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ABSTRACT 

Situational awareness and decision-making are 

necessary to identify and select the optimal set 

of mutually non-exclusive hypothesis in order 

to maximize mission success by adapting 

system behavior accordingly. This paper 

presents a hierarchical and decentralized 

approach for integrated damage assessment 

and trajectory re-planning in aircraft with 

uncertainties in navigational decision-making. 

Aircraft navigation can be safely accomplished 

by properly addressing the following: 

decision-making, obstacle perception, aircraft 

state estimation, and aircraft control. When in-

flight failures or damage occur resulting in an 

emergency, rapid and precise decision-making 

under imprecise information is required in 

order to regain and maintain control of the 

aircraft. In order to fly the pre-planned aircraft 

trajectory and complete safe landing, the 

uncertainties in system dynamics of the 

damaged aircraft need to be estimated and 

incorporated at the level of motion re-

planning. The damaged aircraft is simulated 

via a simplified kinematic model. The 

different sources and perspectives of 

uncertainties in the damage assessment 

process and post-failure trajectory re-planning 

are presented. The decision-making process is 

developed via the Dempster-Shafer evidence 

theory. The objective of the trajectory re-

planning is to arrive at a target position while 

maximizing the safety of the aircraft given 

uncertain conditions. Simulations are 

presented for an emergency motion planning 

and landing that takes into account aircraft 

dynamics, path complexity, distance to landing 

site, runway characteristics, and subjective 

human decision.
*
 

1. INTRODUCTION 

In the past two decades, significant effort has been 

made towards the development of fault-detection-

isolation- recovery (FDIR), and prognostics-health-

management (PHM) sub-systems in order to increase 

safety and performance of aircraft systems (Nguyen et 

al, 2006; Jian and Kun, 2008). Discrete damage events, 

both on ground and in-flight, represent a threat to 

aircraft systems creating a distress event. Sources of 

discrete damage include hail impact, lightning strike, 

transport and handling damage, and foreign object 

impact. In addition, the high number of flight-cycles 

causes deteriorating permanent damage (Lopez et al, 

2008). Under distress conditions, system dynamics may 

differ considerably from nominal, and the flight control 

performance may be significantly reduced. In such 

conditions, the distressed vehicle may not be capable of 

performing the mission goals which includes safe 

landing. Under distress conditions, pilot requires 

integration of obstacle awareness with intelligent 

decision-making, path planning and trajectory 

generation to achieve mission success. Decisions need 

be made during flight under uncertain conditions, such 

as limited information on failure conditions and 

cluttered environment. In this work, the framework for 

a distressed aircraft in-flight re-planning for optimal-

length trajectories to safe landing is developed. The 

method presented here is designed to be used in 

conjunction with an integrated vehicle health 

monitoring (IVHM) and fault tolerant control (FTC) 

systems.  

                                                 
*
 Israel Lopez et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author and source 

are credited. 
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This paper develops a hierarchical approach for 

integrated decision-making, vehicle health monitoring, 

and motion planning under uncertain conditions. The 

objective is to achieve mission success, including safe 

landing, under the occurrence of distress events. The 

integrated decision, monitoring, and motion planning is 

demonstrated by means of 2D and 3D simulations of a 

simplified aircraft kinematics model. 

2. INTEGRATED VEHICLE HEALTH 

MONITORING (IVHM) 

The main objective of integrated vehicle health 

monitoring (IVHM) is to provide up-to-date vehicle 

health information via sensors, software and design. 

The information gathered is to be acted upon by 

decision-making mechanisms with intelligent reasoning 

to maximize a safe outcome probability. For a 

distressed aircraft, an IVHM system would provide 

valuable information to an adaptive or reconfigurable 

control system to achieve effective failure 

accommodation while updating flight performance 

regimes and determining the appropriate set of 

decisions followed by responses to complete mission to 

safe landing (Fahroo and Doma, 2004; Lopez et al, 

2008). The generation of a flyable trajectory relies 

upon the knowledge of the vehicle’s dynamic behavior 

and constraints. The dynamic characteristics are always 

approximate due to the uncertain knowledge, or the 

prediction methods used especially under vehicle 

faults, component failures and/or structural damage. 

