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ABSTRACT 

We analyze potential causes of anomalies, as they vary 
from incipient system failures to malfunctioning 
sensors, operating the asset in unusual regions, using 
inappropriate anomaly detection models, etc.  For each 
cause, we follow the PHM cycle, creating an anomaly 
resolution action.  Within this systematic approach, we 
focus on one of the most neglected causes for 
anomalies: the inadequate accuracy of anomaly 
detection models.  We describe a hybrid approach 
based on a fuzzy supervisory system and an ensemble 
of locally trained auto associative neural networks 
(AANN’s).  The supervisory system will manage the 
transition among local AANN’s during operating 
regime changes. This approach is illustrated with 
experiments with a simulated aircraft engine.  

1. INTRODUCTION 

The main goal of Prognostics & Health Management 

(PHM) for assets such as locomotives, medical 

scanners, and aircraft engines is to maintain these 

assets’ operational performance over time, improving 

their utilization while minimizing their maintenance 

cost.  This tradeoff is critical for the proper execution 

of contractual service agreements (CSA) offered by 

OEM’s to their valued customers. 

1.1 PHM: The Big Picture 

PHM can be divided into two main components:  

- Health Assessment: the evaluation and 

interpretation of the asset’s current and future 

health state, and 

- Health Management: the control, operation, and 

logistic plans to be implemented in response to 

such assessment. 

As originally presented in references (Bonissone 

2007; 2008a, Bonissone and Iyer 2007), the PHM data 

flow can be summarized by the functional diagram 

shown in Figure 1. The first two tasks, (1) remote 

monitoring, and (2) input data pre-processing, are 

platform-dependent, as they need domain knowledge to 

identify and select the most informative input, scrub 

them, aggregate them, and prepare them to become 

suitable inputs for the models.  The remaining 

decisional tasks could be considered platform-

independent (at least to the extent that their functions 

could be accomplished by pure data-driven models.  

They are: (3) anomaly detection and identification; (4) 

anomaly resolution; (5) diagnostics; (6) prognostics; 

(7) fault accommodation; and (8) logistics decisions.    
 

1.1.1. Asset Health Assessment 

Using platform-deployed sensors, the data are remotely 

collected and preprocessed (e.g., segmented, filtered, 

validated, etc.). Then these data are summarized by a 

subset of features that provide a more informative, 

robust representation of the information contained in 

the data. These features could contain any combination 

of categorical and numerical values.  

Anomaly Detection (AD). These features are 

analyzed by an anomaly detection module to assess the 

degree of abnormal behavior for each asset in the fleet. 

If the degree of abnormality exceeds a defined 

threshold, the module will identify the asset, determine 

the time when the anomaly was first noticed and the 

possible cause(s) of the anomaly (usually a coarse 

identification at the systems/subsystem level). Anomaly 

detection leverages unsupervised learning techniques, 

such as clustering.  Its goal is to extract the underlying 

structural information from the data, define normal 

structures and regions, and identify departures from 

such regions.   

Anomaly Identification (AI).  After detecting an 

abnormal change, (e.g. a departure from a normal 

region), we need to identify its cause. There are many 

factors that could cause such change:  
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(a)  A system fault, which could eventually lead to 

a failure; 

(b)  A sensor fault, which is creating an incorrect 

measurement; 

(c) An inadequate anomaly detection model, which 

is falsely reporting an anomaly due to bad design, 

inadequate model update, execution outside the 

model’s region of competence, etc. 

(d)  A sudden, unexpected operational transient, 

which is stressing the system by creating an abrupt load 

change.  In turn, this transient could be originated by an 

operator error, who is requesting such sudden change; 

by an incorrect reference (set-up) vector – in case of 

operation automation - which is also requesting such 

abrupt change; or by a bad controller, which is over- or 

under-compensating for some perceived state change.  

Diagnostics. This information allows a diagnostic 

module to focus on a given platform subsystem, 

analyze key variables associated with the subsystem, 

and try to match their pattern with a library of 

signatures associated with faults or incipient failure 

modes. The result is a ranked list of possible faults.  

