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ABSTRACT

Modern complex systems have evolved into ar-
tifacts that rely on both hardware and software
to dependably function without human control.
Health management software control systems
have been developed to manage failures in such
complex systems. The Prognostics and Health
Management (PHM) systems have also devel-
oped to detect and identify failures and support
operation by guiding either operator or automated
software response. Of growing of importance in
the PHM community is the need to develop for-
mal methodologies to help integrate PHM into
the system architecture during the early design
stages. Early integration provides designers with
the potential to consider PHM capabilities and
limitations and make appropriate changes to the
overall system earlier in the design stage, where
changes are less costly and more effective. In
previous work, the Function Failure Identifica-
tion Propagation Framework (FFIP) was intro-
duced as a novel methodology to help with early
design of PHM systems, followed by several re-
quired augmentations to make FFIP more effec-
tive for PHM design specifically. In this paper,
this research is extended by taking the data gath-
ered from FFIP and applying a development lan-
guage often used in the field of embedded sys-
tems design. Specifically, the concept of State-
Charts from the embedded systems design field
is used to further augment the FFIP methodology
to more completely program the Function Failure
Logic (FFL) reasoner module within FFIP. Stat-
eCharts are shown to augment the FFIP frame-
work by clearly laying out the hierarchical rela-
tionships between system health, function health,
component status, command signal, and sensor
signals. StateCharts are then applied to the devel-
opment of a preliminary PHM hardware and soft-
ware architecture using a liquid fuel rocket engine
as a working example. Additional considerations,
such as sensor and software reliability, as well as
future considerations are discussed.

This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and re-

1 INTRODUCTION

PHM systems are responsible for determining the con-
dition of critical elements in a complex system, detect-
ing anomalies, diagnosing causes, predicting system
impact, and initiating appropriate system responses
while communicating the appropriate data, informa-
tion, and knowledge to control architectures and oper-
ators in a contextually appropriate manner (Edwards et
al., 1997; Duncavage et al., 2006; Hoyle et al., 2009;
Hutcheson and Tumer, 2005b; 2005a; Tumer, 2005;
M. et al., 2005). PHM systems permeate through-
out the entire complex system and are essentially em-
bedded hardware-software systems integrated into the
larger complex system (Edwards er al., 1997). The re-
sponsibilities of PHM are significant and the PHM ar-
chitecture can be very complex. This often results in
the PHM development not being addressed until much
is known about the details of the complex system into
which the PHM system will be integrated. As a re-
sult, PHM is often retrofitted as a loose combination
of fault detection and isolation of the various subsys-
tems as opposed to an integrated system-wide applica-
tion. PHM is often now required to be an integral part
of operating complex artifacts that are too complex for
human operators to manage without assistance. Many
modern complex systems operate without human op-
erators at all, underscoring a greater need for a well in-
tegrated PHM system. As such, it is vital to treat PHM
as an integral component to be considered within the
system design from the earliest possible stages.

This paper takes the position that PHM is an inte-
gral par of the software control subsystem. As with the
software control, PHM development currently requires
precise system specification. Many advanced model-
ing techniques exist for complex system design and
significant and important research continues to pro-
duce accurate simulations of such systems and their
components. These simulation processes, however, re-
quire high levels of detail where many decisions have
been made regarding the system architecture, compo-
nents, etc. Furthermore, because many of the deci-
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sions have been made at this later design stage, any
changes that might be made to the complex system as
a result of PHM development are costly. Developing
a methodology to consider PHM development, PHM
capabilities, and PHM limitations earlier in the design
stage can highlight elements of the complex system
that may require reconsideration or modification ear-
lier in the design process, where architecture changes
have less impact on project cost and schedule. Push-
ing PHM development to the earliest stages of com-
plex system design also allows the process of testing,
validating, and refining PHM architecture to start ear-
lier, allowing a greater opportunity to create a higher
quality design.