The emergence and successful applications of PHM 

technologies over the last decade have given rise to 

proactive capabilities that can perform condition 

monitoring, detection of anomalies (faults), overall 

system state, predict system impacts, contingency 

management, and communication of contextual 

situational awareness to control mechanisms and 

system operators of human or autopilots. One of the 

areas of interest in implementing comprehensive IVHM 

functionality includes the detection and localization of 

impact events on structural and flight control surfaces.  

In this paper, we demonstrate a proposed damage 

assessment approach by simulating an aircraft wing 

modeled as an isotropic aluminum cantilever beam of 

constant rectangular cross-section and an aspect ratio of 

9.84. A recently proposed distance similarity matrix 

and combined dimensional reduction (D-R) technique, 

see (Lopez et al, 2008; Lopez et al, 2009) for more 

details, was applied to vibration data obtained from a 

base-excited cantilever beam. These techniques can 

assess the location and damage level resulting from 

impacts that may occur during flight. The beam was 

instrumented with 5-accelerometers at well-spaced 

discrete locations, and frequency response data was 

collected. Four different conditions were tested to 

simulate increasing structural damage where increasing 

mass quantities were placed between two of the system 

sensors so as to simulate increasing loss of stiffness 

levels. 

 

Figure 1. Combined dimensional reduction methods. 

NoMass: sample 1-15, Mass-1: sample 16-30, Mass-2: 

sample 31-45, Mass-3: sample 46-60. 

 

 
Figure 2. Localization results for Dataset-2, damage 

induced between sensors 3 and 4. Axis X and Y 
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represent sensor number, and Z axis represents the 

anomaly level. 

Figure 1 shows the damage detection and tracking 

results obtained from vibration data. The upper and 

lower 3σ  standard deviation limits of nominal 

structure are plotted. The mean index results indicate a 

difference among the multiple damaged datasets.  The 

anomaly indicator index jumps both significantly and 

proportionally during the setup changes from an 

undamaged case to incremental levels of damage, The 

results of the distance similarity mean index in 

combination with the combined D-R technique 

demonstrate that not only can abrupt change detection 

can be achieved, but tracking of change progression 

can be performed, which would be very applicable to 

damage assessment of time-varying structures, such as 

deteriorating battle damage. Figure 2 shows the damage 

localization obtained from the vibration experiment 

when the induced damage was set between sensors 3 

and 4. The damage localization results of two data-

driven methods, local linear embedding (LLE) and a 

combined method proposed in (Lopez et al, 2009). 

Both methods clearly indicate that large anomalies 

exist in relation to sensor 3 and 4. As previously stated, 

the experimental setup is representative of a damaged 

aircraft wing. By exploiting the vibrational 

characteristics of the cantilever wing-like structure, 

damage detection and localization was achieved by 

data-driven methods.  

The information generated from these sub-systems 

can be integrated in-flight in response to vehicle 

damage and/or failure using updated dynamic 

constraints that reflect reduced vehicle maneuverability 

allowing for re-planning and re-shaping of the 

projected trajectory. For a nearly level steady 

coordinated turn and small-climb-angle approximation, 

the turn radius can be expressed in terms of load factor, 

n , and airspeed, V , as 2 2/ 1R V g n= − , where g  is 

the gravitational acceleration. The load factor is an 

important parameter for all aircraft maneuvers 

involving curved flight. In damage events, significant 

portions of the aircraft's wing surface may be lost and 

would result in significant loss of lift and asymmetric 

mass properties. These combined changes would 

manifest in unstable and anomalous flight conditions. 

