …) and Q = (q1, q2, 
…) in Θ, assume that all elements of P and Q are 
arranged in a non-increasing order. We say that P is 
majorized by Q (written as P  Q) if p
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for all r > 0. We now state the following definition of 
randomness (Hickey, 1983): 

Definition of Randomness: For P, Q ∈ Θ we say 
that there is at least as much randomness in P as in Q if 
P  Q. If P  Q and the elements of P cannot be 
obtained by permuting those of Q we say that P has 
greater randomness than Q. 

p p

From this definition, it follows that a degenerate 
distribution (i.e., one for which all the probability is 
concentrated at a single outcome) is less random than 
every other non-degenerate distribution. The uniform 
distribution (1/n, …, 1/n) is more random than every 
other distribution having at most n positive 
probabilities. The best-known measure satisfying the 
definition above is the Shannon entropy given as 

∑
=

−=
K

i
ii ppH

1

ln              (6) 

where H is a real-valued function and K is the number 
of possible categories. Therefore, Shannon entropy can 
be used to measure the randomness of a random 
variable. The DoR of X + Y can be summarized by the 
following theorem: 

Theorem (Hickey, 1983): Let X and Y be 
independent discrete random variables. The 
distribution of X + Y is more random than that of X or Y 
unless one of these distributions, say that of Y, is 
degenerate in which case X + Y and X are equally 
random. 

This theorem implies that, in general, the random 
variable X + Y is more random than either X or Y. 
Therefore, by monitoring the randomness of vibration 
signals, we can detect the existence of a new 
independent random variable associated with the faulty 
components. There are some other randomness 
measures. For example, based on Random Matrix 
Theory (RMT), the largest eigenvalue of a covariance 
matrix can be used to measure DoR of a random 
variable (Ling et. al, 2009).  

We have developed the algorithms for the 
estimation of DoR using Shannon entropy. As an 
example, Figure 4 shows the acoustic data taken from 
an air pump. In the experiment, the air pump was 
running under normal condition with both air outlets 
open. The sound produced by the air pump was 
recorded. The fault was introduced by blocking one air 
outlet. As the internal air pressure builds up, the air 
pump produces a different sound which was recorded 
as well. The faulty condition was removed by opening 
the air outlet again and making the air pump operate 
under normal condition again. From the acoustic wave 
form shown in Fig. 4, it can be observed that the 
magnitude of acoustic wave signal has slightly changed 
over the time period when the fault was introduced. 

 
 
 
 
 
 
 

Figure 4: Air pump acoustic emission with faults introduced 
 

We have calculated the degree of randomness for 
the acoustic data shown in Figure 4. Its curve over time 
is shown in Figure 5. It is clear that DoR has 
successfully captured the faults introduced during the 
experiment. The increase of DoR implies that the 
acoustic signal becomes more random when fault was 
introduced, which is expected. Although the magnitude 
change in Fig. 4 is not significant, DoR clearly shows a 
trend which can be used for further analysis. 
 
 
 

 
 
 
 
 

Figure 5: DoR curve calculated from data shown in Fig. 4 
 
We must point out that DoR can increase or 

decrease. Its trend depends on the underlying physical 
system one deals with. For example, for some battery 
data, we have found that DoR associated with the 
charging voltage actually decreases as the charging 
process goes on. Therefore, faults can be inferred from 
DoR curve through its change, either increasing or 
decreasing. If DoR trend is relatively flat, one can 
conclude that the system being monitored is in normal 
conditions, i.e., no faults exist. 

 
4     LAPLACE TEST STATISTIC 

Based on the test results using a large amount of test 
data, we hypothesize that, when the object being 
monitored is in healthy state, its DoR is relatively 
constant. As its faulty conditions progress, the DoR 
gradually increases or decreases. When it is in the 
failure state, the DoR is becomes relatively constant 
again. In other words, when the object being monitored 
is failing or in semi-failure stages, its DoR will show 
certain trend (increasing or decreasing). By testing this 
trend, we can determine whether or not the health of 
this object is deteriorating or failing.  

There are many different methods which can be 
used to detect whether or not certain time series show 
trends. The easiest approach is to test the change of 
slopes through regression analysis. More sophisticated 
approach is to use statistical nonparametric hypothesis 
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test procedures. Although it is not straightforward to 
determine which approach is best, the statistical 
hypothesis test approach is preferred if the data are 
noisier.  

Once DoR trend is confirmed in the data, an 
abnormal event or fault is detected. A binary value can 
be assigned to the detected event, resulting a pulse 
train. Figure 6 shows an example of detected events 
based on DoR trend changes. The dense pulses are 
resulted from DoR changes over a longer period of 
time. 

 
 
 
 
 
 
 

Figure 6: Pulse train of detected events 
 
Although abnormal events can be detected through 

the use of DoR change test, it is difficult to determine 
when the failure will actually occur. For mechanical 
systems, the complete failure occurs over time and 
many semi-failure events can be captured long before 
this complete failure occurs. Therefore, it is important 
to detect these semi-failure events to provide the 
capability of early failure detection. From abnormal 
events detected from DoR changes (see Fig. 6), it is not 
easy to determine the semi-failure events. Laplace test 
statistic can be used for this purpose. 

