
Signal Stream Clustering for Tool-Revolution-Level Tool
Condition Monitoring in Milling Process

Si Jie Phua 1, Xiang Li 1, Wee Keong Ng 2,
Beng Siong Lim 1, Weixiang Zhong 1, and Junhong Zhou 1

1 Singapore Institute of Manufacturing Technology, 71, Nanyang Drive, Singapore 638075
{sjphua,xli,gbslim,wxzhong,jzhou}@SIMTech.a-star.edu.sg

2 Nanyang Technology University, 50 Nanyang Avenue, Singapore 639798
wkn@acm.org

ABSTRACT

The researches in tool condition monitoring often
collect large amount of sensor signal data from
experiments to study the complex tool condition
relationships with signals. In order to provide
new light into this process on a real-time basis, it
is critical to identify and detect abnormality at the
lowest resolution possible so that the wear beha-
vior on each flute within a tool revolution can be
clearly shown. A signal stream clustering method
is developed to separate numerous tool-revolution
signals into similar groups, each representing a
specific set of corresponding events. In our expe-
riment, the 1000 tool-revolution signals in force
signal stream are grouped into 5 clusters. These
clusters in turn provide a visual mean to assess the
tool condition at the most detailed level. In addi-
tion, the clusters also enable complex tool condi-
tion relationships to be established from the sig-
natures of each set of events.

1 INTRODUCTION
Tool condition monitoring in milling process is chal-
lenging because of the intermittent contacts between
workpiece and the edges of cutting tool. The intermit-
tent contacts induce large frequency components that
disable direct monitoring with single reading from sen-
sors (Rehorn et al., 2005). To monitor wear state of
cutting tool, existing researches collect large amount
of sensor data and establish various feature extract-
ion and modeling methodologies to develop wear state
prediction model (Tansel et al., 2005; Chung and Ged-
dam, 2003; Amer et al., 2007; Hong et al., 2006;
Zhu et al., 2008b; Li et al., 2006; Aliustaoglu et al.,
2009). Sets of extracted features are to be selected ac-
cording to the target conditions (Zhu et al., 2008a). In
addition, the prediction model requires threshold ad-
justment to strike a balance between sensitivity and
accuracy of predicting the tool damage whenever it is
used on different conditions (Amer et al., 2007).

This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and re-
production in any medium, provided the original author and
source are credited.

To provide more insights on the tool condition with
collected signal in real time basis, we propose to mo-
nitor at the lowest possible resolution. As cutting tool
cuts the workpiece revolution by revolution, we be-
lieve that the visualization of signal profile at tool re-
volution level closely reflects the tool conditions. For
example, Figure 1 shows that the force profiles can
identify the number of engaged cutting edges. As far
as we know, this issue has not been addressed in exist-
ing research.
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Figure 1: (a) This tool-revolution force profile of
end-milling shows that two cutting edges are cutting.
For a two-flute cutting tool, this profile is desired as
both cutting edges share the workload. (b) This tool-
revolution force profile of end-milling shows that only
one cutting edge is cutting. For a two-flute cutting tool,
this profile indicates imbalance setup or worn of one
flute that causes poor milling quality and fast tool wear
rate.

However, the uncountable revolutions in high-data-
rate signal stream create barrier for machine opera-
tors to visualize and characterize the milling perfor-
mance at the tool revolution level. At the early stage
of this work, we discovered that most tool-revolution
signals are alike, which prompted us that representing
similar individual signals with clusters would reduce
the data size. Furthermore, with the clustering, the
obtained major clusters and evolution trends of tool-
revolution signals could enable visualization to assess
both milling performance and its stability.
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The clustering at tool revolution level is composed
of two steps. The first step is to segment the signal
data into tool revolution level while the second step is
to cluster the tool-revolution signals into visualizable
information. As signal data comes very fast, these two
steps have to be performed in real time. In this paper,
we elaborate more on the clustering in real time which
is the challenging task.