In addition, load carrying capacity of damaged aircraft 

would be reduced, which can result in further damage 

to critical lifting surfaces. (Nguyen et al, 2006) and 

(Sarigul-Klijn et al, 2008) simulated damaged aircraft 

flight dynamics, derived stability derivatives, and 

demonstrated that damaged wing results in significant 

reduction of lift coefficient, which minimizes the 

turning radius capability, reduction in lift and pitch 

moment causing an inability to hold attitude and flight 

path angle, among other flight envelope complications. 

According to the results of Fig. 2, in the wing-like 

beam experiment, we studied and were able to detect 

three levels of damage. According to their degree of 

damage, fuzzy labels were assigned to the undamaged 

state and the three damage levels as shown in Fig. 4 and 

Table 1. The figure shows one membership function 

with four linguistic variables used from which a 

minimum turning radius is given, 
min

R . The fuzzy 

labels are then sent to the inference engine. Based on 

the rule base, the inference engine digests the damage 

fuzzy labels and reaches a decision. For example, given 

a two-airport landing scenario, if damage is severe, then 

decision would indicate to land at closest airport since 

decreasing safe landing probability is inversely 

proportional to decreased time-in-flight after severe 

damage has been indicated. The types of failures 

addressed in this work are not necessarily found using 

derived stability derivatives or parameter state 

estimation. The approach here is to use a Dempster-

Shafer (Shafer, 1976) inference system to make 

decisions based on the sampled diagnostic monitoring 

readings and a rule base. Diagnostic information is 

inputted to the expert system as a defined "degree of 

damage" to which the damage detected belongs to.  

Table 1. Fuzzy Linguistic Variables 

Linguistic 

Variable 

Definition Rmin 

ND No Damage 1 

LD Low Damage 2 

MD Moderate Damage 3 

SD Severe Damage 4 

 

3. TRAJECTORY GENERATION 

In this section, we present the distressed vehicle 

guidance problem. We assume that we have perfect 

knowledge of the terrain.  The vehicle guidance 

problem is shown in Figure 3(a), where the vehicle’s 

k -th position is given by ( ), , , ,
k k k k k

x y z θ ϕ . For the 

initial path planning, we will assume that the vehicle 

can move according to a heading angle ϕ , flight path 

angle θ  and a distance β . The vehicle guidance 

problem, where the vehicle’s ( )1k +  position is given  
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�

�

 (1) 

where z  is the height variable, x and y are the ground-

tracking position variables.  
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(a) 

 

(b) 

Figure 3. (a) Vehicle guidance problem; (b) 2D Reeds-Shepp curves integrated to obtain 3D path; adapted 

from (Hwangbo et al, 2007). 

 

The sum of the first two terms represents the 

desired position, and the third term represents path 

uncertainty term due to inability of vehicle in achieving 

desired position. The uncertainty components 

, ,ϕ θ β∆ ∆ ∆  are distributed accordingly to some 

assumed known probability density function. The more 

uncertainty exists in the aircraft's performance, the 

larger these parameters are, which would be the case 

given the occurrence of a distressed event. The path 

planning is formulated as a steepest descent problem 

optimization, where it is assumed that the goal location 

(safest landing site), is the minimum point of the 

dimensional domain (Passino, 2005). Goal function is 

given by 

( ) [ ] [ ], , , , ,
T

T TT T

g g g g gJ x y x y x y x y x y      = − −         
 (2) 

where ( ),g gx y  is the desired final goal position.  

In order to represent the obstacles, we use multiple 

Gaussian functions to generate a potential field or 

surface as given by 

    ( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

2 2

,1 ,1 ,1

2 2

,2 ,2 ,2

2 2

, , ,
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T
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m x x y y

 − + − 
 
 − + −
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 
 − + − 
 
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  (3) 

where 
,o n

m  is a shape parameter, and ( ), ,,o n o nx y  is the 

center location of n
th

 obstacle. 