Diagnostics leverages supervised learning 

techniques, such as classification.  Its goal is to extract 

potential signatures from the data, which could be used 

to recognize different failure modes 

  Prognostics. A prognostics module updates a 

deterioration index for the platform (sub-) system, and 

modifies the expected Remaining Useful Life (RUL) or 

time-to-failure (TTF) from a linear, normal wear 

trajectory to an exponentially decaying one. The fault 

time and incipient failure mode determine the inflection 

point in such curve and the steepness in deterioration, 

respectively. A prerequisite to leverage this RUL 

estimation is to have a narrow confidence interval, such 

that this information is actionable and can be used in 

the asset health management part of PHM as a horizon 

to optimize the logistics/maintenance scheduling plan. 

Prognostics leverages prediction techniques. Its 

goal is to estimate, update, and forecast the asset’s 

health index, which is mapped into RUL.  Originally, 

this index reflects the expected deterioration under 

normal operating conditions. Later the index is 

modified by the occurrence of an anomaly/failure, 

reflecting faster RUL reductions.  

1.1.2. Asset Health Management 

All these functions are interpretations of the system’s 

health state.  These interpretations lead to an on-board 

control action and an off-board logistics, repair and 

planning action.   On-board control actions are usually 

focused on maintaining performance or safety margins, 

and are performed in real-time. Off-board 

maintenance/repair actions cover more offline 

decisions. They require a decision support system 

(DSS) performing multi-objective optimizations, 

exploring Pareto frontiers of corrective actions, and 

combining them with preference aggregations to 

generate the best decision tradeoffs.   

Anomaly detection (AD) is the first, critical step in 

the chain of PHM decisional tasks. Figure 1 illustrates 

such chain, when a system anomaly is the detected 

source. 

1.2 Paper Focus on Soft Computing 

PHM is a multi-discipline field, as it includes facets of 

Electrical Engineering (reliability, design, service), 

Computer Science and Decision Sciences (Artificial 

Intelligence, Soft Computing, Machine Learning, 

Statistics, OR), Mechanical Engineering (geometric 

models for fault propagation), Material Sciences, etc.   

 Within this paper we will focus on the role that Soft 

Computing plays in PHM functionalities. When 

addressing real-world PHM problems, we usually deal 

with systems that are difficult to model and possess 

large solution spaces. So we augment available 

physics-based models, which are usually more precise 

but difficult to construct, customize, and adapt, with 

approximate solutions derived from Soft Computing 

methodologies. In this process we leverage two types of 

resources: problem domain knowledge of the process 

(or product) and field data that characterize the 

system’s behavior.  The relevant available domain 

knowledge is typically a combination of first principles 

and empirical knowledge.  This knowledge is often 

incomplete and sometimes erroneous. The available 

data are typically a collection of input-output 

measurements, representing instances of the system's 

behavior, and are generally incomplete and noisy.  Soft 

computing is a flexible framework in which we can 

find a broad spectrum of design choices to perform the 

integration of knowledge and data in the construction 

of approximate models. 

1.3 Paper Structure 

We will use Soft Computing to explore the concept of 

Anomaly Identification and Resolution, and extend the 

PHM cycle, illustrated in Figure 1, beyond system 

failures. In Section II we will analyze the most 

common anomaly sources - while limiting the scope of 

our analysis to a subset of them – and for each case we 

will propose their associated resolution within the PHM 

framework above described. In section III we will focus 

on one of the most neglected causes for anomalies, the 

inadequate accuracy of anomaly detection models, and 

we will describe a solution based on a fuzzy 

supervisory system and an ensemble of locally trained 

auto associative neural networks (AANN’s). 

In Section IV we will illustrate this approach with a 

set of experiments within a simulated aircraft engine 

environment. Finally, in section V we will discuss 

potential extensions and future work. 
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2. AMBIGUITIES IN ANOMALY 

IDENTIFICATION 

2. 1 Possible Sources of Anomaly for Dynamic 

Systems 
Figure 2 shows a typical system diagram for a 

controlled dynamic system (the asset), for which we 

want to provide an effective PHM service.  From this 

diagram we can see that the anomalies could be caused 

by incipient system failures, sensor failures, AD model 

failures, extreme operational transients (cause by an 

operator or a reference generator), or malfunctioning 

controllers or actuators. 

2.2 System Failures 

This is the textbook situation in which the asset being 

monitored exhibits an anomalous behavior, which is a 

precursor to a failure mode. Many books and papers 

have been devoted to this case, so we will not cover in 

this paper. The associated PHM cycle is the one 

described in section 1 and illustrated in Figure 1. 

