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ABSTRACT 

This paper presents a methodology to quantify the 
uncertainty in fatigue damage prognosis, applied to 
structures with complicated geometry and subjected to 
variable amplitude multi-axial loading. Finite element 
analysis is used to address the complicated geometry and 
calculate the stress intensity factors. Multi-modal stress 
intensity factors due to multi-axial loading are combined 
to calculate an equivalent stress intensity factor using a 
characteristic plane approach. Crack growth under variable 
amplitude loading is modeled using a modified Paris law 
that includes Wheeler’s crack retardation model. During 
cycle-by-cycle integration of the crack growth law, a 
Gaussian process surrogate model is used to replace the 
expensive finite element analysis, resulting in rapid 
computation. The effect of different kinds of uncertainty – 
physical variability, data uncertainty and modeling errors – 
on crack growth prediction is investigated. The various 
sources of uncertainty include, but not limited to, 
variability in loading conditions, material parameters, 
experimental data, model uncertainty, etc. Three different 
kinds of modeling errors – crack growth model error, 
discretization error and surrogate model error – are 
included in analysis. The different kinds of uncertainty are 
incorporated into the prognosis methodology to predict the 
probability distribution of crack size as a function of 
number of load cycles. The proposed method is illustrated 
using an application problem, surface cracking in a 
cylindrical structure.* 

1. INTRODUCTION 
Mechanical components in engineering systems are often 
subjected to cyclic loads leading to fatigue, crack initiation 
and progressive crack growth. It is essential to predict the 
performance of such components to facilitate risk 
assessment and management, inspection and maintenance 
                                                 
* Shankar Sankararaman et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 United States 
license, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited. 
 

scheduling and operational decision-making. 
Researchers have pursued two different kinds of 
methodologies for fatigue life prediction. The first 
method is based on material testing (to generate S-
N, ε –N curves) and use of an assumed damage 
accumulation rule. In this method, specimens are 
subjected to repeated cyclic loads under laboratory 
conditions. Hence the results are specific to the 
geometry of the structure as well as the nature of 
loading. Further, the performance of these 
components under field conditions is significantly 
different from laboratory observation, due to various 
sources of uncertainty accumulating in the field that 
render experimental studies less useful. Hence, this 
methodology cannot be used directly to predict the 
fatigue life of practical applications wherein 
complicated structures subjected to multi-axial 
loading.   

The second method for fatigue life prediction is 
based on principles of fracture mechanics and crack 
growth analysis. A crack growth law is assumed and 
the progressive growth of the crack is modeled. 
However, this is not straightforward. Fatigue crack 
growth is a stochastic process and there are different 
kinds of uncertainty – physical variability, data 
uncertainty and modeling errors, associated with it. 
Uncertainty appears at different stages of analysis 
and the interaction between these sources of 
uncertainty cannot be modeled easily. Further, the 
application of crack growth principles to 
complicated structures, subjected to multi-axial 
variable amplitude loading requires repeated 
evaluation of finite element analysis which makes 
the computation expensive.  

Some of these problems have been investigated 
by researchers in detail. The first problem in using a 
crack growth model is that the initial crack size is 
not known. This issue is further complicated by the 
fact that small crack growth propagation is 
anomalous in nature (Liu and Mahadevan, 2008). 
This problem was addressed by the introduction of 
an equivalent initial flaw size (EIFS) nearly thirty 
years ago. The concept of EIFS was introduced to 
by-pass small crack growth analysis and to 
substitute an initial crack size in long crack growth 
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models such as Paris’ law. However EIFS does not 
represent any physical quantity and cannot be measured 
using experiments. Initially, certain researchers used 
empirical crack lengths between 0.25 mm and 1 mm for 
metals (JSSG, 2006; Gallagher et al., 1984; Merati et al., 
2007). Later, several researchers (Yang, 1980; Moreira et 
al., 2000; Fawaz, 2000; White et al., 2005; Molent et al., 
2006) used back-extrapolation techniques to estimate the 
value for equivalent initial flaw size. Recently, Liu and 
Mahadevan (Liu and Mahadevan, 2008) proposed a 
methodology based on the Kitagawa-Takahashi diagram 
(Kitagawa and Takahashi, 1976) and the El-Haddad Model 
(Haddad et al., 1979) to derive an analytical expression for 
the equivalent initial flaw size. The current research work 
uses this concept to calculate the statistics of EIFS from 
material properties such as threshold stress intensity factor 
and fatigue limit. These material properties are calculated 
from experimental data and the associated data uncertainty 
due to measurement errors, sparseness of data, etc. needs 
to be taken into account.  

The next step in damage prognosis is to choose a 
crack growth model.  There are many crack growth models 
available in literature. In this paper, a modified Paris law is 
used as the crack growth law for the sake of illustration, 
but an error term (treated as a random variable) is added to 
represent the fitting error since experimental data were 
used to estimate the coefficients of the Paris model. 
Further, the model coefficients are also treated as random 
variables. The effects of variable amplitude loading are 
considered by using a Wheeler’s retardation model in 
conjunction with modified Paris’ law. 

The modified Paris law based on linear elastic fracture 
mechanics calculates the increase in crack size as a 
function of the stress intensity factor, during each loading 
cycle. The stress intensity factor, in turn, is a function of 
the current crack size, crack configuration, geometry of the 
structural component and loading conditions. If structures 
with complicated geometry are subjected to multi-axial 
loading, then the stress intensity factor needs to be 
calculated through expensive finite element analysis, at 
every loading cycle. This paper replaces the finite element 
analysis with a surrogate model, known as the Gaussian 
process (GP) interpolation. Several finite element analysis 
runs are used to train this surrogate model and then, the 
surrogate model is used to predict the stress intensity 
factor, to be used in the crack growth law. There are two 
kinds of errors in this procedure. First, the finite element 
analysis has discretization error that needs to be accounted 
for while training the surrogate model. Second, the 
surrogate model adds further uncertainty since it is 
obtained by fitting the model to the (finite element) 
training data. 