The objective function is chosen to be a weighted 

sum for a 2-airport scenario is given by 

( ) ( ) ( ) ( ),1 ,1 ,2 ,2
, , , ,

g g g g o o
J x y w J x y w J x y w J x y= + +  (4) 

where 
,g n

w  is a scale factor for each goal function, 

which determines preferred final goal, and 
o

w  is a scale 

factor used to determine the risk level with respect to 

obstacle avoidance. The weights specify the relative 

importance of achieving obstacle avoidance and 

reaching the desired goal. The choice of these weights 

is rather important since it will affect the shape of 

trajectory and avoide obstacles. The following section 

will describe the analysis done via Dempster-Shafer 

(D-S) evidence theory to generate such weights. At 

each position ( ),
k k

x y , the objective function J  is 

computed at Ns values ( ), ,  1, 2,..,
i i

k k sx y i N= , regularly 

spaced on a circle of radius r  around the k -th vehicle 

position, by finding 

 ( ) ( )* *
, , ,  1,2,...,

i i

k k k k sJ x y J x y i N≤ =  (5) 

which provides direction 
k

θ  for vehicle’s movement. 

The path generated using the steepest descent 

method is piecewise linear and not suitable for an 

aircraft with kinematics and dynamic constraints. To 

smoothly connect this piecewise path, a cubic Bezier 

curve smoothing method is utilized, for further details 

see (Sarfraz and Khan, 2002). After determining the 

control points (fixes in this case), Bezier curves can be 

fitted to path generated which will result in a smooth 

path using Bezier interpolation. As an input, the 

maximum allowed square distance error between fitted 

path and smooth Bezier path has is given. 

3.1 Length-Optimal Trajectory Generation 

In this section, we study the problem of determining a 

length-optimal trajectory from a specified initial 
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configuration to a specified final configuration while 

considering the non-holonomic constraint and a limited 

turning radius of an air-vehicle in a ground track setup. 

The length-optimal path, proportional to shortest time 

types, is based on Reeds and Shepp (R-S) vehicle that 

can move forward and backward at a constant velocity. 

Subsequently, the sufficient family of the optimal 

trajectories can be obtained by combining the 

Pontryagin’s Minimum Principle (PMP) with Lie 

algebras. The optimal trajectory presented in this paper 

is based on the work by (Wang et al, 2008) which used 

geometric local reasoning for achieving the sufficient 

family by PMP and a global reasoning for eliminating 

non-optimal trajectories within the sufficient family. 

The kinematic model of the vehicle described in 

Eq. (1) can be represented as 

 ( ) ( )q uf q vg q= +�  (6) 

where ( ), ,q x y θ= , ( ) ( ) ( )( )cos ,sin ,0
T

f q θ θ= , 

( ) ( )0,0,1
T

g q = , u  and v  describe, respectively, the 

linear and angular velocities of the vehicle.  

The time-optimal trajectories of the vehicle and the 

path curves are based on a convexified Reeds-Shepp 

model. The notations of the base curves for the 

trajectory turning directions are described by the letters 

L, R, and S, respectively, left ( 1v = ), right ( 1v = − ) 

and straight ( 0v = ). The + or – indicates that the 

motion is forward ( 1u = ) or backward ( 1u = − ). We 

want to find an admissible control ( ),u v  which, 

subject to Eq. (8), minimizes the total travel time. First, 

the adjoint vector, β , is introduced and we define 

 ( ) ( ) ( ) ( ) ( ) ( ), ,  ,t t f q t t g qγ β ψ β= =  (7) 

where ( )tγ  and ( )tψ  are called the u -switching 

function and v -switching function, respectively. The 

Hamiltonian function, H , is expressed as (Chitsaz and 

LaValle, 2007) 

 ( ) ( ) ( ) ( ) ( ) ( ),H f q u g q v t u t t v tβ γ ψ= + = + (8) 

From PMP, let the optimal control obtained be 

( ) ( )( )* *
,u t v t  and ( )*

q t  the corresponding state 

trajectory. Now, let ( )tβ  be a nontrivial solution to the 

adjoint equation 

 ( ) ( )
T

q

f g
t H u v t

q q
β β

 ∂ ∂
= −∇ = − + 

∂ ∂ 

�  (9) 

Minimizing the Hamiltonian function, we get 

( ) ( )( )*
u t sign tγ= − , ( ) ( )( )*

v t sign tψ= − . By PMP, 

there is a constant 
0

β  such that ( ) ( )0 t tβ γ ψ= + . 