Efforts to formalize this process have been intro-
duced in the PHM community (Hoyle et al., 2009;
Hutcheson and Tumer, 2005b; 2005a; Tumer, 2005;
Kurtoglu et al.,, 2008; Leao et al, 2008). How-
ever, these methods stop short of providing a true
integration capability, which requires the considera-
tion of multiple faults and the cumulative effect of
fault propagation. The Function Failure Identifica-
tion Propagation (FFIP) framework was introduced in
prior work as a novel way to help with PHM de-
sign, and was augmented to better capture the data,
information, and knowledge needed to begin consid-
ering PHM development (Kurtoglu and Tumer, 2008a;
2008b; Jensen et al., 2008; 2009; Kramer and Tumer,
2009). In this paper, this research is extended by taking
the data gathered from FFIP and applying a develop-
ment language often used in the field of embedded sys-
tems design. Specifically, the concept of StateCharts
is used to further augment the FFIP methodology to
more completely program the Function Failure Logic
(FFL) reasoner module within FFIP. FFIP will be re-
viewed briefly in this paper, followed by the details of
a methodology to build the PHM architecture through
a StateCharts-based Function Failure Logic reasoner.
Finally, the proposed process will be applied to a Lig-
uid Fueled Rocket Engine (LFRE) model to illustrate
the potential benefits.

1.1 FFIP for PHM Design

The Function Failure Identification Propagation
(FFIP) framework (Kurtoglu and Tumer, 2008a;
2008b; Jensen et al., 2009) models the function, struc-
ture, and behavior of systems to simulate failure prop-
agation paths and determine resulting functional fail-
ures. Information gleaned from this process can then
be used to determine and analyze failure mitigation
options in the early design stages of complex sys-
tems. The three major modules used in FFIP analysis
are the system models based on graphical representa-
tions , the behavioral simulator based on and qualita-
tive physics, and the function-failure logic (FFL) rea-
soner. The graphical system modeling includes the
functional model (FM), which represents the overall
system functions decomposed into smaller fundamen-
tal subfunctions. The subfunctional relations are rep-

resented through flows of energy, material, and signal
(EMS). The structure of the design is represented as
a configuration flow graph (CFG). The CFG is linked
directly to the FM and thus strictly adheres to the func-
tional topology of the complex system. Each node of
the CFG represents a system component, and the arcs
are the same EMS flows as in the FM. These models
are then used to build the Function Failure Logic (FFL)
reasoner. The FFL resoner uses logic to map compo-
nent simulation input and outputs to function health
or operative state. The system is modeled in various
operational and failed states in a component oriented
approach.

The simulation process is performed to determine
system behavior under various failed component con-
ditions. At any given instant, the overall system state
is a function of the component modes and system state
variables:

X(t) = F(c(t), v(t) ()

where c(t) = (c1,c¢2, -+, ¢,) is a vector of discrete
component modes and v(t) = (vi,ve,---,vg) is a
vector of system state variables. The system is mod-
eled as a finite state computational model because
quantitative details of the system cannot yet be deter-
mined. As an example, a valve can have liquid flow
levels of {zero,low,nominal, high} and a sensor
may have values of {nosignal, high, nominal, low, }
as the finite state possibilities for these components.
These components, and their attached finite state pos-
sibilities, are then treated as portable modules that can
be fit together to form a system simulation. Failed
states are entered into the model, and the finite state
computations propagate the failures along the EMS
flows to their ultimate ends, which may or may not
result in changes in overall system functionality.

FFIP was originally developed to analyze the failure
potential of complex systems during the early (highly
qualitative) stages of design. It was argued in a prior
paper (Kramer and Tumer, 2009) that FFIP has great
promise in designing systems with a PHM capability.
In that prior paper, FFIP was augmented in three im-
portant ways to enable PHM development.

The first augmentation considers catastrophic fail-
ures such as violent explosions, which can propagate
across functional flows. A nomenclature was added
to the FM and CFG to identify and track the possibil-
ity of these lateral flows across functions. Although
there is too much uncertainty to include finite state
logic in the FFL reasoner, this provides a means within
the visual representations to consider important but
not always readily apparent or computable propagation
paths. Eventually, this logic becomes important for the
refined PHM architecture in that the PHM system will
have to investigate lateral propagation if a catastrophic
failure is detected. Ongoing work also considers the
state of the flow to capture such explosions (Jensen et
al., 2009).



The second augmentation introduces an estimation
of time to propagation. Just as components are given
finite functioning and failed states in the FFL reasoner,
an estimate of how long it takes each failed state to
propagate along the model is critical to assessing the
ability of PHM to respond to a given failure. Fail-
ures that propagate slowly are failures that PHM can
help mitigate or correct. Failures that propagate in-
stantly may not provide the response time a PHM sys-
tem might require to correct or mitigate the problem,
and thus possibly requiring other means of addressing
such failures. Nomenclatures were added to the FMs
and CFGs capturing these estimations so they can be
incorporated in the finite state machine simulation.