 In addition to the above mentioned model uncertainty 
and data uncertainty (used to calculate the EIFS), natural 
variability in many input variables introduces uncertainty 
in model output. The loading on the structure is usually 
random in nature. A variable amplitude multi-axial loading 
history consisting of bending and torsion is illustrated in 
this paper.  

Natural variability also includes variability in material 
properties, geometry and boundary conditions. The 
variability in certain material properties such as fatigue 
limit and threshold stress intensity factor is considered 
while deriving the statistical distribution of EIFS. The 

geometry of the specimen and boundary conditions 
are considered deterministic in this research work. 

The main focus of this paper is to investigate in 
detail each source of uncertainty and propose a 
methodology that can effectively account for all of 
them. Finally, the developed framework is used to 
predict the probabilistic fatigue life of the structure.  

The next section reviews the existing literature 
on this topic. Section 3 presents the algorithm used 
in this paper to predict the fatigue life of structures 
with complicated geometry and subjected to 
variable amplitude, multi-axial loading. The various 
sources of uncertainty in this procedure are 
discussed in Section 4. Section 5 presents the 
proposed framework for uncertainty quantification 
in crack growth prediction. Section 6 illustrates the 
methodology through an example, considering 
cracking in a cylindrical structure. 

2. LITERATURE REVIEW 
Numerous studies have addressed probabilistic 
crack growth and life prediction, but focused mainly 
on natural variability in loading, geometry and 
material properties. The “damage prognosis” project 
at Los Alamos national laboratory (Doebling and 
Hemez, 2001; Hemez et al., 2003; Farrar et al., 
2004; Farrar and Lieven, 2006) has addressed this 
problem in detail and researchers have proposed 
probabilistic methods as a solution to this problem. 
Sampling techniques were used to predict crack 
growth in composite plates and the error between 
prediction and observation was also characterized. 
Loading (uniaxial impact loading) conditions and 
geometric and material properties are treated as 
random variables. Surrogate models were used to 
replace expensive finite element models, and 
included in a sampling based framework for 
uncertainty propagation. Finite element analysis 
results were used to train the surrogate models, but 
the discretization error was not quantified. Further, 
the errors due to usage of surrogate models, errors in 
crack growth model, etc. were not addressed. 

Besterfield et al. (Besterfield et al., 1991) 
combined probabilistic finite element analysis with 
reliability analysis to predict crack growth in plates. 
Random mixed mode loading cycles, physical 
variability in material properties, randomness in 
crack configuration (size, position and angle) were 
considered. However, the implementation of 
probabilistic finite element analysis is 
computationally expensive for structures with 
complicated geometry. Other sources of uncertainty 
such as data uncertainty and model uncertainty were 
not considered. 

Patrick et al (Patrick et al., 2007) introduced an 
online fault diagnosis and failure prognosis 
methodology applied to a helicopter transmission 
component. A crack growth model (Paris law) was 
used for fatigue life prediction. Bayesian techniques 
were implemented to infer the initial crack size, 
which was used for probabilistic fatigue life 
prediction using particle filter techniques. Other 
sources of uncertainty such as error in Paris law, 
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variability in model parameters, and randomness in 
loading were not considered. 

Gupta and Ray (Gupta and Ray, 2007) developed 
algorithms for online fatigue life estimation that relied on 
time series data analysis of ultrasonic signals and were 
built on the principles of symbolic dynamics, information 
theory and statistical pattern recognition. Physical 
variability in material geometry (surface defects, voids, 
inclusions, sub-surface defects), minor fluctuations in 
environmental conditions and operating conditions were 
used to quantify the uncertainty in detection which was 
further used to quantify the uncertainty in prognosis.  

Pierce et al (Pierce et al., 2007) discussed the 
application of interval set techniques to the quantification 
of uncertainty in a neural network regression model of 
fatigue life, applied to glass fiber composite sandwich 
materials.  This paper only considered the uncertainty in 
input data and other sources of uncertainty were not 
investigated in detail. 

Orchard et al (Orchard et al., 2008) used the method 
of particle filters for uncertainty management in fatigue 
prediction. However, the various sources of uncertainty 
were not clearly delineated and considered in the analysis. 
While the use of conditional probability has been 
recommended for probabilistic predictions, this turns out 
to be expensive when variable amplitude loading cycles 
are considered, as the ensemble of predictions grows in 
size as a function of the number of loading cycles. 

Papazian et al (Papazian et al., 2009) developed a 
structural integrity prognosis system (SIPS), based on 
collaboration between sensor systems and advanced 
reasoning methods for data fusion and signal 
interpretation, and modeling and simulation. Probabilistic 
principles such as likelihood and conditional probability 
were used to compare model predictions and sensor data. 
While measurement errors and sensor data were 
considered in detail, solution errors, variability of model 
parameters, randomness in loading, etc were not 
considered. 

Thus past studies on uncertainty quantification in 
prognosis problems have ignored several sources of 
uncertainty or not investigated them in detail. Physical 
variability (such as randomness in loading conditions, 
material parameters, etc.) has been mainly studied by 
researchers, whereas other sources of uncertainty such as 
data uncertainty and model uncertainty have not been fully 
addressed.  

This paper proposes a framework which can 
effectively account for different sources of uncertainty – 
physical variability, data uncertainty and model 
uncertainty. The various sources of uncertainty are 
discussed in detail, later in Section 4. Prior to that, the 
algorithm for crack growth propagation is outlined in the 
following section. 

3. CRACK GROWTH PROPAGATION 
Consider the growth of an elliptic crack. A schematic of 
the crack growth is shown in Fig. 1. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Elliptic Crack Growth 

In Fig. 1, ax denotes the length of the semi-
major axis and ay denotes the length of the semi-
minor axis. The aspect ratio, calculated as ratio 
between ax and ay is denoted by γ. If θ denote the 
angle of orientation, then ax corresponds to θ = 0° 
and ay corresponds to θ = 90°. Crack growth laws 
such as Paris law (applicable to long cracks) predict 
the increase in crack size as a function of stress 
intensity factor, which in turn depends on the 
current crack size (ax, ay), aspect ratio (γ), angle of 
orientation (θ) and loading (L). In this paper, a has 
been used to denote the crack size in two directions, 
i.e. a = [ax, ay]. Hence, the two dimensional array a 
contains information about aspect ratio (β) as well. 