Let ( ) ( ) ( ),h q g q f q=     denote the Lie bracket of the 

vector field g and f . Introducing ( ) ( ) ( ),t q t f tχ = , 

then we obtain 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

t v t t

t u t t

t v t t

γ χ

ψ χ

χ ψ

=

= −

= −

�

�

�

 (10) 

According to the above geometric reasoning, any 

two configurations, i.e. waypoints, of the vehicle can be 

linked by a minimum-length trajectory that belongs to 

the sufficient family of trajectories with additional 

global reasoning. For additional details on the optimal 

trajectory properties and categories please refer to 

(Wang, 2008). The optimal trajectory work based on R-

S curves is used to integrate the k  waypoint 

configuration, ( ), ,
k k k

x y θ , to the next 1k +  waypoint, 

( )1 1 1
, ,

k k k
x y θ+ + + , of the modeled vehicle. The 

waypoints are selected from the smooth Bezier curve.  

Reeds-Shepp curves are designed for ground 

tracking path computation. In order to apply Reeds-

Shepp curves to 3D motion, the dimensionality needs to 

be adjusted. The 3D vehicle trajectory between two 

waypoints is decomposed onto two orthogonal planes, 

i.e. xy-plane and yz-plane; see Fig. 3(b). 2D Reeds-

Shepp curves are computed from both planes with 

projected configurations.  

 

4. DECISION-MAKING 

Given the scenario of a damaged airplane, a pilot may 

include various aspects of relevant information whose 

mapping to context information can be extremely 

complicated or fuzzy. Our goal is to maximize the 

probability or possibility of safe landing in which the 

vehicle’s sensory data is fused with the pilot’s 

perception and reasoning process in terms of 

environmental conditions and airport selection. To 

properly represent a situation of unknown or subjective 

decisions, it is necessary to allow interval-based 

assessment functions for which the Dempster-Shafer 

(D-S) theory (Shafer, 1976) provides a representation 

scheme and reasoning mechanisms for this context. The 

basic entity in the D-S theory is a set of exclusive and 

exhaustive hypotheses about some problem domain. It 

is called the frame of discernment, denoted as Θ . The 

degree of belief in each hypothesis is represented by a 

real number in [0,1]. The basic belief assignment 

(BBA) is a function : [0,1]m Ψ → , where Ψ  is the set 

of all subsets of Θ , the power set of Θ  is 2ΘΨ = . The 

function m  can be interpreted as distributing belief to 

each of element in Ψ , with the following criteria 

satisfied: 

 ( ) ( )1, 0
A

m A m
∈Ψ

= ∅ =∑  (11) 
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In evidence theory, we do not assign any degree of 

belief to the empty proposition ∅  and we ignore the 

possibility for an uncertain parameter to be allocated 

outside of the frame of discernment. Thus, the element 

A is assigned a basic belief number ( )m A  describing 

the degree of belief that is committed exclusively to A. 

Note that a situation of total ignorance is characterized 

by ( ) 1m Θ = . The total evidence that is attributed to A 

is the sum of all probability numbers assigned to A and 

its subsets 

 ( ) ( )
:E E A

Bel A m E
∀ ⊆

= ∑  (12) 

Given that we have n  number of information 

sources affecting decision-making, then each 

information source 
i

S  will contribute by assigning its 

beliefs over Θ . The assignment function of each source 

is denoted by
i

m . Thus, according to the information 

source’s observation, the probability that the safest 

airport is indicated by the evidence 

interval ( ) ( ),i iBel A Pl A   , which reduces to a single 

point in the case of Bayesian belief function (BBF). 