 

2.3 Sensor Failures 

There are situations in which the instrumentation used 

to monitor the asset experiences a failure mode, such as 

intermittent signals, offset shifts, drifting, saturations, 

etc. Faulty sensors usually produce signatures/residuals 

that profoundly affect the variable being measured by 

the sensor, when compared with the other variables. 

This situation can be disambiguated by using 

specialized modeling techniques, such as the auto-

associative neural networks (AANN’s) that we will 

describe in Section III.  Because of its auto-association 

property, AANN can be used to infer nominal sensor 

values from raw measurements when information in the 

saturated measurements is analytically redundant in the 

sense that if one measurement is missing, it can be 

replaced with an estimate from the remaining valid 

sensors (Mattern et al., 1998.) After diagnosing a 

sensor failure, the PHM cycle consists in determining 

the sensor’s RUL, which could range from zero (as in 

the case of a broken or saturated sensor) to a reasonable 

operational horizon, as in the case of a slow drifting 

 
 

Figure 1. PHM Architecture showing the decisional tasks triggered by a system anomaly. 
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sensor. The fault accommodation – if needed – would 

consist of switching to a virtual sensor (such as an 

AANN or a feedforward NN) until it is possible to 

replace or repair the sensor. 

2.4 Inadequate Anomaly Detection (AD) Model  

To avoid false alarms, we need to verify the correctness 

of the AD model that generates the anomaly signals. 

This verification requires the satisfaction of several 

conditions related to the model design and lifecycle 

management: 

- Accuracy. The AD model must be designed to 

achieve the required accuracy, representing the tradeoff 

between False Positives (FP) and False Negatives (FN).  

Sometimes, it is not possible to achieve this accuracy 

with a single global model (whose large variance would 

make most anomalies indistinguishable from normal 

cases). In these situations, we can use a collection of 

local models (with limited, overlapping regions of 

applicability. of applicability) aggregated by a (fuzzy) 

supervisory system. This will allow us to leverage the 

performance of customized local models, and combine 

their outputs using a smooth interpolation mechanism 

as we move across adjacent operating regions (Hu et 

al., 2009). This approach will be further described in 

the next section. This accuracy could be further 

improved by fusing multiple AD models, providing that 

they are diverse, i.e. their errors are mostly orthogonal 

(Varma et al., 2007.) 

- Region of competence. The model is operating 

within its region of competence, which is determined 

by the domain of its training set.  If that is not the case, 

it is likely that we are experiencing model extrapolation 

errors (Bonissone 2008b). 

- Updated version. The model’s performance is 

within the boundary established by the test and 

validation errors observed during the design phase. 

Otherwise we should update the model with the most 

recent data to prevent model obsolescence (Patterson et 

al., 2005.) 

Once an AD model has been deemed inadequate, its 

associated PHM cycle is quite simple.  Fault 

accommodation can be achieved if the model is part of 

an ensemble of models.  In such case the output of the 

faulty model can be excluded or discounted within the 

aggregation performed by the fusion mechanism, 

allowing the remaining models to provide a more 

accurate classification. Finally, the inadequate model 

must undergo an updating process consisting of 

training, testing, and validation using recent data, 

possibly in the new operation regions. 
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Figure 2. Typical architecture for controlled dynamic system (asset) including operations and monitoring. 
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2.5 Other sources of anomalies 

There are at least three other possible causes that could 

trigger the output of an Anomaly Detector.  We are not 

considering them within the scope of this paper but we 

are listing them for the sake of completeness: 

- Extreme operational transients.  This situation 

is caused by a sudden reference change, which is either 

requested by the operator (in manual mode) or by the 

reference generator (in automated mode).  

- Malfunctioning Controller.   This situation could 

have many possible causes, ranging from control 

software glitches, control operating outside its region of 

competence (for which it was designed), etc. 

- Actuator Failure.  The controller’s output is 

incorrectly interpreted or executed by the actuator.  

This situation has also many possible causes, all of 

which are considered outside the scope of this paper. 

3. IMPROVING THE ACCURACY OF THE 

ANOMALY DETECTION (AD) MODEL WITH A 

HYBRID SC MODEL 

Global models, trained on the entire operating space of 

the asset, are designed to achieve a compromise among 

completeness (for coverage), high-fidelity (for 

accuracy), and transparency (for maintainability).  As a 

result, we typically end up with models that have small 

biases but large variability.  This variability might be 

too large to distinguish between model error and 

anomalous system behavior. 