Starting with an initial crack size (a0), the 
growth of the crack can be modeled and the crack 
size after a given number of cycles can be 
calculated. However, the initial crack size cannot be 
calculated exactly. The concept of EIFS was 
proposed to tackle this problem. Starting with the 
introduction of EIFS, this section explains the 
various steps involved in using a crack growth 
model to predict the crack size as a function of 
number of cycles.  

3.1 Use of EIFS in Crack Growth Law 
The rigorous approach to fatigue life prediction 
would be to perform crack growth analysis starting 
from the actual initial flaw, accounting for voids and 
non-metallic inclusions. If the initial crack size is 
large, then long crack growth models such as Paris’ 
law can be used directly. However, this is not the 
case in most materials. Hence the long crack growth 
model cannot be used directly.  

 
Fig. 2. Schematic of Crack Growth 
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A schematic plot of the long crack and short crack 
growth curves is given in Fig. 2.  

Consider any long crack growth law used to describe 
the relationship between da/dN and ΔK, where N 
represents the number of cycles, a represents the crack size 
and ΔK represents the stress intensity factor. This paper 
uses modified Paris’ law for illustration purposes and 
includes the effects of Wheeler’s retardation model as: 

 
da/dN = φrC (ΔK)n(1- ΔKth/ΔK)m   (1) 

 
In Eq. (1), φr refers to the retardation parameter (Sheu 

et. al., 1995), and is equal to unity if ai + rp,i > aOL + rp,OL 
where aOL is the crack length at which the overload is 
applied, ai is the current crack length, rp,OL is the size of 
the plastic zone produced by the overload at aOL, and rp,i is 
the size of the plastic zone produced at the current crack 
length ai. Else, φr is calculated as shown in Eq. (2). 

 
φr = (rp,i / (aOL+rp,OL-ai))λ   (2) 

In Eq. (2), λ is the curve fitting parameter for the 
original Wheeler model termed the shaping exponent 
[Yuen et al., 2006]. Sheu et al. [Sheu et al., 1995] and 
Song. et al. [Song et al., 2001] observed that crack growth 
retardation actually takes place within an effective plastic 
zone. Hence the size of the plastic zone can be calculated 
in terms of the applied stress intensity factor (K) and yield 
strength (σ) as: 
 

rp = α (K/σ)2       (3) 
 

In Eq. (3), α is known as the effective plastic zone size 
constant which is calculated experimentally (Yuen et. al., 
2006). The expressions in Eq. (2) and Eq. (3) can be 
combined with Eq. (1) and used to calculate the crack 
growth as a function of number of cycles. In each cycle, 
the stress intensity factor can be expressed as a function of 
the crack size (a), loading (L) and angle of orientation (θ). 
Hence, the crack growth law in Eq. (1) can be rewritten as 
 

da/dN = g(a,L,θ)   (4) 
 
The concept of an equivalent initial flaw size was 

proposed to bypass small crack growth analysis and make 
direct use of a long crack growth law for fatigue life 
prediction. The equivalent initial flaw size, a0 is calculated 
from material properties (ΔKth, the threshold stress 
intensity factor and σf, the fatigue limit) and geometric 
properties (Y) as explained in Liu and Mahadevan (Liu and 
Mahadevan, 2008). 

2
0 )/)(/1( fth YKa σπ Δ=       (5) 

By integrating the expression in Eq. (1), the number 
of cycles (N) to reach a particular crack size aN can be 
calculated as shown in Eq. (6). 

∫ ∫ ΔΔΔ== dadNN r )K)/K -(1K)( C/(1 m
th

nϕ       (6) 
For structures with complicated geometry and loading 

conditions, the integral in Eq. (6) is to be evaluated cycle 
by cycle, calculating the stress intensity factor in each 
cycle of the crack growth analysis. The calculation of the 

stress intensity factor is explained in the following 
subsection. 

3.2 Calculation of Stress Intensity Factor 
The stress intensity factor ΔK in Eq. (6) can be 
expressed as a closed form function of the crack size 
for specimens with simple geometry subjected to 
constant amplitude loading. However, this is not the 
case in many mechanical components, where ΔK 
depends on the loading conditions, geometry and the 
crack size. Further, if the loading is multi-axial (for 
example, simultaneous tension, torsion and 
bending), then the stress intensity factors 
corresponding to three modes need to be taken into 
account. This can be accomplished using an 
equivalent stress intensity factor. If KI, KII, KIII 
represent the mode-I, mode-II and mode-III stress 
intensity factors respectively, then the equivalent 
stress intensity factor Keqv can be calculated using a 
characteristic plane approach proposed by Liu and 
Mahadevan (Liu and Mahadevan, 2005) . The use of 
the characteristic plane approach for crack growth 
prediction under multi-axial variable amplitude 
loading has been validated earlier with several data 
sets. 

During each cycle of loading, the crack grows 
and hence, the stress intensity factor needs to be 
reevaluated at the new crack size for the loading in 
the next cycle. Hence, it becomes necessary to 
integrate the expression in Eq. (6) through a cycle 
by cycle procedure. Each cycle involves the 
computation of ΔK using a finite element analysis 
represented by Ψ.  

 
ΔKeqv = Ψ(a,L,θ)   (7) 

 
Repeated evaluation of the finite element 

analysis in Eq. (7) renders the aforementioned cycle 
by cycle integration extremely expensive, perhaps 
impossible in some cases. Hence, it is necessary to 
substitute the finite element evaluation by an 
inexpensive surrogate model. Different kinds of 
surrogate models (polynomial chaos, support vector 
regression, relevance vector regression, and 
Gaussian Process interpolation) have been explored 
and the Gaussian process modeling technique has 
been employed in this paper. A few runs of the finite 
element analysis are used to train this surrogate 
model and then, this model is used to predict the 
stress intensity factor for other crack sizes and 
loading cases (for which finite element analysis has 
not been carried out). 