The third augmentation addresses explicit PHM re-
sponse simulation. Although sensors were included
in the original FFIP architecture and were part of the
initial FFL reasoner, this augmentation addresses the
PHM system elements as separate system functions
with their own place in the FFL reasoner, instead of
being buried in the existing system logic. Addressing
the PHM system explicitly in the FFL reasoner allows
engineers to gain a better understanding of how PHM
is acting on the complex system, and to begin under-
standing the PHM architecture details needed for that
particular complex system application.

1.2 Contributions

This paper focuses on applying embedded system de-
velopment methodologies based on the concept of
StateCharts to the construction of the FFL reasoner in a
manner that graphically exposes the FFL reasoner and
PHM response logic.

In previous work, the CFG and FM system repre-
sentations only addressed preliminary sensor place-
ment (Kramer and Tumer, 2009). The FFL rea-
soner relates sensor signals to the PHM response
logic through the same hidden finite state machine
simulation as above. Application of embedded sys-
tem design methodologies proposed and conceptually
demonstrated in this paper aims to more clearly and
visually demonstrate the hierarchy between sensor sig-
nals, component states, failure states, failure propaga-
tions, and PHM response.

2 RELATED RESEARCH
2.1 Embedded System Design

In this paper, we focus on the software development
needs for PHM architectures. PHM, by definition, is
an embedded system. In many modern human arti-
facts, PHM is a system that collects, controls, responds
to data from a larger more complex system. As such,
several early stage embedded system design languages
are investigated, and the process best fitting the FFIP
approach to PHM development is selected and applied
to a liquid-fuel rocket engine (LFRE) example.
Embedded system design is a subfield of co-design
and looks at designing complex hardware and software

intensive systems. Co-design is a field that develops
compact complex systems such a computers and con-
sumer electronics, where the software code is devel-
oped in conjunction with the physical circuitry that
runs the code. Often, because of space constraints,
the physical size of the circuits, the processing and re-
sponse speed of the system, and the cost of mass pro-
duction must all be optimized at the same time. This
can lead to the development of certain application-
specific circuits in some instances, while off-the-shelf
processors may be used elsewhere in the system. The
embedded systems sub field addresses the above con-
cerns, but must also address a larger more complex
artifact that the embedded system must interact with.
This interaction could mean control, response, data
collection, or a combination of all three (Zave, 1982;
Ernst, 1998; Gajski, 1994).

In embedded system design, as with the design of
any complex system, an important starting point is a
detailed specification. Although there are a great many
languages used in practice, the large majority of them
are based on StateCharts, Specification and Descrip-
tion Language (SDL) or Petri nets. StateCharts pro-
vide an effective way to demonstrate hierarchy and
process oriented computations in a visual manner and
will be discussed in further detail (Harel, 2001). SDL,
a finite state machine based process actually designed
for distributed system applications, is similar to State-
Charts in layout and logical capabilities, but includes a
message passing aspect that accounts for many embed-
ded systems not having universal broadcast capabili-
ties and must rely on message queues (Gajski, 2003).
Based on the preliminary level of data used in FFIP,
several of the advanced capabilities of SDL would not
be effective. SDL demonstrates the most usefulness
when addressing system efficiency through specific
circuits applications where the embedded system is a
large portion of the overall system architecture. For
the applications of interest for PHM integration (e.g.,
LFRE), we are assuming that the finite states are ca-
pable of broadcast communications through a central
processor for the entire system. As PHM for modern
complex system applications will be a miniscule frac-
tion of the mass of the system but a significant con-
tribution to system capability, it will probably not fall
victim to optimization (at least in terms of central pro-
cessing capability). If it is deemed necessary at a later
stage in the design process, the finite state logic of Stat-
eCharts can be increased in complexity to account for
SDL message passing capabilities.

Petri nets provide another specification language de-
veloped originally for software but has seen use in
embedded systems. Petri nets provide the advantage
of demonstrating logic unequivocally and completely,
but does so at the expense of simplicity (Peterson,
1981). Typical problems cited when using Petri nets
have been state explosion as the system increases in
complexity and the inability to represent system hier-
archy in a clear fashion. Though future versions of



Petri nets have resolved these problems, they have not
been adopted by the software community, and hence
are not considered in this research.

