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ABSTRACT 

One of the most important issues when dealing 
with PHM developments is the availability of 
adequate sensors to provide measures that 
indicate the health state of a component or 
system. Installation of additional sensors for 
such purpose usually implies increments in 
costs and weight and reduction of reliability 
and availability. Sometimes equivalent 
information can be inferred from other 
available sources, allowing the design of PHM 
solutions with no need for additional sensors. 
The power consumed by a set of components 
may provide information concerning their 
health states. These components may be all fed 
by the same power supply. This paper proposes 
a novel application of blind source separation 
techniques to infer the power consumed by the 
components using only the measurement of the 
power supply output. The usefulness of such 
techniques is demonstrated in a real 
application.

*†
 

1. INTRODUCTION 

Prognostics and Health Management (PHM) has 
been rapidly evolving in the latest years and many 
different applications of this technology are being 
pursued for industrial and vehicle components and 
systems. Many benefits can potentially be provided by 
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such kind of technologies, such as the reduction of 
maintenance costs and increase in safety. On the other 
hand, the application of advanced PHM techniques to 
real systems still faces many challenges. The 
availability of adequate measurements of the variables 
of interest is maybe the most difficult challenge that 
must be overcome on the development of real world 
PHM solutions. Usually, this is not a technical 
challenge, since dedicated sensors could be added to 
measure such variables. However, additional sensors 
may represent additional cost, weight, and even reduced 
system reliability and availability, since the additional 
sensor failures may increase the overall system failure 
rate. All these factors may lead to an unfavorable cost-
benefit analysis for PHM solutions that require 
dedicated sensors. Therefore, in order to provide 
affordable PHM solutions, it is interesting to take 
advantage of the already available measurements as 
much as possible. 

The work described in this paper is aimed at 
improving the use of available measurements by 
extracting useful PHM information that would 
otherwise require dedicated sensors to be acquired. This 
is accomplished by the use of blind source separation 
(BSS) techniques. These signal processing techniques 
have the goal of recovering unobserved signals, also 
called sources, from the observation of a limited 
number of different mixtures of them. This is 
accomplished with little or no a priori knowledge about 
the original signals, therefore the use of the term 
“blind”. Independent component analysis (ICA) is 
probably the most popular BSS technique. It assumes 
that the original signals are statistically independent 
from each other and the measured mixed signals are 
linear combinations of the original ones. A brief 
explanation of the method is provided in the following 
sections. Hyvärinen (1999a) provides a complete 
survey on the ICA technique. 
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Many applications of ICA for BSS can be found on 
the literature. Hyvärinen and Oja (2000) present 
practical applications in analysis of medical and 
financial data, image processing and 
telecommunications. Examples of applications of such 
techniques for health monitoring are also available in 
the literature. Most previous works in this area are 
related to the application of ICA and other BSS 
techniques for processing vibration and acoustic signals 
with the purposes of diagnostics and condition 
monitoring of rotating machines (Gelle et al., 2003; Li 
and Qu, 2002; Chen et al., 2003; Ma and Hao, 2004; 
Tian et al., 2003). Other applications of ICA related to 
health monitoring which use this technique with the 
diverse purpose of data dimension reduction are also 
found in the literature. Schimert (2008) uses principal 
component analysis (PCA) and ICA for data dimension 
reduction with the purpose of monitoring aircraft sub-
systems. Banard and Aldrich (2003) describe the 
application of this methodology for monitoring internal 
combustion engines. 

The present work proposes a novel application of 
ICA which may be useful when the signals of interest 
for PHM influence a set of different measurements and 
each of these measurements are affected by 
disturbances in an unknown deterministic manner. This 
is illustrated for the monitoring of electro-mechanical 
systems using electrical current measurements. ICA is 
used for inferring the electrical loads consumed by 
aircraft flaps and slats systems using only the 
measurements of the total electrical loads of the aircraft 
electrical generators. The architecture of such systems 
usually comprises electro-mechanical actuation with 
closed loop position and speed control. Since they are 
closed loop electro-mechanical systems, the power 
consumed is a good indicator of the health of the 
system for certain failure modes. This is valid, for 
instance, for monitoring failure modes related to 
mechanical performance degradation that may result in 
friction increase and surface jam. 

The next section describes the independent 
component analysis theory used for the development of 
this work. 

2. INDEPENDENT COMPONENT ANALYSIS 

Blind signal separation, also known as blind source 
separation, is the separation of a set of signals from a 
set of mixed signals, without the aid of information (or 
with very little information) about the source signals or 
the mixing process. 