3.3 Gaussian Process Surrogate Modeling 
A Gaussian process (GP) response surface 
approximation is constructed to capture the 
relationship between the input variables (a, L, θ) and 
the output variables (ΔK) in Eq. (5), using only a 
few sample points within the design space. The 
details of this interpolation technique are available 
in literature (Rasmussen, 1996; Santner, 2003; 
McFarland, 2007).  
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The basic idea of the GP model is that the response 
values Y (Keqv in this case), are modeled as a group of 
multivariate normal random variables, with a defined 
mean and covariance function. The benefits of GP 
modeling is that the method requires only a small number 
of sample points (usually 30 or less), and is capable of 
capturing highly nonlinear relationships that exist between 
input and output variables without the need for an explicit 
functional form. Additionally, Gaussian process models 
can be used to fit virtually any functional form and provide 
a direct estimate of the uncertainty associated with all 
predictions in terms of model variance. The framework of 
Gaussian process modeling is shown in Fig. 3. 

 
 
 
 
 
 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 3. Construction of Surrogate Model 
 
Suppose that there are m training points, x1, x2, x3 … 

xn of a d-dimensional input variable (the input variables 
being the crack size and loading conditions here), yielding 
the resultant observed random vector Y(x1), Y(x2), Y(x3) … 
Y(xn). R is the m x m matrix of correlations among the 
training points. Under the assumption that the parameters 
governing both the trend function (fT(xi) at each training 
point) and the covariance (λ) are known, the conditional 
expected value of the process at an untested location  x* is 
calculated as in Eq. (8) and Eq. (9) respectively. 

 
Y*=E(Y|x*)=fT(x*)β+rT(x*)R-1(Y-Fβ) (8) 

 
σY*=Var(Y|x*)=λ(1-rTR-1r) (9) 

 
In Eq. (8) and Eq. (9), F is a matrix with rows fT(xi), r 

is the vector of correlations between x* and each of the 

training points, β represents the coefficients of the 
regression trend. McFarland (McFarland, 2007) 
discusses the implementation of this method in 
complete detail. 

3.4 Crack Propagation Analysis 
This section explains the method used to calculate 
the final crack size as a function of number of load 
cycles. The procedure involves the evaluation of the 
integral in Eq. (4). As explained in Section 3.3, this 
needs to be done cycle by cycle and the Gaussian 
process surrogate model is used to predict the 
equivalent stress intensity factor in each cycle.  

Starting with the equivalent initial flaw size a0, 
the equations (Eq. (1) – Eq. (6)) described in Section 
3.1 are used to calculate the final crack size A after 
N loading cycles. This entire procedure is 
summarized in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Crack Propagation Analysis 

The framework shown in Fig. 4 for prognosis is 
deterministic and does not account for errors and 
uncertainty. Uncertainty can be associated with each 
of the blocks in Fig. 4 and accounted for in 
prognosis. The following section investigates these 
sources of uncertainty and Section 5 incorporates 
them into the prognosis framework. 

4. SOURCES OF UNCERTAINTY 
This section discusses the various sources of 
uncertainty and errors that are part of the prognosis 
framework summarized in Section 3.5 and proposes 
methods to handle different kinds of uncertainty.  
The material properties used to calculate the 
equivalent initial flaw size are measured using 
experiments and have variability, causing variability 
in EIFS. Further, these experimental data may be 
sparse and the uncertainty in data needs to be 
accounted for. The crack growth law used for crack 
propagation is usually estimated through curve 
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fitting of experimental data. To account for model 
uncertainty, a (normally distributed) error term is added to 
the crack growth equation and the model coefficients of 
the crack growth law are treated as random variables. In 
each cycle of loading, the stress intensity factor is 
calculated as a function of current crack size, loading and 
geometry. Repeated finite element analyses are avoided by 
the use of inexpensive surrogate models and the output of 
the surrogate model is not accurate. Further, the training 
points calculated using finite element analyses are prone to 
solution approximation and discretization errors. Further, 
the loading itself is considered to be random – a variable 
amplitude multi-axial loading case is demonstrated in this 
paper. These various sources of uncertainty can be 
classified into three different types – physical variability, 
data uncertainty and model uncertainty - as shown below. 

I. Physical Variability 
a. Loading 
b. Equivalent initial flaw size 
c. Material Properties (Fatigue Limit, Threshold Stress 

Intensity Factor) 
II. Data Uncertainty 

a. Material Properties (Fatigue Limit, Threshold Stress 
Intensity Factor) 

III. Model Uncertainty/Errors 
a. Crack growth law uncertainty  
b. Uncertainty in calculation of Stress Intensity 

factor 
A. Discretization error in finite element analysis 
B. Uncertainty in surrogate model output 

(Note: Variations in geometry and boundary conditions are 
sources of physical variability. These variations are not 
considered in this research work. However, these can be 
included in the proposed framework by constructing 
different finite element models (for different geometry and 
boundary conditions) and use these runs to train the 
Gaussian process surrogate model. Hence, these 
parameters are treated as inputs to the surrogate model and 
sampled randomly in the uncertainty quantification 
procedure explained later in Section 5.) 

The following subsections discuss each source of 
uncertainty in detail and propose methods to handle them. 

4.1 Physical Variability in Loading Conditions 
The loading on practical structures is rarely deterministic 
and it is difficult to quantify the uncertainty in loading. For 
the purpose of illustration, variable amplitude multi-axial 
(bending, tension and torsion) loading is considered in this 
paper.  
 
 
 
 
 
 
 
 
 

 
 

Fig. 5. Sample loading history 

 
A loading history consists of a series of blocks 

of loads, the loading amplitude being constant in 
each block. In this paper, the block length is 
assumed to be a random variable and the maximum 
and minimum amplitudes in each block are also 
treated as random variables. A sample loading 
history is shown in Fig. 5. 

To generate one block of loading, first a block 
length is selected and then a maximum amplitude 
value and a minimum amplitude value is selected 
for that block. The entire loading history is 
generated by repeating this process and creating 
several successive blocks. 