In our clustering technique, retaining the signal
shape is crucial as the signal shape is the basis for
machine operator to characterize the milling perfor-
mance. To retain the signal shape, we adopt a two-
phase scheme (Aggarwal et al., 2003) for our cluster-
ing technique. In the two-phase scheme, the closely-
similar tool-revolution signals from raw stream data
are firstly grouped into micro-cluster in online compo-
nent. Then, macro-level clustering is performed on the
micro-cluster in offline component when visualization
is requested. We evaluate our clustering technique on
force signal data during end-milling process by com-
paring the visualization of obtained clustering infor-
mation against the raw signal. We aim to show that
the obtained clustering information of force signal pro-
vides instant view on major behaviors and stability of
milling process. The visualization enables machine
operators to characterize the milling performance in-
situ and hence reduce the milling process setup time.

2 RELATED WORKS
2.1 Tool Condition Monitoring
The researches in tool condition monitoring aim to
provide in-situ monitoring with indirect sensors, such
as force and acoustic emission sensors (Rehorn et al.,
2005). In (Chung and Geddam, 2003), the force,
torque and acoustic emission signals that are pre-
viously used to monitor tool condition of turning and
drilling are evaluated for prediction of the tool wear
state in end-milling process. The result shows that the
prediction of tool wear state is feasible with the ex-
tracted features from torque and acoustic emission sig-
nals.

To improve the prediction accuracy of tool wear
state, Hong et al. (2006) highlights that the data select-
ion is important during training of prediction model.
The proposed data selection strategy is validated to
provide effective and efficient training set. The train-
ing set allows fast and reliable model training on Sup-
port Vector Machine to deliver accurate tool wear pre-
diction model. As prediction accuracy is affected by
noise component in micro-milling, blind source sep-
aration technique is deployed for signal preprocess-
ing before feature extraction and model training from
collected force signal (Zhu et al., 2008b). With the
proposed signal preprocessing technique, the localized
model developed with Hidden Markov Models is vali-
dated to be noise-robust.

In (Zhu et al., 2008a), the prediction accuracy is
improved by selecting critical features that are sensi-
tive to tool wear state. To perform feature selection,
Fisher’s Linear Discriminant Analysis is modified to
select the critical features. The selected feature set is
shown to be superior to that by other methods for train-
ing of Hidden Markov Model. Sun et al. (2008) further
demonstrates the effectiveness of feature selection by

conducting a case study in titanium machining. Auto-
matic Relevance Detection is used to select effective
feature set for training on Support Vector Machine.

To incorporate aforementioned steps that are used
to derive accurate tool condition monitoring model,
these steps are mapped with those in generic model
development (Li et al., 2006). The mapped steps are
demonstrated by case study to predict remaining useful
lifetime of cutting tools. To incorporate the prediction
capability of various sensors, a two-stage fuzzy logic
scheme is proposed (Aliustaoglu et al., 2009). The first
stage creates multiple fuzzy inference models for each
sensor while the second stage delivers sensor fusion
model based on responses from the primary fuzzy in-
ference models.

Amer et al. (2007) points out that the conventional
models for tool condition monitoring requires retrain-
ing or threshold adjustment whenever it encounters
new operation. The retraining or threshold adjustment
is usually an exhaustive effort. To minimize the ef-
fort, Amer et al. (2007) incorporates technique that
can quickly adjust the focus frequency band for diffe-
rent application. The signal at focus frequency band is
further processed to derive health index of the cutting
tools. With the similar objective, genetic algorithm
is deployed to automate the threshold adjustment on
existing analytical force model (Tansel et al., 2005).
The proposed methodology is able to estimate machin-
ing parameters and provide indicators for tool damage.

In (Rehorn et al., 2005), the tool condition moni-
toring researches in turning, drilling and milling is re-
viewed. The conclusion states that the simpler a tool
condition monitoring system is, the less likely it is to
fail. Thus, we propose to provide milling performance
characterization at tool revolution level that is the fun-
damental level of signal. As far as we know, providing
the fundamental view with collected signal is yet to be
investigated.

2.2 Time Series Stream Clustering
The signal stream to be clustered in our works can
be seen as time series data. A time series is a se-
quence of data points that are measured at succesive
time. To cluster the time series stream in real time,
Piecewise Aggregate Approximation (PAA) technique
is proposed to transform the real-value time series into
symbolic representation (Lin et al., 2003). The trans-
formation reduces the dimensionality of time series.
To further reduce the size of time series data, the data
is clipped using median of original series into binary
series (Bagnall and Janacek, 2005). The experiment
results show that the clustering speed increases with-
out losing accuracy. To further enhance the speed of
clustering times series, the real valued time series data
are clipped into binary series before clustering by in-
corporating PAA and bi-clipped processes (Li et al.,
2007).