There are different methods of blind signal 
separation, but the one that is most commonly found in 
the literature is independent component analysis. ICA 
is a statistical technique whose classical model 
formulation can be expressed as  

                                   x = A s (1) 

where x = [x1 x2 ... xn]
T
 is a matrix containing the 

vectors of observed random variables xi. The matrix 
containing the vectors of the independent latent 
variables si is denoted by s = [s1 s2 ... sn]

T
 and A is an 

unknown constant matrix, called the mixing matrix. 

The main purpose of ICA is to learn the 
decomposition presented in Eq. (1), that is, estimate 
both s and A based only on the observed values x. It is 
worth noting that covariance-based decomposition 
techniques, such as PCA could be used for such a 
purpose (Jolliffe, 1986). However, those techniques 
yield latent variables associated to directions of 
maximum variance in the data space, which may not 
necessarily be related to the actual sources under 
consideration. The starting point for ICA is the 
assumption that the sources are statistically 
independent. The importance of this assumption is 
explained by the central limit theorem.  

The central limit theorem, a classical result in 
probability theory, tells that the distribution of a sum of 
independent random variables tends toward a gaussian 
distribution, under certain conditions. Thus, a sum of 
independent random variables usually presents a 
distribution that is closer to gaussian than any of the 
original random variables (Hyvärinen and Oja, 2000). 

As a consequence of the theorem, assuming that the 
latent variables are not gaussian, the problem of 
estimating A and s is turned into a problem of 
minimizing the similarity between a gaussian 
distribution and the distribution resulted from the 
combination of the elements of x.  

Many quantitative measures of nongaussianity were 
proposed such as kurtosis, negentropy, negentropy 
approximations and others (Hyvärinen and Oja, 2000). 
All of them have particular advantages and 
disadvantages that may be analyzed according to a 
particular application. The present work employs the 
FastICA algorithm (Hyvärinen, 1999b), which is based 
on a measure of nongaussianity associated to 
negentropy. 

3. SYSTEM UNDER CONSIDERATION 

The present work has been developed using real 
data measured from aircraft systems. The following 
sub-sections describe the considered systems, as well as 
the motivation for using ICA. 

3.1 Flaps and Slats Systems 

Flaps and slats are control surfaces used for fixed 
wing aircraft to provide additional lift during takeoff 
and landing. Flaps are located on the trailing edge and 
slats are located on the leading edge of the wings. 
These surfaces usually present few possible 
predetermined positions which are associated with 
takeoff and landing configurations for different 
conditions. The transition between each position is 
commanded by the flight crew. Surface position and 
speed are usually controlled in closed loop to guarantee 
that the extension and retraction of flaps and slats will 
follow a predefined pattern. The controller also 
comprises logics responsible for coordinating the 
surfaces motion. One of these logics guarantees that the 
slats finish their extension before the flaps start 
extending. The contrary is valid for surface retraction. 

Flaps and slats systems architectures considered 
here provide electro-mechanical actuation of the 
surfaces. Figure 1 presents a schematic of part of an 
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illustrative architecture for a flap system. The 
pilot/copilot moves the flap handle to one of its discrete 
positions. This handle provides the indication to the 
electronic controller, which in turn commands system 
electric motors and verifies position and speed 
feedback signals from system sensors. The torque is 
transmitted from the motors to the actuators through a 
gearbox and mechanical linkages (usually torque tubes 
or flexible shafts). Actuators are purely mechanical 
components which transform the rotary movement 
from the mechanical linkages to a linear movement of 
extension or retraction of the surfaces. 

 
 
 
 
 

 
 
 
 
 
 
Figure 1. Sample flap system architecture. 
 
One of the most relevant failure modes of flaps and 

slats electro-mechanical systems is surface jamming. 
This jamming may present operational and safety 
adverse consequences. Various failure mechanisms 
may lead to a surface jam. Some failure mechanisms 
may be abrupt such as water freezing, but many times 
this failure mode is a consequence of gradual 
degradation of the mechanical components, which 
leads to a corresponding increment of total system 
friction. Monitoring this gradual degradation and 
performing diagnostics and prognostics can be 
accomplished through measurements of the power 
delivered to the motors. This occurs because the closed 

loop controller tries to compensate the friction 
increment by a corresponding increase in the command 
current. Leão et al. (2009) describes a methodology for 
monitoring this failure mode using current 
measurements. These measurements can also provide 
information for performing PHM for other failure 
modes, such as those related to the health of the 
electrical components of the system. 

Ideally, the current measurements would be 
obtained directly from the controller or using a current 
sensor directly at the power input of each motor. 
However, this information is usually not available and 
it is typically not cost-effective adding this kind of 
measurements to existent and even new aircraft 
designs. Therefore, in order to monitor the condition of 
such systems, it is necessary to consider alternative 
means of gathering this information. 