2.2 StateCharts

In this research, StateCharts are explored as a means
to move the failure propagation analysis capabilities
provided by FFIP towards a hierarchical PHM de-
sign framework. StateCharts is a common early stage
language used in embedded systems design. State-
Charts have been used as the foundation for other sys-
tem development methodologies, such as SpecC and
SystemC, both of which are rapidly evolving State-
Charts based embedded system and software devel-
opment processes (Fujita and Hakamura, 2001; IEEE,
2006). Although an industry standard has not emerged
from the current fray, most of these methodologies uti-
lize the fundamental strengths of StateCharts and are
running into similar difficulties in their development.

The main strength of StateCharts is the clear hier-
archical organization of the computational processes
(in the form of finite state machines) required by the
larger complex system. Although code cannot be writ-
ten in a complete form until further along in the de-
sign process, an early StateCharts diagram of the pro-
gram can show developers where the components of
the code will fit within the system much in the same
way that a configurational diagram shows where the
physical components will fit within a larger complex
system (Harel, 2001). Figure 1 is a simple visual of
the hierarchical arrangement of the functions down to
components and the components down to base sen-
sors. Although the finite state logic is not stated
here, the relationships between functions, components,
and sensor signals are made clear. This logic is ex-
tended up through the overall system function captur-
ing the entire operational logic of the complex system.
Given enough complexity, this framework can eventu-
ally turn directly into code as enough information is
added to the architecture.

System state

\': Function state
‘Component
1
7Y
\‘ Component 1 state

Figure 1: StateCharts Hierarchy.

In a PHM system, the sensors are the tip of the spear
for the subsystem. As such, the sensors are the low-

est level the StateCharts would reach in this architec-
ture. Each component state will be a function of sig-
nals gathered in the system. The sensors are the means
by which information is collected and relayed in the
PHM system. The mapping between sensor readings
and component states is critical for a PHM system.

3 STATECHARTS BASED REASONER

Demonstrated in Figure 2 is the modular nature of FFL
reasoner logic formation. The top three layers, Func-
tional Model, Configurational Flow Graph, and Func-
tion Failure Logic are taken from previous work (Kur-
toglu and Tumer, 2008a). For two types of compo-
nents, a pipe and a valve, the configuration and func-
tional flow graphs are shown. Below these graphi-
cal representations, the FFL logic that corresponds to
those components is written in common if-then-else fi-
nite state logic. Each possible finite state combination
is listed with a designated output for each combination
set. From this, each component in a function stream
has a finite impact on the larger function that a partic-
ular component serves.

The third layer in the diagram, the StateCharts
model, represents the function failure logic in a graphi-
cal sense. Each component is given an individual Stat-
eChart, which contains a control signal input, a sen-
sor input, and a finite state output. The single control
signal has arrows emanating from it corresponding to
the possible signal inputs. The arrows are labeled with
edge labels that indicate the condition that leads to the
state corresponding to that logical flow. Each signal
input possibility points to either the next piece of in-
formation the reasoner needs or to a state conclusion.
When the arrows lead to the next needed information
source, the process repeats until a finite state, on the
far right of the StateChart, is reached. From that fi-
nite state the arrows then lead up the hierarchy to the
function above that particular StateChart. That func-
tion (not shown for space considerations) will have a
separate StateChart that will have command inputs as
well as finite state conditions reported from all subor-
dinate components or functions.

Because the FFIP architecture aims to model the
propagation of component failures, the input to the
FFL reasoner simulation occurs at the component
level. Essentially, all logic arrows will point away
from this level of the StateCharts hierarchy. This re-
sults in information being passed up to functional lev-
els resulting in outputs with regard to overall system
function, and information being passed down to the
sensor level resulting in outputs that demonstrate the
sensor signature of that failure. As failures propagate
down a functional path, the state of other components
may change. This results in another component change
of state input and thus additional expected sensor read-
ing output from the reasoner. This process differs from
the Function Failure Logic previously used in that: 1)
the logic is laid out in a visually clear manner, as op-
posed to hidden in code buried in cells, and, 2) these
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individual components do not determine the state of
the overall system functions, but input data to a higher
level StateChart that determines the state of the higher
level functions.