In (Rodrigues et al., 2008), a hierarchical divisive
clustering structure is maintained. The hierarchical
structure is updated upon receiving a fixed number of
incoming time series data. The experiment results sug-
gest that the proposed algorithm adapt to changes in
time series.

To perform meaningful time series cluster-
ing (Keogh and Lin, 2005), we aim to retain the signal
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shape as detailed as possible. To achieve the shape
retaining while clustering in real time, we adopt the
two-phase clustering scheme proposed in (Aggarwal
et al., 2003). In (Aggarwal et al., 2003), the stream
data is firstly clustered into micro-clusters upon
arrival during online updating phase. Snapshots of
micro-clusters are kept according to pyramidal time
frame. During offline clustering phase, the offline
clustering is performed on micro-clusters at requested
snapshots with modified k-means algorithm.

3 METHODOLOGY
To characterize milling performance with collected
signal stream at tool revolution levels, we firstly seg-
ment the signal stream into tool-revolution signals
in real time. Then, these signals are grouped into
micro-clusters in real time by our clustering tech-
nique. When characterization is requested, macro-
clustering is performed on micro-clusters to provide
better visualization.

3.1 Signal Stream Segmentation at Tool
Revolution Level

The signal stream segmentation is obtained with the
calculated data length of one tool revolution. The
data length of one tool revolution, L can be calcu-
lated with the sampling frequency and spindle speed
that are known a priori. Assume sampling frequency
is N Hz and the spindle speed is S RPM (revolutions
per minute), the data length of one tool revolution, L
can be calculated with Equation 1:

L =
N · 60

S
(1)

Hence, the tool-revolution signals are obtained by
taking every L consecutive data points as a tool revolu-
tion. Figure 2 compares the visualization of raw signal
stream with that after segmentation. From Figure 2(b),
it can be seen that both edges of cutting tool are cutting
during the four tool revolutions. As uncountable tool
revolutions are segmented from signal stream, check-
ing these revolutions one by one is time consuming if
not impossible. Thus, clustering on these segmented
signals provides faster visualization on milling perfor-
mance.

3.2 Clustering on Tool-Revolution Signals
Our clustering algorithm aims to group numerous seg-
ments of tool-revolution signals into countable clus-
ters. The R segments of tool-revolution signals are
grouped into k clusters where k ¿ R. In each clus-
ter, the following data is maintained for retaining the
signal shape at tool revolution level.
• Upper bound ui of all the tool-revolution signals

belonged to the cluster at time instance ti, 1 ≤
i ≤ L

• Lower bound li of all the tool-revolution signals
belonged to the cluster at time instance ti, 1 ≤
i ≤ L

• Average ai of all the tool-revolution signals be-
longed to the cluster at time instance ti, 1 ≤ i ≤
L

(a)

(b)

Segmentate at
Tool Revolution Level

Figure 2: (a) Four tool revolutions of force signal col-
lected during entrance period of cutting tool. (b) Four
signal segments at tool revolution level indicate both
cutting edges are cutting during entrance period.

• Number n of the tool-revolution signals belonged
to the cluster

The segments are grouped into clusters according to
distance metric in Equation 2. Suppose c1 and c2 are
different clusters, the distance between them can be
computed with following equation:

ClusDist(c1, c2) = max
i

(PtDist(i)) (2)

where

PtDist(i) = max(c1.ui − c2.li, c2.ui − c1.li). (3)
To compute the distance between two segments, the

upper bound ui and lower bound li can be replaced
by the signal value of the segments at time instance
ti. The smaller the distance between two segments,
the higher the priority for two segments to be clustered
together.

To cluster the numerous segments in real time, we
adopt a two-phase scheme (Aggarwal et al., 2003) for
our clustering technique. In the two-phase scheme,
the closely-similar tool-revolution signals from raw
stream data are firstly grouped into micro-cluster in
online component. Then, macro-level clustering is
performed on the micro-cluster in offline component
when visualization is requested. Both clustering pro-
cesses utilize the HIECLUS algorithm introduced in
Algorithm 1.