4.2 Physical Variability in EIFS 
The equivalent initial flaw size derived in Eq. (3) 
depends on ΔKth, the equivalent mode-I threshold 
stress intensity factor, Δσf, the fatigue limit of the 
specimen and the geometry factor Y which in turn 
depends on the geometry of the structural 
component and the configuration of the crack. This 
is a deterministic quantity and can be estimated 
using finite element analysis. The distributions for 
the material properties, ΔKth and Δσf are 
characterized using data obtained from experimental 
testing. This is explained in Section 4.3. Having 
obtained the statistical distributions of ΔKth and Δσf, 
the distribution of a0, the equivalent initial flaw size, 
can be calculated. 

4.3 Data Uncertainty in Material Properties  
         (to characterize distributions ΔKth and Δσf ) 
This section proposes a general methodology to 
characterize uncertainty in input data, from which 
statistical distributions need to be inferred. This 
method is illustrated using experimental data 
available in literature to characterize the distribution 
of threshold stress intensity factor (ΔKth) and fatigue 
limit (Δσf). McDonald et al. (McDonald et al., 2009) 
proposed a method to account for data uncertainty, 
in which in the quantity of interest can be 
represented using a probability distribution, whose 
parameters are in turn represented by probability 
distributions. 

Consider a random variable X whose statistics 
are to be determined from experimental data, given 
by x = {x1, x2 .. xn}. For the sake of illustration, 
suppose that the random variable X follows a normal 
distribution, then the parameters (P) of this 
distribution, i.e. mean and variance of X can be 
estimated from the entire data set x. However, due 
to sparseness of data, these estimates of mean and 
variance are not accurate. Using resampling 
techniques such as bootstrapping method, 
jackknifing etc. the probability distributions (fP(P)) 
of the parameters (P) can be calculated. Hence for 
each instance of a set of parameters (P), X is defined 
by a particular normal distribution. However, 
because the parameters (P) themselves are 
stochastic, X is defined by a family of normal 
distributions. For a detailed implementation of this 
methodology, refer McDonald et al., 2009. 
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This paper uses similar resampling techniques to 
calculate the distribution of the parameters (P), however 
does not define a family of distributions. Instead, it 
recalculates the distribution of the random variable X, 
using principles of conditional probability (Haldar and 
Mahadevan, 2000).  

Thus X follows a probability distribution conditioned 
on the set of parameters (P). Hence the distribution of X is 
denoted by fX|P(x). However, in this case, the parameters 
are represented by probability distributions fP(P). Hence, 
the unconditional probability distribution of X (fX(x)) can 
be calculated as shown in Eq. (10). 
 

∫= dPPfxfxf PPXX )()()( | (10) 
 

The integral in Eq. (10) can be evaluated through 
quadrature techniques or advanced sampling methods such 
as Monte Carlo integration or Markov chain Monte Carlo 
Integration. Hence, the unconditional distribution of X 
which accounts for uncertainty in input data can be 
calculated. In this paper, this method has been used to 
characterize the uncertainty in threshold stress intensity 
factor (ΔKth) and fatigue limit (Δσf). 

4.4 Uncertainty in Crack Growth Model 
There are more than 20 different crack growth laws (e.g., 
Paris law, Foreman’s equation, Weertman’s equation) 
proposed in literature. The mere presence of many such 
different models explains that none of these models can be 
applied universally to all fatigue crack growth problems. 
Each of these models has its own limitations and 
uncertainty. In this paper, a modified Paris law has been 
used for illustration, however, the methodology can be 
implemented using any kind of crack growth model. 

The uncertainty in crack growth model can be 
subdivided into two different types: crack growth model 
error and uncertainty in model coefficients. If εcg is used to 
denote the crack growth model error, then Paris law can be 
expressed as in Eq. (11). 
 

cg
mKcdNda ε+Δ= )(/ (11) 

 
An estimate of εcg can be obtained while calibrating 

the model parameters using statistical data fitting tools. 
The model coefficients in Paris law are C and n, and the 
uncertainty in these parameters can be represented through 
probability distributions. The stress intensity factor ΔK, as 
explained earlier is calculated using the Gaussian process 
surrogate model as explained in Section 3. The various 
sources of uncertainty in this process are addressed in 
Section 4.5. 

4.5 Errors in Stress Intensity Factor Calculation 
As explained in Section 3, a Gaussian process model is 
used to calculate the stress intensity factor ΔK. This is 
done in two stages. First, a few finite element analysis runs 
are required to train the GP model. Second, the GP model 
is used to predict the stress intensity factor as explained in 
Section 3.3. Each of these two steps has associated errors 
and uncertainty. Finite element solutions are subject to 
discretization errors, whereas the prediction of any low-
fidelity model such as the GP model also has error. These 
two issues are discussed in this subsection. 

4.5.1 Discretization Error in Finite Element   
Analysis 
Theoretically, an infinitesimally small mesh size 
will lead to the exact solutions but this is difficult to 
implement in practice. Hence, finite element 
analyses are carried at a particular mesh size and the 
error in the solution, caused due to discretization 
needs to be quantified. Several methods are 
available in literature but many of them quantify 
some surrogate measure of error to facilitate 
adaptive mesh refinement. The Richardson 
extrapolation (RE) method has been found to come 
closest to quantifying the actual discretization error 
and this method has been extended to stochastic 
finite element analysis by Rebba (Richards, 1997; 
Rebba, 2005). It should be noted that the use of 
Richardson extrapolation to calculate discretization 
error requires the model solution to be convergent 
and the domain to be discretized uniformly (uniform 
meshing) (Rebba et al., 2004). Sometimes, in the 
case of coarse models, the assumption of monotone 
truncation error convergence is not valid. 

In the Richardson extrapolation method, the 
discretization error due to grid size, for a coarse 
mesh is given by Eq. (12). 
 

)1/()( 21 −−= p
h rffε (12) 

 
In Eq. (12), f1 and f2 are solutions for a coarse 

mesh and a fine mesh respectively. If the 
corresponding mesh sizes were denoted by h1 and 
h2, then the grid refinement ratio, denoted by r is 
calculated as h2/h1. The order of convergence of p is 
calculated as: 
 

))/(log())/()log(( 1223 rffffp −−= (13) 
 

In Eq. (13), f3 represents the solution for a 
coarse mesh of size h3, with the same grid 
refinement ratio, i.e. r = h3/h2. 