The lower bound of interval is the belief function, 

which amounts for all evidence 
k

E  that supports the 

airport selection A 

 ( ) ( )
k

i i k

E A

Bel A m E
⊆

= ∑  (13) 

The upper bound of the evidence interval is the 

plausibility function, which accounts for all the 

observations that do not rule out the selection of airport 

A 

 ( ) ( ) ( )1 1
k

i i i k

E A

Pl A Bel A m E
∩ ≠∅

= − = − ∑  (14) 

Because of uncertainty, the degree of belief for 

selecting Airport A and the degree of belief for a 

negation of selecting airport A do not have to sum up to 

1. Given two independent belief functions over the 

same frame of discernment, Dempster’s rule gives a 

way for combining BBA structures 

 ( ) ( )
( ) ( )

( ) ( )

'

'

'

'1

k k

k k

i k j k

E E A

i j

i k j k

E E

m E m E

m m A

m E m E

∩ =

∩ =∅

⊕ =

−

∑

∑
 (15) 

The denominator of Eq. (16) is a conflict of 

information given by independent information sources. 

Dempster’s rule disregards every contradiction by 

normalizing with the complementary degree of 

contradiction because it is designed to use consistent 

opinions from multiple sources as much as possible. 

For n  mass functions
1 2
, ,...,

n
m m m , the combined mass 

function and measure of contradiction are given by 

 

( ) ( ) ( )

( ) ( ) ( )
1

1 2

1 1 2 2

... ...

1

1 N
i i A

n

n n

E

m A m m m A

m E m E m E
C

= =

= ⊕ ⊕ ⊕ =

⋅ ⋅⋅ ⋅
−

∑
∩

 (16) 

 ( ) ( ) ( )
1

1 1 2 2
0

N
i i

n n

E

C m E m E m E

= =∅

= ⋅ ⋅ ⋅ ⋅ >∑
∩

 (17) 

 

5. SIMULATIONS 

The following types of information sources are defined: 

integrated vehicle health monitoring (
1

m ), relative 

airport geography (
2

m ), environment (
3

m ), airport’s 

resources (
4

m ), runway conditions (
5

m ), path 

complexity (
6

m ), and external human decisions (
7

m ). 

For the simulations, it is assumed a low-small damage 

(LD) with minimum radius 
min

2R =  and that 

information becomes incrementally available at four 

sections of the trajectory. Under an emergency scenario, 

interpretation, integration and decision-making is made 

incrementally since not all information is available at 

once. Table 2 shows the basic belief assignments 

(BBAs) and trajectory sections for each BBA derived 

for the specific airport scenario of Figure 5. For this 

particular airport selection, we simulate the scenario 

where the initial airport choice, B, is gradually changed 

for an abort airport, A. The abort decision is a 

subjective decision which is often made in real-world 

situations when selection advantages are not clearly 

quantifiable. 

Table 2. Basic belief assignment (BBA) for Dempster-

Shafer evidence theory analysis. 

Input 

Trajectory 

Section BBA A B 

IVHM I, II, III, IV m1 0.4 0.6 

Relative airport geography II, III, IV m2 0.4 0.6 

Environment III, IV m3 0.2 0.8 

Airport resources III, IV m4 0.6 0.4 

Runway characteristics IV m5 0.6 0.4 

Path complexity IV m6 0.5 0.5 

Subjective: human decision IV m7 0.01 0.99 

 

 Information 

Definition, T =simulation 

length 

Section I m1 : 0 0.3t T→  

Section II m1,m2 : 0.3 0.5t T T→  

Section III m1-m4 : 0.5 0.7t T T→  

Section IV m1-m7 : 0.7t T T→  
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Figure 4 shows the aggregations obtained via a 

weighted Dempster’s rule of the BBAs in Table 2. A 

weighted Dempster’s rule was used due to the amount 

of conflict in the BBAs. Figures 4(a)-(d) represent 

multiple levels of information aggregation 

acknowledging that from the distress event occurrence, 

the information gathering it’s done at incremental 

information levels. As such, all available information, 

1
m  to 

7
m , is not taken into account until the last 

section of the trajectory. As complete information 

becomes available, the decision becomes clearer.  