4 APPLICATION TO PHM DEVELOPMENT

The existing FFIP framework is briefly explained us-
ing a moderately complex Liquid Fuel Rocket Engine
(LFRE) architecture as a working example, shown in
Figure 3 (Wu, 2005; Sutton, 1986). The model pre-
sented here is a basic staged combustion model sim-
ilar to those used in the Space Shuttle operated by
NASA. In this model, liquid hydrogen is used as both
the fuel as well as the coolant. The first pressure boost
the hydrogen flow receives comes in the low pressure
fuel booster, which is driven by hot gasified hydrogen
carrying heat energy from the regeneratively cooled
tubular nozzle. A coolant control valve regulates the
amount of hydrogen that flows through the regenera-
tively cooled nozzle sending the hydrogen that is not
used for cooling directly to the preburners. The hy-
drogen is combusted in preburners with some of the
oxygen that drives the turbopumps on both the fuel
and oxidizer flows. The low-pressure oxygen turbop-
ump is driven by liquid oxygen pressurized by the
high-pressure oxygen turbopump that is connected to
the oxygen side of the preburner. Some of the oxy-
gen is burned in the preburners and the remainder is
injected into the main combustion chamber where it
burns with the hot gasses generated in the preburners
(Sutton, 1986).

The configurational flow graph (CFG), shown in
Figure 4, lists the components and the flows between
them. The configurational flow graph maps directly to
the functional model (FM), shown in Figure 5, where
the functions of the system are clearly laid out. The
flows delineate the transfer of signal, energy, and ma-
terial between the different functions and components.
In prior FFIP applications in the literature, the flows of
signal, energy, and material are considered separately,
but in this example, some of the hydrogen flow and
some of the oxygen flow are represented as both en-
ergy and material in the same flow as energy is carried
back to the low pressure turbopumps by these material
flows.

Using the finite state logic developed earlier, a Func-
tion Failure Logic (FFL) reasoner is developed that re-
flects this LFRE system. Although the finite details
about the operating parameters of this system have not
been developed, a simplified early stage simulation
tool is developed that will show how the failures of
components within the system will propagate through
the system and potentially affect a change in the over-
all system state.

Figure 6 illustrates the FFIP simulation results of
the first scenario in which the failed component is the
coolant regulator valve. In this LFRE architecture, the
fuel, hydrogen, also acts as a coolant for the main noz-
zle. The heat that the hydrogen absorbs as a coolant is

used to power the low pressure fuel booster that draws
the hydrogen from upstream in the system. At time
step one, the coolant control valve fails in the closed
state (due to clogging, or malfunction). This results
in no hydrogen bypassing the nozzle heat exchanger
and all the hydrogen coming from the fuel turbopump
going through the nozzle heat exchanger. As a result,
more thermal energy is delivered to the low pressure
turbopump thus increasing the overall flow of hydro-
gen to the system over some period of time. This
is modeled through the system behavioral simulator.
Although impossible to model with finite accuracy at
an early design stage, indications are that the system
would stabilize at this slightly higher flow of hydrogen,
and, assuming nominal flow rates, would not result
in catastrophic component failure immediately. Given
enough time, however, the system will expend fuel at
a rate faster than nominally, and changes in vibrations
could eventually result in catastrophic failure.

Figure 7 shows a StateCharts representation to
demonstrate that the Guide Liquid function for the fuel
flow is a function of eight different components. One
of those components is the inlet valve, which is a func-
tion of command signals, the fuel flow meter, and the
heuristics of the remaining fuel flow sensors. The solid
black input ports indicate a base signal, and the hollow
circles indicate an output from a subfunction below the
Inlet Valve component state. The coolant control valve
is another component inputting into the Guide Fuel
function with associated sensor signals. The remain-
ing components listed have similar StateCharts devel-
oped. The Coolant Control Valve StateChart lists the
finite states that are input to the StateChart and the fi-
nite state outputs, sent up the StateCharts hierarchy as
well as the expected control signal and sensor states
that are down a level in the hierarchy.

A key piece of information drawn from this
StateCharts-based representation is an early assess-
ment of sensor placement effectiveness. As each func-
tion of the system has a specific StateCharts hierarchy,
we can see that determining the health of each func-
tion that is ultimately reliant on the system sensors
and command inputs. Although not explicitly listed
here for space concerns, one can readily see that the
Guide Liquid function can be followed down the Stat-
eCharts hierarchy to a sensor fingerprint for the vari-
ous finite states of that particular function. In such a
case, PHM designers can see whether each function
state has a unique fingerprint for the PHM system to
read and assess. This may require more sensors in spe-
cific locations while other instances may reveal excess
information and allow for the reduction of sensors.