The solutions f1, f2, f3 are dependent on the 
inputs (loading, current crack size, aspect ratio and 
angle of orientation) to the finite element analysis 
and hence the error estimates are also functions of 
these input variables. For each set of inputs, a 
corresponding error is calculated and this error is 
added to the (coarse mesh) solution from finite 
element analysis to calculate the true solution. 
Hence a true solution is associated with each set of 
inputs and these values are used as training points 
for the surrogate model. 

4.5.2 Uncertainty in the Surrogate Model Output 
Several finite element runs for some combination of 
input-output variable values are used to train the 
Gaussian process surrogate model in this paper. 
Then, these surrogate models can be used to 
evaluate the stress intensity factor for other 
combinations of input variable values. GP models, 
as explained in Section 3.3, model the output as a 
sum of Gaussian variables and hence, inherently 
produce an output which is normally distributed. 
The expressions for mean and variance of the output 
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of the GP model were given in Eq. (8) and Eq. (9) 
respectively. The output of the GP (ΔKeq) model is a 
random normal variable and in each cycle, the value for 
ΔKeq is sampled from this distribution. 

(Note: The GP model is used as a surrogate for the 
deterministic finite element model and the variance of the 
GP output accounts only for the uncertainty in replacing 
the original model with a Gaussian process and does not 
account for the uncertainty in the inputs to the model. The 
variance of the output is only dependant on the “form” of 
the surrogate model. For example, a linear surrogate model 
will lead to constant variance at untrained locations but 
unknown distribution type (Seber and Wild, 1989). The 
advantage is using a Gaussian process surrogate model is 
that not only the output variance can be calculated but also 
the distribution type can be proved to be Gaussian 
(McFarland, 23).) 

The Gaussian process model output, i.e. the stress 
intensity factor is used in the crack growth equation to 
predict the crack size as a function of number of cycles as 
explained earlier in Section 3. The following section 
incorporates all these sources of uncertainty into the 
prognosis methodology described in Section 3. 

5. UNCERTAINTY IN PROGNOSIS 
Section 3 proposed a methodology that can be used for 
damage prognosis of structures with complicated geometry 
and subjected to multi-axial loading. This procedure was 
summarized using a step-by-step flowchart in Fig. 4. 
Section 4 investigated the various sources of uncertainty in 
the prognosis framework and proposed methods to handle 
them. A brief summary of the various sources of 
uncertainty is given below. 

I. PHYSICAL VARIABILITY 
a. Variable amplitude multi-axial loading cycles are 

generated by considering random block lengths and 
random amplitudes within each block. 

b. The equivalent initial flaw size (EIFS) is 
represented by a probability distribution that 
accounts for the variability in material parameters, 
the threshold stress intensity factor and fatigue 
limit. 

c. The material properties (fatigue limit, threshold 
stress intensity factor) are represented by 
probability distributions, inferred from experimental 
data.  

II. DATA UNCERTAINTY 
a. The uncertainty in data used to calculate the 

statistics of material properties (fatigue limit, 
threshold stress intensity factor) is addressed by 
using a sampling based approach that calculates a 
family of probability distributions for each material 
parameter. Then, this family of distributions is 
integrated into one single probability distribution 
(for each property) using the principles of 
conditional and total probability. 

III. MODEL UNCERTAINTY/ERRORS 
a. The uncertainty in crack growth model is handled 

by adding an error term to the crack growth law and 
by representing the model parameters as random 
variables.  

b. The calculation of stress intensity factor in 
each cycle of crack growth is facilitated using 
a Gaussian process surrogate model.  
A. The discretization error in finite element 

analysis is calculated using Richardson 
extrapolation and added to the results of 
FEA before training the surrogate model. 

B. The uncertainty (calculated as the 
variance) in the surrogate model output 
is modeled as a Gaussian variable 
calculation from regression results and 
hence, the prediction of the surrogate 
model, i.e. the Stress intensity factor is 
represented as a normal distribution. 

 
This section presents a sampling based strategy 

to combine all the different sources of uncertainty 
and thereby quantify the uncertainty in damage 
prognosis, i.e. the distribution of the final crack size 
is calculated as a function of number of loading 
cycles (N). The various steps in this procedure are 
outlined here. 

I. Generate training points for the Gaussian 
process surrogate model. This is done 
through finite element analysis and then by 
calculating the discretization error in each 
of the runs. The discretization errors are 
added to the solutions of finite element 
analysis and used to train the Gaussian 
process surrogate model. Hereon, the GP 
model can be used to calculate the stress 
intensity factor as a function of crack size, 
loading, aspect ratio and angle of 
orientation. 

II. Generate a loading history. First, randomly 
select a block length and then randomly 
select a maximum amplitude value and a 
minimum amplitude value for that 
particular block. Repeat the process till the 
number of cycles (N) is reached. 

III. Sample an EIFS value from the statistical 
distribution calculated in Section 4.1 and 
Section 4.2. 

IV. Use the deterministic prognosis 
methodology to calculate the final crack 
size at the end of N cycles. However, in 
each loading cycle, the stress intensity 
factor calculated from the GP model is a 
random normal variable and hence generate 
a random sample of stress intensity factor 
in each cycle. Also, the crack growth 
model error (εcg) is sampled in every cycle. 
 

In this algorithm, Step I is a deterministic step 
while Step II, Step III and Step IV are probabilistic. 
Using this algorithm, the crack size after N cycles 
can be calculated for a particular load history that 
was generated in Step II.  Using Monte Carlo 
Sampling, Steps II, III and IV can be repeated again 
and again, each leading to a final crack size at the 
end of N cycles. This can be used to characterize the 
distribution of final crack size at the end of N cycles. 
By varying N, the distribution of final crack size can 
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be obtained as a function of the number of cycles (N). 
This information can be used to calculate the 

reliability of the structural component as a function of 
number of load cycles. Suppose that the component is 
supposed to have failed if the crack size is greater than a 
critical crack size (Ac), then the probability of failure can 
be calculated as a function of load cycles. 