The BBA aggregation is then used to generate the 

weights for the multiobjective function of Eq. (4), 

which is the basis for generating the distress event-to-

airport trajectory. Fig. 4(a)-(b) shows a preference for 

airport B, which indicates the trajectory directed 

towards airport B. Fig. 4(d) shows that after more 

information is taken into account, the airport selection 

changes to airport-A, which becomes the landing 

airport for this simulation according to the BBA 

aggregation of all the information provided in Table 2. 

 

Figure 4. Cumulative distribution function (CDF) of combined mass functions. The interval for each airport are 

airport-B → [1,2], and airport-A → [4,5]. 

 
5.1  Case Study 1: Ground Tracking 

For trajectory generation, we used a 2-airport selection 

scenario. The locations of the distress event and airports 

are set at ( )0,0
distress

, ( )20,25
A

 and ( )28,10
B

, 

respectively. Multiple obstacles (keepaway zones) are 

depicted by the high density contour lines around the 

distress event and near airport-A. The contour plot of the 

multiobjective function J  shows the variances of the 

Gaussian obstacle functions and goal functions. The 

choice of the weights, obtained from the Dempster-Shafer 

analysis, will affect the shape of the trajectory that the 

vehicle will move toward its final goal position. Trajectory 

generation was performed at three different levels: (1) 

multiobjective function with uncertainty; (2) Bezier curve 

smoothing; and (3) optimal-length fixes generation. The 

multiobjective function is used as a guide for path heading. 

The smooth Bezier curve serves as a basis for waypoint 

selection, which is then utilized by the optimal-length 

trajectory. To simulate constraints generated from the 

damage event, the performance parameters are assumed to 

be: turning radius 
min

2R = , sensing radius 3r = , 

step size 0.3β = , location uncertainty 

( )0.1,0.01Nβ∆ = , heading angle uncertainty with 

uniform distribution 5 5
o o

φ− ≤ ∆ ≤ . Figure 5 shows 

the 2D trajectories generated using the 

multiobjective function, Bezier curve smoothing and 

the optimal-length waypoint approach. Due to the 

uncertainty, the path generated from the 

multiobjective path is irregular with sharp turns and 

changes in headings. By applying the Bezier curve 

smoothing, the sharp turns and erratic headings, 

such as sharp loops, are eliminated. The optimal-

length trajectory by using Reeds-Shepp curves is 

shown with 10 waypoints, including initial and final 

position. Figure 5 shows that the proposed trajectory 

generation algorithm can avoid obstacles, and the 4-

phase trajectory generation approach results in 

feasible trajectories under system constraints. Figure 

6 shows multiple variations of the ground tracking 
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trajectory generation. The additional scenarios vary in 

obstacle number and locations, and also in goals locations. 

In all these scenarios, the trajectories are designed to start 

with an initial goal decision towards airport-B, and as new 

information becomes available at discrete times during the 

simulation, the evidence switches goal-selection towards 

airport-A. Fig. 6(b) demonstrates the capability of the path 

generation approach in avoiding collisions with obstacles. 

Fig. 6(c) and (d) were generated to demonstrate that 

sometimes incoming informational evidence might not be 

solely dependent in distance-to-goal. In these two cases, 

airport-A was obviously closer and easier to reach, but 

during emergency situations, proximity might not be the 

deciding criteria for choosing where to land the aircraft.  