In the edge labels of the Coolant Control Valve Stat-
eChart, one can see that the failed states also have
numbers next to them. These demonstrate the Time to
Failure Propagation discussed in earlier work (Kramer
and Tumer, 2009). Again, these are order of magnitude
estimates as to how quickly a failure propagates down-
stream from where it happens. (1 indicates slow prop-
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agation, 2 is moderate, and 3 is rapid.) These estimates
are important for two reasons. First, they help to dif-
ferentiate between failures that PHM can be expected
to respond to, and second, they add a small amount of
additional detail about system behavior. When State-
Charts architectures are applied to embedded system
designs, there are functions that imbed a delay into the
process, such as the delay between receipt of a phone
call and when an answering machine picks up. For
FFL simulation, a slow propagating failure can have
the propagation delayed by a few time steps giving de-
signers a more accurate look at system behavior before
delving into high detail physics-based models.

As this is a preliminary look at the PHM architec-
ture from an early stage, the details such as timing,
message passing, clock usage, and other more detailed
tools of StateCharts applications are not yet applied in
a final state. Time is addressed, but only in an order
of magnitude fashion as a tool for estimating PHM re-
sponse abilities.

5 DESIGNING PHM SYSTEM RESPONSE

With the system modeled as a finite state machine
that builds the Function Failure Logic (FFL), engineers
then can address PHM response through building fur-
ther on the StateCharts model. So far, we have demon-
strated that StateCharts can be used to translate the hi-
erarchy of the complex system into an embedded sys-

tems specification language. This representation clar-
ifies the finite state cause and effect relationships be-
tween the system, the functions, subfunctions, individ-
ual components, and the sensors with which the PHM
sees the system. This is important when building the
FFL reasoner for an early state system simulation used
to study failure propagation and impact on larger func-
tional structures.

PHM response, however, cannot fit within the direct
hierarchy of the system simulation as it acts throughout
the entire complex system through its embedded na-
ture. The responses initiated by PHM will come down
the hierarchy in the form of command signals, and the
input to the PHM response will come up through the
hierarchy in the form of sensor signals. As such, the
PHM subsystem StateCharts will exist next to the sys-
tem simulation hierarchy.

When a failure is noted in the existing StateCharts
architecture and a PHM response is identified, the Stat-
eChart for that component will also send a message
over to the PHM response hierarchy, as shown in Fig-
ure 8. These StateCharts, based on responses deter-
mined through the FFIP analysis process as well as
other failure analysis techniques, will represent the au-
tomatic responses the PHM system will take within the
overall system (Harel et al., 1990). This logic should
be separate from the finite state logic already built into
the system so as to continue to analyze the system logic



att=0 att=1 att=3 att=4 att=5
Component Modes
Inlet Valve nominal nominal nominal nominal high
Low Pressure Fuel Booster nominal on [nominal on [nominal on high
Fuel turbopump nominal on [nominal on [nominal on nominal on high
Fuel valve nominal on |nominal on [nominal on nominal on nominal on
Fuel valve controller nominal on [nominal on [nominal on nominal on nominal on
Coolant control valve nominal failed off
Coolant valve controller nominal on [nominal on [nominal on nominal on nominal on
Regenerati vely cooled tubular nozzle nominal nominal high
Preburner nominal on [nominal on [nominal on nominal on nominal on
Low pressure turbopump nominal on |nominal on [nominal on nominal on high
Preburner nominal on |nominal on [nominal on nominal on degraded
Main combusti on Chamber nominal nominal nominal nominal degraded
sensor nominal on [nominal on [nominal on nominal on nominal on
State Variables
Liquid Flow nominal nominal nominal nominal high
Pressure increase nominal nominal nominal high
Liquid Flow nominal nominal nominal high
Pressure increase nominal nominal nominal nominal nominal
Liquid Flow nominal nominal zero
Pressure control nominal zero
Liquid Flow nominal nominal high
Combusti on nominal nominal nominal nominal degraded
Liquid Flow (Pipe 6) nominal nominal nominal high
Liquid Flow (Pipe 7) nominal nominal nominal high
Control Signal Flow nominal nominal nominal nominal nominal
Status Signal Flow nominal nominal nominal nominal nominal
System Functi ons
Import Liquid (inlet pipe) operati ng |operati ng operati ng operati ng
Guide Liquid (LP) operati ng |operati ng operati ng operati ng
Guide Liquid (Turbopump) operati ng |operati ng operati ng operati ng
Guide Liquid (Fuel Valve) operati ng |operati ng operati ng operati ng
Guide Liquid (Coolant control valve) lost
Process signal (Coolant valve controller) operati ng |operati ng operati ng operati ng
Guide liquid, heat (regen nozzle) operati ng |[high
Guide liquid, heat (preburner) operati ng |operati ng high
Guide liquid, heat (LP turbopump) operati ng |operati ng operati ng operati ng
Guide liquid, (Preburner) operati ng |operati ng operati ng operati ng
Guide liquid, thrust (Main Combusti on Chamber) operati ng |operati ng operati ng operati ng
Measure fl ow operati ng [operati ng operati ng operati ng
Measure vibrati on operati ng |operati ng operati ng operati ng

Figure 6: Simulation

: FFL Logic Applied to LFRE Coolant Valve Failure.
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with and without PHM response.