The Laplace test statistic has been used for 
reliability analysis (Ascher, 1992). It can be used to 
detect the rate changes of certain event occurrence 
from a relatively constant to an increasing trend. Here 
we apply Laplace test to the events detected from DoR 
trend changes. Suppose we have detected m abnormal 
events. Denote the first m-1 arrival time instants as T1, 
T2, …, Tm-1. The Laplace test statistic is defined as  

)1(12
1

21
1 1

1

−

−
−=
∑
−

=

m
T

TT
mU

m

m

i

m
i                            (7) 

It can be shown that Laplace test statistic is 
Gaussian distributed. Figure 7 shows an example of 
this distribution from the data shown in Fig. 6. The 
normality characteristic of Laplace test statistic makes 
it possible to make the semi-failure detections under 
certain confidence level such as 95%.  

 
5     TEST RESULTS 

We have tested the algorithms described in this paper 
using the roller bearing data downloaded from NASA 
Prognostic Data Repository available to general public  

 
 
 
 
 
 
 
 
 

Figure 7: Normal distribution of Laplace test statistic 
 
(http://ti.arc.nasa.gov/project/prognostic-data-repository/). 
The data description can be found in (Qiu, 2006).  

The roller bearing data used for the test were 
collected from a lab system with its setup shown in 
Figure 8. Rexnord ZA-2115 double roller bearings 
were used in the experimental system. The bearings 
have 16 rollers, a pitch diameter of 2.815’, roller 
diameter of 0.331’, and a tapered contact angle of 
15.17°. There are four bearings in the system. For each 
bearing, there are two accelerometers, one in x-
direction and the other y-direction. 

 
 
 
 
 
 
 
 
 
 
 

Figure 8: Experimental system setup 
 
There are a total three datasets named as Test1, 

Test2 and Test3. In this paper, we only report the test 
results using the first dataset (Test1) which has the 
measurement data from four sensors mounted on four 
different bearing housings shown in Fig. 8.   

During the experiment over 35 days, the bearing 
#3 developed an inner race defect and bearing #4 had a 
roller element defect and outer race defect. These 
defects were occurred during the 30th day and are 
shown in Figure 9. 
 
 
 
 
 
 
 

Figure 9: Defects in bearings #3 (left) and #4  
    (right) given in (Qiu, 2006) 
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Figure 10 shows the vibration signals of sensor #4 
in x-direction (top) and y-direction (bottom). This 
sensor is mounted on the housing of #4 bearing shown 
in Fig. 8. It can be observed that there are large 
variations in the magnitude of vibration data, which 
indicates that bearing faults occurred.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 10: Vibration data of sensor #4 in x-
direction (top) and y-direction (bottom) 

 
These bearing faults can be easily detected using 

kurtosis as shown in Figure 11 which is also given in 
(Qiu, 2006). The large kurtosis provides a clear 
indication that bearing #4 has developed some faults.  

We aimed at the early detection of bearing #4 
faults. Figure 12 shows the DoR trend and semi-failure 
indicators using the data of sensor #4 in x-direction. 
The results are obtained from the algorithms described 
in this paper. It can be seen that DoR developed an 
increasing trend around the 20th day, which is also 
detected by Laplace test statistic.  

 
 

 
 
 
 
 
 
 

 
 

Figure 11: Kurtosis of sensor #4 in x-direction. 
 
The binary indicators shown in Fig. 12 are 

generated from the Laplace test statistic at 95% 
confidence level. Therefore, with the ground truth, we 
are able to detect the “complete” failure about 10 days 
earlier. From the vibration data, it is send that the 
vibration signals have not shown any significant 
increases in the 20th day. From Fig. 12, it can also be 

seen that there are detections in the beginning of the 
experiment. We believe the data in that time period 
were abnormal, which can also be observed from the 
vibration data (smaller magnitude).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Early detection using sensor #4 in x-direction 
 

We have also tested the data of sensor #4 in y-
direction. We have found that the y-direction vibration 
data can also be used for the early detection of failures. 
The test results of sensor #4 in y-direction are given in 
Figure 13. One interesting observation is that the 
results using y-direction sensor data only predicts the 
semi-failure about 6 days earlier, instead of 10 days 
prediction using x-direction data. Another difference is 
that there is less number of detections in the beginning 
of the data. This finding indicates that the y-direction 
data of sensor #4 is less sensitive for the faults 
developed in the bearing #4, which makes sense in 
mechanics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Early detection using sensor #4 in y-direction 
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The test results shown here clearly indicate that 
our DoR-based detection methods can be used for the 
diagnosis and prognosis of roller bearing faults. We are 
currently in the process of further improving the 
algorithm performance through the test of more 
datasets.  
 
6     CONCLUSIONS 

In this paper, we present a new diagnosis and prognosis 
method using degree of randomness (DoR) measure 
and Laplace test procedure. The abnormal events are 
detected through the measure of change of randomness 
of vibration signals. The changes of randomness are 
resulted from the faulty components such as roller 
bearings. We aim at the early detection of semi-failure 
events through the use of Laplace test statistic which 
measures the rate changes of the abnormal event 
occurrence. Test results using roller bearing data 
downloaded from NASA Prognostic Data Repository 
have shown that our algorithms can detect the roller 
bearing faults 10 days in advance of the occurrence of 
failure.  
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