3.2 Electrical Power Supply 

Figure 2 presents a simplified schematic of a 
fictitious aircraft electrical architecture. Since a high 
reliability must be attained in order to guarantee aircraft 
safety, redundancy is a recurrent characteristic of such 
systems. This fictitious architecture comprises two 
three phase electrical generators (EG1 and EG2) which 
are mechanically coupled to the aircraft engines to 
produce the electrical energy consumed by the aircraft. 
Each generator feeds one or more electrical buses (EB1, 
EB2 and EB3). All the aircraft loads (e.g. L1 and Lz) 
are fed through these buses. The loads are distributed 
among the buses in order to provide adequate reliability 
for each electrical load according to its criticality for 
the airworthiness. 

The flaps and slats architectures considered 
comprise two electrical motors for each system (two for 
the flaps and two for the slats), for redundancy 
purposes. Both motors are simultaneously actuated 
(active-active configuration) to provide the surfaces 
extension or retraction. Each motor is independently 
connected to an electrical bus. For the considered 
architecture, one slat motor is connected to a bus fed by 
EG1 (e.g. L1) and the other three motors (both flap 
motors and the other slat motor) are connected to buses 
fed by EG2 (e.g. L2, L3 and L4). 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Sample electrical system architecture. 
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Figure 3. Sample recorded data window: generators currents and surfaces positions. 
 

 
Therefore, the information of the electrical loads 
consumed by the motors should be contained in the 
measurements of the electrical power delivered by the 
generators. The generators currents and voltages are 
readily available in this architecture and can be 
recorded for monitoring purposes. However, all the 
other electrical loads of the aircraft are also fed by the 
same generators and it is usually not straightforward to 
isolate the influence of a load of interest in the total 
electrical power produced by the generators. The next 
section presents how ICA was used to solve this issue. 

4. DEVELOPMENT AND RESULTS 

Flaps and slats are usually actuated following a well 
defined operational procedure during flight. Before 
approach, these surfaces are fully retracted. During the 
approach procedure, they are subsequently extended in 
discrete steps until reaching the desired landing 
configuration. Therefore, it is not difficult to define a 
standard data window to be used for comparing 
different flights in order to assess the evolution of the 
degradation of such systems. The analysis described 
herein was based on real data windows with 40 seconds 
length and 10Hz sample rate acquired from aircraft 
during flight. The voltages and currents for each of the 
three phases for both generators were recorded on each 
data window together with other useful variables. A set 
of data windows was recorded (one per flight) triggered 
by the first command for flaps and slats extension 
during approach. Figure 3 presents the plots of 
generators currents and surfaces positions from one of 
the recorded data windows. Figure 3a and 3b present 
the RMS values of the current measurements for each 

of the generators phases. Figure 3c presents the 
corresponding slat and flap surfaces positions for 
reference. It can be noticed that it is not straightforward 
to relate the raw measurements of the currents to the 
surfaces actuation.  

One may assume that the three currents are affected 
by the same loads in different ways, i.e. there is a 
certain level of unbalance among the three phases. As a 
consequence, the three current signals are different 
mixings of the same signals generated by the loads fed 
by the generator. Moreover, the load profiles may be 
assumed to be independent and non-gaussian. Such an 
assumption is reasonable, as the activation of loads 
occurs independently and in a deterministic pattern for 
each load. Therefore, the currents can be processed 
using ICA in order to separate the different sources of 
loads that were being fed by the generators. For this 
purpose, the FastICA algorithm described in Hyvärinen 
(1999b) was adopted. This algorithm has already been 
successfully used for various applications such as those 
described in Hyvärinen and Oja (2000) and the 
condition monitoring of rotating machines (Li and Qu, 
2002; Ma and Hao, 2004). 

One hypothesis that must be fulfilled in order for 
the BSS techniques to be applicable is that the number 
of independent sources must be lower than or equal to 
the number of measurements. Since in this case the 
measurements of three phases in electrical generators 
are being used, no more than three independent sources 
can be identified. Therefore, it is important to choose 
data windows that have a good chance of providing 
adequate information. If data windows that presents 
more independent sources than measurements are used, 
the separation may yield inadequate results. 