This section focuses on a different design tradeoff 

for such model.  We want to guarantee coverage 

throughout the state space by developing many local 

AD models, each of which has been trained on 

overlapping regions of the state space.  We develop 

each model with techniques that minimize its variance 

within its region of competence.  Finally, we capture 

the criteria for model applicability by using a fuzzy 

supervisory model approach that leverages linguistic 

fuzzy rules to integrate local models to better represent 

system dynamics as system transits from one operating 

regime to another. Through this fuzzy supervisory 

approach, the magnitude of residuals caused by the 

operating regime transition can be significantly reduced 

so that false alarms can be avoided.  

We will briefly illustrate the various components 

used in this approach. We will start with the 

Component Level Model (CLM), a simulator that 

replicates the behavior of the dynamic system, sensors, 

and controllers.  Then, we will describe the auto-

associative neural network (AANN) and the fuzzy 

supervisory system used to implement the anomaly 

detection model. Each rule defines a mapping between 

a fuzzy state vector and a corresponding fuzzy action.  

 

3. 1 Component Level Model (CLM) 

For this work, we leverage the Component Level 

Model (CLM), a physics-based thermodynamic model 

that has been widely used to simulate the performance 

of an aircraft engine. Flight conditions, such as altitude, 

Mach number, ambient temperature, and engine fan 

speed, and a large variety of model parameters, such as 

module efficiency and flow capacity are inputs to the 

CLM (see Figure 3). The outputs of the CLM are the 

values for pressures, core speed and temperatures at 

various locations of engine, which simulate sensor 

measurements. Realistic values of sensor noise can be 

added after the CLM calculation. In this study, a steady 

state CLM model for a commercial, high-bypass, twin-

spool, turbofan engine is used. The objective is to use 

engine data collected under cruise conditions to 

monitor engine health changes. 

 

Cycledeck 
Model 

Sensor  
measurements 

Flight Conditions 

… 
Module parameters  
(Efficiency & Flow  
capacity) … 

Figure 3. Physics-based Component Level Model 

(CLM) 
 

3.2 Auto-Associative Neural Networks 

Auto-associative neural networks (AANN) are 

basically feed-forward neural networks with network 

structure satisfying requirements for performing 

restricted auto-association. The inputs to the AANN go 

through a dimensionality-reduction, as their 

information is combined and compressed in 

intermediate layers. For example, in Figure 4 the 7 

nodes in the input layer are reduced to 5 and then 3, in 

the 2
nd

 layer (encoding) and 3
rd

 layer (bottleneck), 

respectively.  Then, the nodes in the 3
rd

 layer are used 

to recreate the original inputs, by going through a 

dimensionality-expansion (4
th 

layer, decoding, and 5th 

layer, outputs).  In the ideal case, the AANN outputs 

should be identical to the inputs. Their difference 

(residuals) and their gradient information are used to 

train the AANN to minimize such difference. 

This network computes the largest Non-Linear 

Principal components (NLPCA’s) – the nodes in the 

inter-mediate layer – to identify and remove 

correlations among variables. Besides the generation of 

residuals this type of network can also be used in 

dimensionality reduction, visualization, and exploratory 

data analysis. As noted in reference (Kramer 1991): 

“while [Principal Component Analysis] PCA identifies 

only linear correlations between variables, NLPCA 

uncover both linear and nonlinear correlations, without 
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restriction on the character of the nonlinearities present 

in the data”.  NLPCA operates by training a feed-

forward neural network to perform the identity 

mapping, where the network inputs are reproduced at 

the output layer. The network contains an internal 

“bottleneck” layer (containing fewer nodes than input 

or output layers), which forces the network to develop a 

compact representation of the input data, and two 

additional hidden layers. 
 

 
 

Figure 4. Architecture of a 7-5-3-5-7 Auto Associative 

Neural Network 
 

In reference (Hu et al., 2007), we used AANN’s to 

estimate sensor measurement under normal conditions 

and then the residual between raw measurement and 

normal measurement were used to infer the conditions 

of the components and systems. Additional information 

about AANN’s can be found in references (Kramer 

1991; Kramer 1992; Mattern et al., 1998; Lerner et al., 

1999; Berenji et al., 2004). 