Before the FFIP process can be evolved into a Stat-
eCharts based preliminary embedded system design
specification from the FFL reasoner, it is worth noting
that the relationship between expected state values and
expected sensor outputs is made clear once again. Al-
though the engineers designing the system have intu-
ition, experience, and imagination to rely on for iden-
tifying failures, the PHM system has only sensor sig-
nals. This once again underscores the idea of a failure
having a sensor fingerprint that is different from other
failures, thus enabling a PHM program to identify the
specific failure and enact the correct response.

This is also a stage that can make extensive use of
other established early design risk and reliability tech-
niques. Specifically, this is a stage where engineers
must brainstorm about potential failures and then ask
about what to do to respond to, mitigate, or even ignore
this failure. Mitigation may require partial or com-
plete system redesign, but if engineers determine that
system response is the correct action, either the em-
bedded PHM system or the operators will be responsi-
ble for initiating that response. Currently, in industry,
FMECA is used to build health management systems
through defining needs and coding to specific scenar-
ios. PHM goes further by being responsible for detect-
ing the failure and initiating response without operator
command. These responses have their programming
begin at the conceptual design stage in the PHM re-
sponse StateCharts.

In previous work to augment FFIP for implementa-
tion to LFRE design, PHM response was discussed for
handling a slow propagating valve failure (Kramer and
Tumer, 2009). In the LFRE system described above,
the coolant control valve was simulated failed closed

forcing all the fuel to flow through the regeneratively
cooled tubular nozzle. As the fuel then acts as a mate-
rial and energy transport carrying thermal energy from
the nozzle back up to the low pressure fuel booster
turbopump, the more fluid going through the cooling
apparatus on the nozzle carries, the more thermal en-
ergy to the fuel booster turbopump. The additional en-
ergy will drive the pump faster thus pushing more fuel
into the system. With more fuel pushed in, the fuel-
oxygen ratios will be different than design parameters.
At this stage it is impossible to determine exactly how
the system would respond to the coolant control valve
failure, but we can confidently predict that the change
in fuel flow will cause a change in vibrations within
the system, and that system failures due to vibration
can be catastrophic, but usually require time to prop-
agate. As the failure has potentially significant conse-
quences, and there is time enough for PHM to respond,
engineers can employ mitigation expertise to program
a PHM response, as shown in Figure 9. In this case, we
chose to regulate the fuel inlet valve. Although more
energy is being carried to the fuel booster turbopump,
the fuel flow is regulated to nominal levels with an-
other valve. This response is fed into the upper levels
of the StateCharts hierarchy in the form of a command
signal changing the state of a component. If the State-
Charts are programmed correctly, this change of state
propagates through the StateCharts hierarchy resulting
in nominal fuel mixtures and thus nominal vibrations.

6 RELIABILITY CONSIDERATIONS
6.1 StateCharts for Sensor Reliability

Knowing the fingerprint of each StateChart can allow
for assessment of components that may not have direct
sensor data. By using data from elsewhere in the sys-



tem, understanding the hierarchical relationships be-
tween components and system functions, and under-
standing how failures will propagate through a system,
an intelligent PHM can determine the state of a given
component without a direct reading from that compo-
nent through virtual sensors.

As each failure mode will have a fingerprint com-
posed of sensor readings informing the PHM system
as to the health of the components involved in each
function, engineers can begin to address fingerprints
that are over informed, where there may be excess sen-
sor data, and to address fingerprints that are under in-
formed, where there is not enough sensor data. From
an early stage, PHM hardware efficiency becomes a
consideration at an early stage and can inform the de-
signers about the efficiency of the overall system de-
sign.