The HIECLUS algorithm is developed on the con-
cept of hierarchical clustering. It is the incremental
component to allow data stream clustering. By per-
forming HIECLUS algorithm, the R cluster instances
is grouped into k cluster instances where k ≤ R.
The algorithm firstly computes distance metric for all
the clusters at line 2. At line 3 and 4, the algorithm
searches for candidate clusters to be combined. Two
clusters with the lowest distance are combined. Dur-
ing combination, the algorithm updates the cluster in-
formation for the combined cluster at line 5 to 17. The
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Algorithm 1 HIECLUS(c, thre, trend)
Require: Vector c contains R ≥ 2 cluster instances,

thre ≥ 0, 1 ≤ trendi ≤ c.size() ∀1 ≤ i ≤ T
Ensure: Vector c contains 1 ≤ k ≤ R cluster in-

stances, 1 ≤ trendi ≤ c.size() ∀1 ≤ i ≤ T

1: Declare d as a 2 dimensional vector
2: d(i, j) ← ClusDist(ci, cj) ∀1 ≤ i < j ≤ R
3: while min d(i, j) ≤ thre do
4: [iMin, jMin] ← argmin

i,j
d(i, j)

5: newn ← ciMin.n + cjMin.n
6: for k = 1 to L do
7: if ciMin.uk < cjMin.uk then
8: ciMin.uk ← cjMin.uk
9: end if

10: if ciMin.lk > cjMin.lk then
11: ciMin.lk ← cjMin.lk
12: end if
13: isum = ciMin.ak · ciMin.n
14: jsum = cjMin.ak · cjMin.n

15: ciMin.ak ← isum+jsum
newn

16: end for
17: ciMin.n ← newn
18: Remove cjMin from vector c
19: Remove d(i, j) from vector d ∀j = jMin
20: for k = 1 to T do
21: if trendi = jMin then
22: trendi ← iMin
23: end if
24: if trendi > jMin then
25: trendi ← trendi − 1
26: end if
27: end for
28: end while
29:
30: return [c, trend]

search and combination of two clusters are performed
until the minimum distance between every two clus-
ters is larger than thre. After combination, the trend
of cluster evolution along the timeline is updated at
line 20 to 27.

In order to get representative clusters, retaining the
signal shape is a crucial requirement for the clustering
algorithm. The shape retaining is achieved by updat-
ing upper and lower bounds when signal segments or
clusters are combined that are shown at line 7 to 12 of
Algorithm 1.

The HIECLUS algorithm is performed in the on-
line clustering component ONCLUS whenever a tool-
revolution signal is received. The tool-revolution sig-
nal is obtained from methodology introduced in Sub-
section 3.1. Each tool-revolution signal is assigned to
a micro-cluster ID with the online clustering algorithm
introduced in Algorithm 2. The evolution of signal
is tracked with the vector trend that consists of a se-
ries of micro-cluster ID along the timeline. Hence, the
raw signal can be represented with the micro-clusters
and evolution trend that occupy much smaller memory
space. In addition, the clustering threshold is adapted
to the range of signals with preset ratio. The ratio

Algorithm 2 ONCLUS(ratio)
Require: 0 ≤ ratio ≤ 1

1: Declare c as 1 dimensional vector of cluster in-
stances

2: Declare trend as 1 dimensional vector of integers
3: max ← 0
4: min ← 0
5: while data stream is active do
6: read tool-revolution record r
7: i ← c.size() + 1
8: ci.uk ← rk ∀1 ≤ k ≤ L
9: ci.lk ← rk ∀1 ≤ k ≤ L

10: rmax ← max rk
11: rmin ← min rk
12: if max < rmax then
13: max ← rmax
14: end if
15: if min > rmin then
16: min ← rmin
17: end if
18: t ← (max−min) · ratio
19: j ← trend.size() + 1
20: trendj ← i
21: [c, trend] ← HIECLUS(c, t, trend)
22: end while

Algorithm 3 OFFCLUS(ratio)
Require: 0 ≤ ratio ≤ 1

1: Declare tc,mc as 1 dimensional vector of cluster
instances

2: Declare mtr as 1 dimensional vector of integers
3: tc ← c in ONCLUS
4: max ← max tci.uk ∀1 ≤ i ≤ tc.size(), 1 ≤ k ≤