3.3. Fuzzy Logic Systems 
Fuzzy logic (FL) gives us a language, with syntax and 

local semantics, within which we can translate 

qualitative knowledge about the problem to be solved 

(Zadeh 1978; Ruspini et al., 1998). In particular, FL 

allows us to use linguistic variables to model dynamic 

systems. These variables take fuzzy values that are 

characterized by a label (a sentence generated from the 

syntax) and a meaning (a membership function 

determined by a local semantic procedure). The 

meaning of a linguistic variable may be interpreted as 

an elastic constraint on its value. These constraints are 

propagated by fuzzy inference operations, based on the 

generalized modus-ponens. This reasoning mechanism, 

with its interpolation properties, gives FL a robustness 

with respect to variations in the system's parameters, 

disturbances, etc., which is one of FL's main 

characteristics. 

The most common definition of a fuzzy rule base R 

is the disjunctive interpretation initially proposed by 

Mamdani and found in most Fuzzy Controller 

applications (Mamdani and Assilian, 1975). R is a 

disjunction of m rules. The Cartesian product operator 

represents each rule.  

       ( )UU
m

i

ii

m

i

i YXrR
11 ==

→==                        (1) 

The inference engine of a FC can be defined as a 

parallel forward-chainer operating on fuzzy production 

rules. An input vector   is matched with each n-

dimensional state vector   , i.e., the Left Hand Side 

(LHS) of rule               The degree of matching 

indicates the degree to which the rule output can be 

applied to the overall FC output. The main inference 

issues for the FC are: the definition of the fuzzy 

predicate evaluation, which is usually a possibility 

measure (Zadeh 1978); the LHS evaluation, which is 

typically a triangular norm (Schweizer and Sklar 1983; 

Bonissone 1987); the conclusion detachment, which is 

normally a triangular norm or a material implication 

operator; and the rule output aggregation, which is 

usually a triangular conorm for the disjunctive 

interpretation of the rule base, or a triangular norm for 

the conjunctive case.  Under commonly used 

assumptions we can describe the output of the Fuzzy 

System as  

  ( ) ( )[ ]{ }yMinMaxy
iYi

m

iY µλµ ,1==             (2) 

where iλ  is the degree of applicability of rule ir  

         ( )
jji

n

ji IXMin ,,1Π= =λ                            (3) 

and 

 ( ) [ ]{ })(),()(),( ,, jjjjijjjji xIxXMinMaxxIxX =Π    (4)  

is the possibility measure representing the matching 

between the constraints on the state variables and the 

actual inputs. 

These three equations describe the generalized 

modus-ponens, which is the basis for interpreting a 

fuzzy rule set. Let’s provide a brief explanation for 

these equations. As stated in Eq. (1), we consider a rule 

base to be the union of m rules. Therefore, the output 

( )yYµ of a fuzzy system, as described in Eq. (2), is the 

union (i.e., the maximum operator) over the 

contributions of each of the m rules. Each rule’s 

contribution is derived by weighting its original 

output ( )y
iYµ , using the minimum operator, with iλ , the 

degree of applicability of rule ir . Equation (3) shows 

that iλ
 is the intersection (minimum operator) of the 

degrees of matching between each input jI
, and the 

constraint jiX ,  on the corresponding state variable for 

each rule ir .  In other words, iλ  represents the degree to 

which the rule LHS is satisfied by the input vector.  

The possibility measure of Eq. (4) is the maximum of 

the intersection between the membership function of 

the input and its corresponding constraint for that rule. 

I

iX
( ).ii YX →
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3.4 Hybrid Fuzzy Neural Anomaly Detection Model  
Usually, when a system is operated under different 

operating regimes, it is better to train multiple local 

models for each operating regime. These models 

represent system dynamics more accurately than a 

global model applicable over the entire operating space.  

AANN’s are one realization of empirical local 

models because of its auto-association property. They 

embed system dynamics through training into network 

weights matrix. If the system operates normally in the 

regime, where the AANN model was built upon, the 

sensor estimations from AANN output should 

approximately be the same as raw sensor 

measurements, resulting in very small residuals. 

Conversely, if the system operated outside of its 

defined operating regime, large residuals are usually 

generated indicating "anomalous" behavior and 

triggering alerts. 

Multiple AANNs can be customized and trained 

individually to model system within multiple operating 

regimes of system, respectively. However, none of 

these local models can accurately capture system 

dynamics as system transits from one operating regime 

to another. In this case, residuals generated during the 

transition phase will most likely exceed the pre-

specified alarming threshold and cause false alarms. 