StateCharts modular programming construct can ad-
dress the development of such subroutines much ear-
lier in the design stage. As soon as a sensor type is
selected for a specific application, software engineers
can begin to consider the computational needs of that
set of sensor arrangements. Practically, there is exten-
sive research done in the field of sensor signal inter-
pretation for many complex systems, and the search
for matching existing work can begin during the FFIP
analysis stage if the software development of PHM
development is also developed at this point. Given
that many systems will have specific complex heuris-
tic needs that are not yet developed, applying a Stat-
eCharts paradigm to the FFIP process addresses these
needs earlier in the design process.

Sensor reliability can also begin to be addressed at
this stage. Although this process will not inherently
improve sensor reliability, it can be used to account for
reliability issues early on. Within the heuristics of each
StateChart, allowances can be made for the known re-
liability levels of sensors. As sensors rely on a huge
range of technologies, and there is data pertaining to
sensor types and their associated reliability levels, en-
gineers can begin to address the risk and reliability
analysis of the PHM subsystem hardware. This knowl-
edge can greatly reduce the amount of reactions based
on faulty sensor readings, and increase the odds of cor-
rectly recognizing and diagnosing a failure that may
not fit the entire StateCharts fingerprint for that func-
tional failure. In essence, as FFIP is used to address
risk and reliability of a complex system, and FFIP is
demonstrated as a tool to build a PHM system that ad-
dresses system reliability and response to failures, this
process applies the same principles to the PHM sub-
system itself.

As stated above, sensors form the foundational level
of the StateCharts hierarchy. As it stands, FFIP con-
siders the physical components and some of the sig-
nals required to control those physical components. A
PHM system requires more information, even at an
early design stage. As such, it is not difficult for ex-
perienced engineers to guess where sensors might be

placed in a complex system, even at the earliest stages
of design. An experience based starting point is suf-
ficient to begin the FFIP based PHM software design
and analysis through a StateCharts based architecture.

6.2 StateCharts for Software Reliability

The process discussed thus far is based on FFIP, which
addresses the potential hardware component failures
early in a complex system design. The rapidly evolv-
ing field of robust software design also employs meth-
ods that address potential software failures and the
subsequent results of those failures while early in the
design process. Methodologies are employed that ad-
dress software failure from early specification devel-
opment through testing with simulation platforms all
the way through to final product validation (Tayler
and Hoek, 2007; Caporuscio et al., 2007; Lyu, 2007,
Gallardo et al., 2006; McKelvin et al., 2005; Gra-
ham, 2005). Some of these processes are modeled
on and in many ways emulate processes applied to
mechanical systems. Regardless of which process is
used, this StateCharts based PHM language develop-
ment provides a starting point for addressing the relia-
bility of the software side of any given PHM design. In
fact, many embedded systems development processes
employ running the programs through specifically de-
signed testing platforms. As software reliability re-
search has only found methods to find failures as op-
posed to confirm the absence of potential failures in
software code, the earlier the validation process can
begin, the better.

7 CONCLUSIONS AND FUTURE WORK

This work presents an initial step in using the Function
Failure Identification Propagation (FFIP) framework
as a tool for PHM design. Through the addition of
embedded systems design fundamentals, specifically,
a StateCharts representation, a process developed for
complex system mechanical interactions can now con-
sider directly the complex computational architectures
required to monitor and respond to failures in com-
plex systems. The evolution of complex systems is
quickly shaping most modern complex systems into
electromechanical systems highly dependent on com-
puterized operations. In this work, FFIP is transformed
into a risk and reliability analysis tool capable of mod-
eling and capturing the fundamental consequences of
failures in these systems from an early design stage,
where design corrections are cheapest and easiest.
Although this research has focused on PHM de-
sign based upon a failure analysis methodology, the
rapidly evolving field of unified modeling languages,
such as SysML, SystemC and SpecC, should be the
future tool used to design systems complex enough to
require PHM architectures. As complex mechanical
systems become more reliant on programming for con-
trol and response, consideration of the programming
architecture at a very early stage becomes inescapable.
This work, in many ways, is a step in that trend and



it has transitioned from considering the physical archi-
tecture of a complex mechanical system to also consid-
ering the computational architecture in monitoring the
health of that complex system. Extrapolation to incor-
porating the entire command and control architecture
into this process is well within the realm of possibility.
The process with which to do that resides in unified
modeling methodologies. As is the case with much
in embedded system language development, the field
is moving quickly and there are several processes that
may eventually establish as industry or universal stan-
dards. The work herein is generalized enough to fit
into many of those processes as is. Challenges come
as the design becomes more refined and application
specific needs become clear, such as mixed signal al-
locations, message passing for distributed systems, ap-
plication specific circuit needs.
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