6. NUMERICAL EXAMPLE 
This section illustrates the proposed methodology to 
quantify the uncertainty in damage prognosis through a 
numerical example. 

6.1 Description of the Problem 
A two radius hollow cylinder with an elliptical crack in 
fillet radius region is considered for this purpose. This 
problem consists of modeling an initial semi-circular 
surface crack configuration and allowing the crack shape 
to develop over time into a semi-elliptical surface crack. 
This is shown in Fig. 6. 

 

Fig. 6. Surface Crack in a Cylindrical Structure 

The finite element software package ANSYS 
(ANSYS, 2007) version 11.0 is used to build and analyze 
the finite element model.  The crack configuration is built 
by extruding a projection of the semi-circular crack 
through the mast body at the crack location.  The 
immediate volumes on either side of the crack face are 
identified and subdivided in order to allow for SIF 
evaluation at various locations along the crack front.  The 
crack faces (coinciding upper and lower surfaces of the 
previously mentioned volumes) are then modeled as 
surface to surface contact elements (CONTACT174 and 
TARGET170 elements) in order to prevent the surface 
penetration of the crack's upper and lower surfaces.  The 
augmented Lagrangian method is the algorithm used for 
contact simulation.  Additionally, friction effect is 
included in the material properties of the contact element, 
in which a Coulomb friction model is used.  This model 
defines an equivalent shear stress which is proportional to 
the contact pressure and the friction coefficient.  Friction 

coefficients between two crack faces are difficult to 
measure and are generally assumed to vary between 
0 and 0.5 (Liu et al., 2007). The friction coefficient, 
μ, used within this study is assumed to be a 
deterministic quantity and taken to be equal to 0.1.   

Since the primary quantity of interest is the 
stress intensity factor at the crack tip, the volume 
along the crack front is subdivided into many 
smaller blocks, which allows for better mesh control 
and enables SIF evaluation at various locations 
along the crack front.  The mesh around the crack 
location (at the crack front and surrounding areas) is 
refined in order to obtain a more accurate solution 
and avoid convergence problems.  To facilitate this, 
the crack region is constructed within a submodel of 
the uncracked body.  The submodel technique is 
based on the St. Venant's principle, which states that 
if an actual distribution of forces is replaced by a 
statically equivalent system, the distribution of 
stress and strain is altered only near the regions of 
load application.  It is observed that the result yields 
accurate stress intensity factor solutions all along the 
crack front which can be used for crack growth 
analysis. 

Table 1 and Table 2 list the material and 
geometrical properties of the specimen under study. 
 

Table 1 Material properties 
 

Aluminium 7075- T6 
Modulus of Elasticity 72 GPa

Poisson Ratio 0.32
Yield Stress 450 MPa

Ultimate Stress 510 MPa

 
Table 2 Geometrical Properties 

 
Cylinder Properties 

Length 152.4 mm
Inside Radius 8.76 mm

Outside Radius 
(Narrow Sect) 14.43 mm
Outside Radius 

(Wide Sect) 17.78 mm
 

In reality, these parameters in Table 2 and 
Table 3 may be variable and might require 
probabilistic treatment. However, as mentioned 
earlier, physical variability in the geometry of the 
structure, Young’s modulus, Poisson ratio, boundary 
conditions, friction coefficient between crack faces, 
etc are treated to be deterministic in this paper. 

The following subsection discusses the 
numerical implementation of the uncertainty 
quantification procedure. 
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6.2 Uncertainty in Prognosis 
The numerical details of the different sources of 
uncertainty are presented in this section. They are given 
step-wise in the same order as in Section 5. 

I. Finite element analyses are run for 10 different 
crack sizes, 6 different loading cases, two angles of 
orientation and three different aspect ratios, 
amounting to 360 training points to construct the 
surrogate model. For each solution, three different 
meshes are considered and the discretization error is 
quantified as explained in Section 4.4.1. The 
discretization error is added to the finite element 
analysis solution at each training point and the 
Gaussian process model is trained to predict the 
stress intensity factor. 

II. Multi-axial variable amplitude loading cycles are 
generated by considering blocks of equal amplitude 
within one entire loading history. The block length 
is assumed to be a uniform distribution (U(0,500)) 
and the maximum amplitude and minimum 
amplitude for that block are assumed to follow 
normal distributions (N(8,2) and N(24,2) 
respectively, in KNm) 

III. The distribution of EIFS is characterized using the 
data used by Liu and Mahadevan (Liu and 
Mahadevan, 2008). However, the current research 
work accounts for uncertainty in data and treats the 
parameters of threshold stress intensity factor and 
fatigue limit as random variables as well. The 
distribution (conditioned on its parameters) of EIFS 
is assumed to be lognormal (with parameters λ, ζ), 
with the λ following a normal distribution (mean = -
7.60 and standard deviation = 0.50) and ζ following 
a lognormal distribution (mean = 0.22mm and 
standard deviation = 0.10 mm). The unconditional 
distribution of EIFS is calculated using the integral 
in Eq. (8). Samples of EIFS are drawn from this 
distribution. 

IV. Paris law is used for crack growth propagation. The 
model parameter C (mean = 6.5 E-13 and standard 
deviation = 4E-13) is chosen to be lognormally 
distributed whereas m (m = 3.9) is treated as a 
deterministic quantity. These are identical to the 
distributions used by Liu and Mahadevan (Liu and 
Mahadevan, 2009). In each loading cycle, the 
values of stress intensity factor and crack growth 
model error (εcg) are sampled from probability 
distributions. While the stress intensity factor 
(calculated using the Gaussian process surrogate 
model) is a Gaussian variable (as explained in 
section 4.5.2), the crack growth model error is 
treated as a normal variable with zero mean and 
0.05 coefficient of variation. The latter quantity is 
chosen to be normal (Seber and Wild, 1989) 
because it represents a fitting error while calculating 
the coefficients of modified Paris’ law. 
 