One common solution deployed to this problem is to 

ignore the alarms if it is known that the system is 

undergoing operating regime transition phase. One 

disadvantage of this approach is it causes the 

interruption of system monitoring using local models 

and having the risk of missing true fault alarms 

generated during the transition phase. 

We propose to implement a fuzzy supervisory 

model to control the transition of local models when 

operating regime changes. Then we demonstrate the 

proposed approach using data generated from a CLM 

model of aircraft engine. This is illustrated in Figure 5. 

 

Figure 5. Connecting the CLM simulator with the 

hybrid fuzzy neural Anomaly Detection (AD) model 

4. TESTING THE HYBRID SC MODEL WITH 

A SIMULATED AIRCRAFT ENGINE (CLM) 

We will now test the proposed architecture using a 

CLM model to simulate a commercial, high-bypass, 

twin-spool, turbofan engine. Within the normal flight 

regimes, we specified three flight envelops (FE) within 

the typical cruise flight regime, defined by altitude 

(ALT), ambient temperature (T1A) and mach number 

(XM) to represent three local operating regimes.  

 

4.1 Global Anomaly Detection Model  
First, one AANN with a 9-5-3-5-9 structure was built to 

model the entire cruise flight regime, which includes 

the three defined local operating regimes. By 

configuring the CLM parameters, which includes ALT, 

T1A, XM, model efficiency and flow, nine simulated 

sensor measurements were acquired. The selection of 

the bottle-neck layer is critical to obtain the desired 

performance of eliminating redundancies in the data. 

The training of AANN has two phases. In phase one we 

trained the network using normal data until we reached 

a reasonable conversion in the MSE training metric. In 

phase two, we modified the training set by introducing 

random noise into one or multiple training inputs, to 

represent faulty measurements. This phase is important 

to allow the AANN model to learn how to filter noisy 

information and restore true measurements.  

After the global AANN model was properly trained, 

a new set of data were generated to simulate the 

transition among operating regimes along the trajectory 

depicted in Figure 6(b). Figure 6(a) shows the values of 

flight envelope variables through the transition phase. 

Since aircraft engine exhibits different system 

dynamics in the difference local flight regimes, the 

global model cannot very well capture their 

characteristics well As expected, the performance of 

the global AANN model was not very satisfactory.  

 

4.2 Local Anomaly Detection Models 
Three AANN’s with same structure as 9-5-3-5-9 were 

built to model local dynamics within individual 

operating regimes. The similar training process as in 

the global was repeated in each local AANN model. 

After the local AANN models are properly trained, a 

new set of data were generated to simulate the 

transition of operating regimes along the trajectory 

depicted in Figure 6(b). 

Figure 7 defines the fuzzy membership functions 

for "Low", "Medium" and "High" of flight envelope 

variables. The scales of the plots in this figure have 

been normalized using their range [0 to 100] to protect 

proprietary information. Then we can specify a set of 

fuzzy rules, such as the ones described in the table in 

Figure 8, which describe the applicability of local 
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models under different operating regimes defined in 

fuzzy terms.    
 

 
(a) 

 

 
(b) 

 

Figure 6. The illustration of system operating regime 

transition – across 3 flight envelops (FE). 
 

Figure 8 depicts the scheme of using a fuzzy 

supervisory approach to control the fusion of local 

models and assure the smoothness of residuals by 

interpolation as operating regime transits. Raw sensor 

measurements are presented to three local AANN 

models to generate the residuals, respectively. The 

three variables (T1A, ALT and XM) that define 

operating regimes are fed through the three fuzzy rule 

set to determine the applicability of each local AANN 

model. The three rules define three operational regions. 

Their associated weight   represents the degree of 

compatibility of the rules LHS and, similarly to    , it is 

computed using equation (3) and (4). The normalized 

applicability of each model is then used to perform a 

weighted average of the residuals from each individual 

local model to generate an integrated residual. Alerts 

should be issued only if the aggregated residual 

exceeds predefined thresholds regardless of the 

behavior of residuals from individual local models. 

Figure 7. Fuzzy membership functions for variables 

defining flight operating regimes.  For each of the three 

plots, the scale [0, 100] indicates a percentage of their 

range of values. 

 

 
Figure 8. The scheme of model selection/fusion by 

fuzzy supervisory model (expanding the AD box in 

Figure 5). 