 

5.2  Case Study 2: 3D Trajectory 

For the 3D trajectory generation, we used the airport 

selection scenario shown in Figure 7. The locations of the 

distress event and airports are set at ( )1,1,12
distress

, 

( )15,25,0
A

 and ( )26,15,0
B

, respectively. Multiple 

obstacles are depicted by the high density contour lines 

around the distress event and near airport-A and -B. As in 

the 2D simulation, the weights for the multiobjective 

function were obtained using Dempster-Shafer analysis. 

To simulate constraints generated from the damage event, 

the performance parameters are the same as those used for 

the 2D case. The traveled distances obtained for each 

technique were 43.4 for the Path3 optimal-length 

trajectory, 44.15 for Path2 Bezier curve, and 45.83 for 

Path1 of the original potential function. It is important to 

note that Path3 minimum-length is optimal in between 

waypoints and not necessarily global minimum between 

initial point and landing point. Due to the uncertainty, the 

path generated from the multiobjective path is irregular 

with sharp turns and changes in headings. By applying the 

Bezier curve smoothing, the sharp turns and erratic 

headings are eliminated. Figure 7 shows that the proposed 

trajectory generation algorithm can avoid obstacles 

in a 3D scenario. Fig. 7(c) shows the approximate 

paths to landing airports at each waypoint and were 

used to generate the BBA for each relative airport 

geography. By keeping track of the obstacle-free 

distance to all possible landing sites, a pilot or auto-

pilot can weigh-in this information to decide if an 

abort site is achievable.  

The use of Dempster-Shafer theory to integrate 

situational awareness information and provide 

proportional weights provides a systematic approach 

for performing decision-making; thus, airport 

selection and trajectory generation are performed on 

evidential reasoning. Because trajectory of aircraft 

cannot be adequately represented using line 

segments, the proposed framework uses Reeds-

Shepp curves to produce continuous path lines 

described by set of waypoints chosen based on the 

recommended guidance information, which 

approximate strategies that a pilot would use given 

context information. The multi-criteria decision-

making landing approach produced collision-free 

paths and successfully integrated context 

information to compute path decisions for each 

example. In ideal situations, decision makers are 

assumed to maximize or choose the best available 

choice, but maximizing requires thorough 

comparison of all possible alternatives, which in 

practice, may not always be possible and results in 

significant decision uncertainty. In the case of 

emergency landing scenarios, consideration of what 

makes a decision sequence satisfactory relies 

primarily on the safe outcome. Therefore, optimality 

in emergency decisions is not required, only 

decisions which result in a satisfactory safe 

outcome. Context informational data should be 

integrated to support human experts and non-experts 

in decision-making. 

 

 

Figure 5. 2D paths for distressed aircraft under turn constraint with decision analysis. 



Annual Conference of the Prognostics and Health Management Society, 2009 

 9  

  

  
Figure 6. Multiple scenarios for 2D path generation. 

 

 

 

Figure 7. 3D paths for distressed aircraft under turn constraint with decision analysis. 
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6. CONCLUSION 

This paper presents a hierarchical and decentralized 

approach for integrated damage assessment and motion 

planning in aircraft with uncertain navigational decision-

making. The propose approach for flight trajectory 

architecture developed in this research is an integration of 

IVHM with trajectory generation in particular when an 

abort decision is made for a secondary airport. Inclusion of 

vehicle health monitoring is important since damage or 

failures will likely be accompanied by reduced 

performance range and maneuverability. Under a in-flight 

distress condition, distance to the landing site becomes 

even more important. Hence, the optimal-length trajectory 

generation method developed here offers improvement by 

reducing the path length while increasing the probability 

of safe landing given the occurrence of an abort situation. 

Furthermore, the use of Dempster-Shafer evidence theory 

to integrate situational awareness information and provide 

proportional weights provides a systematic approach for 

performing decision-making. Preliminary simulation 

results have revealed a number of issues and challenges 

inherent to the application of expert systems in path 

planning and control. Future plans include further 

development and testing of the proposed approach on a 

high-fidelity simulator. 
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