Using the sampling-based framework in Section 5, the 
probability distribution of the final crack size is calculated 
as a function of the total number of cycles. A Monte Carlo 
simulation using 5000 runs is used to calculate the 
probability distribution of crack size as a function of 
number of load cycles. The mean, median and 90% 

prediction bounds of the final crack size are shown 
in Fig. 7. 

 
 

Fig. 7. Mean, Median and 90% Bounds  
 
In Fig. 7, the growth of the crack is shown as a 

function of number of load cycles. As the number of 
cycles increase, there is more uncertainty and hence, 
the 90% prediction bounds are wider. This is due to 
the fact that each additional loading cycle imparts 
more randomness arising from variability in loading, 
variability in crack size at the end of previous cycle, 
uncertainty in the prediction of stress intensity 
factor, etc. 

To illustrate the increase in uncertainty, the 
standard deviation of crack size is calculated as a 
function of number of load cycles and plotted in Fig. 
8. 

Fig. 8. Standard Deviation of Final Crack Size 

Fig. 8 clearly shows the increase in uncertainty 
with number of load cycles. While the standard 
deviation of the initial crack size is low, it increases 
by about 500% at the end of 5000 load cycles. This 
increase is due to accumulation of different sources 
of uncertainty in each loading cycle, i.e. loading 
uncertainty, surrogate modeling errors and crack 
growth model errors.  

Finally, the reliability of the structural 
component is also evaluated. A critical crack size of 
2.54 mm (approximately 0.1 inch) is assumed and 
the probability of failure is estimated as a function 
of number of load cycles and plotted in Fig. 9. From 
Fig. 9, it is seen that the probability of failure is 
negligible for about 3500 load cycles and it 
gradually increases after 4000 cycles. 
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Fig. 9. Probability of Failure vs. No. Load Cycles. 
 

There are two reasons for the observed increase in 
increase of failure probability. Firstly, the crack is growing 
in size and secondly, the uncertainty in the estimated crack 
size also increases with each loading cycle. After 10000 
cycles of loading, the probability of failure is 
approximately equal to 0.01. 

6.3 Individual Contributions of Uncertainty 
The previous subsection presented the effect of all the 
different sources of uncertainty in the final distribution of 
crack size. The current subsection calculates the marginal 
contributions of each source of uncertainty in the overall 
results of prognosis. Such an analysis would identify 
which sources of uncertainty are critical and what the 
analyst must do in order to reduce the overall uncertainty 
in prognosis. 

To calculate the contribution of one particular kind of 
uncertainty, all other quantities are assumed to be 
deterministic (at their mean values) and the results of this 
analysis are compared with the results of Section 6.2, 
where all sources of uncertainty were accounted. The 
individual contributions of each uncertainty are tabulated 
in Table 3.  
 

Table 3. Individual Contributions of Uncertainty 
 

Sources of 
Uncertainty 
Considered 

Final Crack Size 
Mean 
(mm) 

Std 
(mm) COV 

All 0.0617 0.0273 0.4424 
Loading 0.0592 0.0068 0.1152 

Crack Growth 
Model 0.0544 0.0023 0.0421 

Data Uncertainty 0.0547 0.0151 0.2767 
EIFS Uncertainty 0.0544 0.0134 0.2463 

GP Model 
Uncertainty 0.0544 5.33E-6 9.81E-6 

 
It is seen that the contribution of uncertainty from 

loading is significant. This may be attribute to the fact the 
loading conditions in practical applications are random and 
variable to a great extent. Also, contribution due to errors 
in crack growth model is extremely small. This means that 
the variance in the parameters of Paris law used in this 
paper have little effect on the variance of final crack size. 
It is observed that the uncertainty due to sparse data is 
high. More data can be collected to reduce this kind of 

uncertainty. The uncertainty due to the input 
equivalent initial flaw size (which includes 
uncertainty due to sparse data) is high). More 
experimental data can be collected and EIFS can be 
calibrated to reduce the uncertainty in the estimate 
of EIFS. This would also reduce the data uncertainty 
and decrease in the uncertainty in the estimate of 
final crack size in prognosis. 

7. SUMMARY 
This paper investigated the various sources of 
uncertainty in a fatigue damage prognosis problem 
and illustrated the proposed methods to quantify the 
overall uncertainty in crack growth prediction for 
structures with complicated geometry and multi-
axial loading. The concept of equivalent initial flaw 
size was used to replace small crack growth analysis 
and use a long crack growth model, specifically 
Paris law, for crack propagation. Expensive finite 
element analysis was replaced by an inexpensive 
surrogate, i.e. the Gaussian process model, to 
evaluate the stress intensity factor in each cycle for 
use in crack growth law. Several sources of 
uncertainty – physical variability, data uncertainty 
and modeling errors - were included in prognosis. 
Physical variability included loading conditions and 
material properties such as threshold stress intensity 
factor and fatigue limit. The uncertainty in data used 
to characterize these parameters was accounted for. 
Three different kinds of modeling errors – 
discretization errors, surrogate modeling error and 
crack growth model error – were considered in this 
paper. A probabilistic methodology was proposed to 
incorporate these sources of uncertainty into the 
prognosis framework. A Monte Carlo based 
sampling approach is used to calculate the 
distribution of crack size as a function of number of 
loading cycles. By defining a suitable serviceability 
criterion (for example, crack size being greater than 
a critical value), the reliability of the structural 
component is calculated a function of number of 
loading cycles. 

This research work also reported the individual 
contributions of various sources of uncertainty to the 
overall uncertainty in prognosis. This kind of study 
is popularly called as global sensitivity analysis and 
the method presented in this paper is a heuristic 
approach only. Rigorous methods for sensitivity 
analysis have been developed by several researchers 
around the world and future work would involve the 
application of these methods to prognosis problems. 
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NOMENCLATURE 

a0 Equivalent Initial Flaw Size 
ax Crack size along x-direction 
ay Crack Size along y-direction 
N Number of Loading Cycles 
A Final Crack Size after N loading cycles 
L Description of Load 
ΔKth Threshold Stress Intensity Factor 
σf Fatigue Limit 
ΔK Stress Intensity Factor 
Y Geometry Factor 
εcg Crack Growth Model Error 
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