 

In Figure 9 (a) – (c) we show examples of residuals 

between actual sensor measurements and estimations 

from local model AANN-1, AANN-2 and AANN-3, 

respectively as the flight regime transits along the 

trajectory defined in Figure 3. Note that each variable 

has the same range in y-axis of each subplot. Clearly, a 

local model can only minimize the residuals within the 

flight regime for which it was trained. However, the 

fuzzy supervisory model can leverage the superior 

performance of individual local models in their 

corresponding flight regimes, and blend their outputs to 

ensure the smooth interpolation of their residuals 

during operating regime transitions. 

jw

jλ
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To automate the detection process, we suggest 

normalizing     - the residuals of variable i at data point 

j -using the average of the raw data measurements, i.e., 

                       where      is the average of variable i. 

Then we can use a figure of merit (FOM) such as 

 

            ( )∑ ∑= =
=

n

i

m

j iij XR
nm

FOM
1 1

2
ˆ/

1
          (5)                  

 

where n is the number of variables and m is the number 

of data points, to evaluate the overall magnitude of the 

residuals.  If FOM is smaller than a pre-specified 

threshold, we can declare that no anomalies are present. 

Otherwise, the anomaly is detected. When there is a 

large (in percentage) residual only from one particular 

variable, we identify the anomaly as a sensor fault.  

When residuals from all the variables are larger than 

the baseline but are roughly equally contributing to the 

FOM, then there are two possible cases:  

1. It is a system fault; or 

2. The set of local models are not sufficient to 

capture the system dynamics (i.e., the current 

local models were trained in different regions of 

operating regimes from the one where the test 

data have been extracted.)  
 

 
 

 
 

Figure 9. (a)- (c): Residuals from the local model AANN-1, AANN-2 and AANN-3 as the flight regime transits 

along the trajectory defined in Fig. 3; (c) residuals by applying fuzzy supervisory model. Note that each variable 

has the same range in the y-axis of each subplot. 

 

ijR

iiij XRE ˆ/= iX̂
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In this second case, we will need to identify 

additional operating regimes and build corresponding 

additional local models to better capture the system 

characteristics. 

4.3 Improving the Anomaly Detection Models 

The membership functions shown in Figure 7 were 

handcrafted, and the remarkably improved residuals 

behavior of the fuzzy supervisory model that uses these 

membership functions is shown in Figure 9 (d). While 

this handcrafted membership function set generates 

very good residuals management behavior across the 

operating regime, we need a systematic way of 

achieving similar or better outcomes in an unsupervised 

manner. To this end we have developed an evolutionary 

algorithm (EA) wrapper that identifies an optimal set of 

membership functions.  

The left part of Figure 10 shows the run-time 

anomaly detection (AD) model. The center part of 

Figure 10 shows an instance of the term set used by the 

fuzzy supervisory system (the scale of the operational 

state variables was normalized as a percentage of the 

range of values to preserve proprietary information). In 

the right part of figure 10, we can see the evolutionary 

algorithm (EA) in a wrapper configuration, used to tune 

the shapes of the membership functions (term sets). 

Each individual in the EA population is a set of 

parameters that represents an implementable term set 

configuration. The parameters varied are the 

intersection points of the membership functions, and 

the length of the base of the lower triangle whose upper 

vertex is the intersection point. The added restriction is 

that this lower triangle is an isosceles triangle. 

However, we do not require the base of the isosceles 

triangle to be fully contained within the supports of the 

membership functions. This is allowed to enable 

maximum horizontal range for the intersections point. 

As a result, for Altitude, we vary 2 parameters. For 

each of Ambient Temperature and Mach #, we vary 4 

parameters, with a total of 10 search parameters. Each 

individual is a set of 10 parameters that creates a 

corresponding set of membership functions that control 

residuals behavior of the fuzzy supervisory model. The 

fitness of each individual is computed based on the 

aggregate of the nine sensor residuals, with a goal 

towards maximizing fitness or minimizing overall 

residuals. The EA used is based on the GAOT toolkit
*
. 

The population size is set at 500, and the generation 

count is set at 1000. The EA execution is very efficient 

taking only about 2 hours of execution time on a 

standard desktop machine. 

Figure 11 shows the residuals management 

behavior of the optimal membership function set shown 

in Figure 12. There is an appreciable but not very 

significant improvement shown in Figure 11 over 

Figure 9 (d). This can be attributed to two factors. 