a) 

b) 

c) 
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In order to identify what each independent 
component (IC) resulting from ICA represents, i.e. to 
differentiate useful information from disturbances, it is 
necessary to use some domain specific knowledge. The 
technique is classified as a BSS in terms that the 
original signals and the way they are mixed are not 
known a priori. However, one must know what to 
expect when processing the measurements. This is not 
a limitation of this specific application, but rather a 
characteristic of the BSS methodologies. Depending on 
the application, post-processing techniques may be 
required to automatically distinguish the ICs associated 
to the disturbance from those that represent useful 
information. Preliminary analysis of the collected set of 
measurements for the specific application considered in 
this work showed that the main disturbance affecting 
the current profile was a square wave signal generated 
by a switching load. This square wave varied in 
frequency, amplitude and duty cycle for each different 
data window. Therefore, for this particular problem, the 
main purpose of the application of the ICA was to 
remove this square wave disturbance in order to allow 
subsequent analysis of flaps and slats systems based on 
the generator current signals.  

The data processing sequence adopted in this work 
comprises four steps, as shown in Figure 4. The first 
step is to obtain the ICs. They are calculated using the 
currents from the three phases of each generator as 
inputs for the ICA algorithm. Figure 5 shows the results 
obtained after the ICA processing for the generator 2 
current signals presented in Figure 3. The square wave 
load can be visually associated to IC1 and slat and flap 
loads to IC2. 

Steps 2 and 3 in Figure 4 are aimed at identifying 
the IC corresponding to the disturbance signal in an 
automatic manner, since the order of the ICs is random 
for each time the algorithm is processed.  This 
automatic identification cannot make use of any 
frequency, amplitude or duty cycle information for the 
square wave, since those characteristics are different 
for each data set. 

In step 2, each of the three ICs is processed using 
the k-means clustering algorithm (Duda et al., 2001) in 
order to find two centroids. The main reason for that is 
that a square wave presents two well separated groups 
of samples, as illustrated in Figure 6. 

In step 3, the two-sample z-test (Vachtsevanos et 
al., 2006) is used to quantify the distance between the 
two sets of data points. Based on the fact that the 
square wave samples values should be more separated 
than the other ICs samples, the two-sample z-test is 
expected to yield a higher value for the square wave IC 
than for the other ones. The two-sample z-test is 
defined in Eq. (2): 
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where m1 and m2 are the means of the two sets, s1 and 
s2 are the standard deviations and n1 and n2 are the 

number of element in each set. A greater value of z 
indicates a greater separation between the two groups. 
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Figure 4. Data processing steps. 
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After the identification of the square wave, it is 
possible to reconstruct the original signal just by 
eliminating the IC corresponding to the undesired 
signal and performing the reconstruction of the original 
signals (step 4 in Figure 4). The reconstruction may be 
performed according to Eq. (1) through the inversion of 
the A matrix. Figure 7 presents the final results after 
automatic identification and extraction of the square 
wave and reconstruction of the original signals. Figure 
7a and 7b present the resulting phases of the generators 
after reconstruction of the signal. These results were 
obtained from the same signals of Figure 3. Figure 7c 
presents the corresponding slat and flap surfaces 

positions for reference. By visual inspection of these 
figures it is straightforward to associate surface 
positions to the currents in the generators. Recalling 
that generator 1 only provides power to the slats and 
generator 2 provides power to both surfaces, it can be 
noticed that current values increase accordingly to 
surface movements. This power consumption 
information is useful for monitoring the health of such 
systems. For instance, it could provide early indications 
concerning the surface jam failure mode described 
earlier. For a complete description of a method for 
monitoring the health of this kind of system using the 
power input measurements, refer to Leão et al. (2009).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7. Currents reconstructed after removal of disturbances 
 

5. CONCLUSION 

This work presented a novel application of blind 
source separation techniques based on ICA to extract 
useful PHM information from measured signals. This 
methodology may be of value when the signals of 
interest for PHM influence a set of different 
measurements and each of these measurements are 
affected by disturbances in a deterministic (albeit 
unknown) manner. The use of ICA could then be a 
cost-effective alternative to the deployment of 
additional sensors. The method was tested using real 
data extracted from electro-mechanical flight control 
systems. More specifically, the raw data consisted of 
current measurements, which exhibited significant load 
disturbances with periodic switching behavior. Such 
disturbances were successfully removed by the 
proposed ICA-based methodology, thus facilitating the 
health monitoring of the systems from their input 
current profile. Such a monitoring may be useful to 
guide condition-based maintenance actions and prevent 
jamming problems caused by friction increase in the 
mechanical parts of the system. Although the 

methodology was illustrated and validated for the 
removal of a square wave disturbance in the signal, 
similar ICA-based methodologies could be used to 
extract other kinds of PHM useful information from 
power supply loads measurements or other kinds of 
measurements resulting from the mixing of different 
sources.  
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