Firstly, the original partition - derived from domain 

knowledge - provided a reasonable initial segmentation 

of the model regions of applicability. Secondly, the 

most significant “glitches” in Figure 11 cannot be 

solved at the supervisory level. They show intrinsic 

shortcomings by AANN-1 and AANN-2 in covering 

the region between flight numbers 200 and 400.  This 

problem could be solved either by extending the 

                                                 
*
 www.ise.ncsu.edu/mirage/GAToolBox/gaot/ 

 
Figure 10: EA tuning the term set of the Fuzzy Supervisory System that interpolates within an ensemble of local AANN’s. 
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training regions of the two models to provide some 

coverage for this operating space or by developing a 

fourth local model (AANN-4) trained in such operating 

space. While demonstration of significant performance 

improvement is not the goal of the wrapper-EA 

approach, demonstration of a reliable unsupervised 

means to achieve optimal membership functions is. To 

this latter end, the wrapper-EA approach is a powerful 

and efficient system tuning approach. 

 
Figure 11. Residuals by applying fuzzy supervisory 

model with GA tuned membership functions. 

 

Note that the scale of the y-axis in Figure 11 has been 

modified (as compared to the subplot in Figure 9) to 

enhance the Before GA versus After GA comparison. 
 

 
Figure 12. GA-tuned fuzzy membership functions for 

variables defining flight operating regimes.  For each of 

the three plots, the scale [0, 100] indicates a percentage 

of their range of values. 

 

5. FUTURE WORK AND CONCLUSIONS 
5.1 Prerequisite of Deployment of AANN 
AANN model leverages covariance information to 

reconstruct the network input. For it to work properly 

there must be dependencies (correlations or 

interactions) among the variables being monitored. This 

prerequisite is generally met for most of complex 

industrial systems we are interested, such as sensor data 

collected from turbine, aircraft engine and etc. 

However it is worthwhile to confirm the correlation of 

system-associated variable before applying AANN.  

 

5.2 Improvement of Fuzzy Supervisory Model  
There are two main factors affecting the performance 

of the fuzzy supervisory model. One of them is related 

to local operating regimes and local models built on 

them, how local operating regimes are defined, i.e. how 

well local empirical models perform with individual 

operating regime boundaries. The other is closely 

dependant to fuzzy rules, i.e. how to define the 

applicability of local models as operating regime 

changes. 

To that end, fuzzy membership functions that 

interpret crisp parametric values into fuzzy terms play a 

critical role. Fuzzy membership function defines the 

fuzzy space and then determines the degree of 

matching to each rule. In the experiments, we have 

done some heuristic tuning of fuzzy membership 

functions in Figure 7 and were able to improve the 

overall performance of the supervisory model. To 

optimize the performance, we need to introduce 

membership functions that can be parameterized. One 

possibility is to use a Generalized Bell Function (Jang 

et al., 1997): 

               
ib

i

i

A

a

cx
x

2

1

1
)(

−
+

=µ .                    (6)                           

where {
iii cba ,, } is the parameter set. As the values of 

these parameters change, the bell-shaped function 

varied accordingly, thus exhibiting various forms of 

membership functions for a fuzzy set A.  Figure 13 

illustrates examples of a bell-shaped membership 

function and the traditional trapezoidal membership 

function. By using differentiable membership functions 

we can then apply learning algorithms such as 

backpropagation to tune the parameters in the 

(generalized) bell function and achieve optimal 

performance of the overall supervisory model. 
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Figure 13. Examples of bell-shaped and trapezoidal 

membership functions. 

5.3 Conclusions 
We proposed a systematic approach to analyzing the  

potential causes of anomalies in dynamic systems, 

ranging from incipient system failures to 

malfunctioning sensors, operating the system in 

unusual regions, using inappropriate anomaly detection 

models, etc. For each cause, we extended the PHM 

cycle, creating an anomaly resolution action.  Within 

this approach, we focused on the inaccuracy of the 

anomaly detection models and proposed a hybrid 

approach based on a fuzzy supervisory system and an 

ensemble of locally trained auto associative neural 

networks (AANN’s). 

In this approach we interpolate among the outputs 

of local models to assure smoothness in operating 

regime transition and then provide continuous 

condition monitoring to the system. Experiments on 

simulated data from a high bypass, turbofan aircraft 

engine model demonstrated promising results. 
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