L
5: min ← max tci.lk ∀1 ≤ i ≤ tc.size(), 1 ≤ k ≤

L
6: t ← (max−min) · ratio
7: mci.uk ← tci.ak ∀1 ≤ i ≤ mc.size(), 1 ≤ k ≤

L
8: mci.lk ← tci.ak ∀1 ≤ i ≤ mc.size(), 1 ≤ k ≤ L
9: mtr ← trend in ONCLUS

10: [mc, mtr] ← HIECLUS(mc, t, mtr)

acts like an adaptive threshold for the clustering. The
larger the ratio, the smaller the number of resultant
micro-clusters and hence the smaller memory space
occupied.

To further reduce the data size for simplicity and
clarity of visualization, the micro-clusters generated
by ONCLUS is further grouped into macro-cluster by
offline clustering component OFFCLUS. The OFF-
CLUS in Algorithm 3 perform reclustering with the
average signals of the clusters. The clustering thresh-
old is also adapted to the range of signals with pre-
set ratio. The objective is to group as many similar
signals as possible together while retaining the signal
shape.
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Figure 3: (a) Force signal of one cutting line in cutting
direction when cutting tool is new. (b) Force signal
of one cutting line in cutting direction when cutting
tool degrades. Plotting the raw force signal shows the
difference in trend but does not show the difference at
tool revolution level.

4 RESULT AND DISCUSSION
To show the effectiveness of our clustering technique,
we conduct our analysis on force signal. The force
signal data is collected with sampling rate of 50kHz
while a 2-flute end milling cutting tool is used to cut
titanium. The difference on force signal between new
tool and degraded tools is shown with our clustering
technique. The portions of force signal used for analy-
sis are plotted in Figure 3.

4.1 Tool Condition Visualization with Cluster
Analysis

By applying our clustering technique on the signals
in Figure 3, we provide more detailed information on
condition and performance of the 2-flute end milling
cutting tool with Figure 4 and 5.

Figure 4 compares the cluster evolution trends of the
signals when cutting tool is new with that when cut-
ting tool degrades. To get the trend, the signals in Fig-
ure 3 are segmentated at tool revolution level as men-
tioned in Subsection 3.1. Then, the segmented signals
are clustered by online and offline clustering compo-
nents. The adaptive clustering threshold ratio is set to
0.3 in this case. As the result of clustering, each seg-
mented signal is assigned with a cluster ID. The series
of cluster ID forms the cluster evolution trend. From
Figure 4, both of the trends are similar. This observa-
tion also accords with Figure 3. In addition, sudden
shift across non-neighbor clusters is rare. Thus, the
milling process is stable from the signal point of view.

Figure 5 compares the main clusters of the signals
when cutting tool is new with that when cutting tool
degrades. The signal magnitude in clusters of new
tool is smaller than that of degraded tool. In addi-
tion, Figure 5a shows that the new cutting tool cuts
with both cutting edges while Figure 5b shows that the
degraded cutting tool has imbalance cutting with its
cutting edges. This tool-revolution observation is not
apparent in Figure 3.
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Figure 4: (a) Cluster evolution trend of force signal in
Figure 3a where cutting tool is new. (b) Cluster evo-
lution trend of force signal in Figure 3b where cutting
tool degrades. The cluster ID is sorted according to the
range of the signals it represents. Thus, the decreasing
trends of signal magnitude that can be observed in Fig-
ure 3 are also reflected here.
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Figure 5: (a) Two groups of peaks appear on all the
main tool-revolution clusters along the cutting line
when cutting tool is new. The two peak groups show
both cutting edges of the cutting tool are cutting. (b)
Only one obvious group of peaks appear on all the
main tool-revolution clusters along the cutting line
when cutting tool degrades. It shows that one of the
cutting edges plays more important role than the other
cutting edges.

Figure 4 and Figure 5 shows that our clustering
technique provides both the overall and tool-revolution
views on force signals collected. With our clustering
techniques, the 1010 tool-revolution signals are com-
pressed into 5 clusters in Figure 4a. Each cluster oc-
cupies 3 times more memory spaces compared with a
tool-revolution signal as indicated in Subsection 3.2.
Thus, the compression ratio of force signals by our
clustering algorithm is about 1010

5·3 = 67 times.
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Figure 6: (a) The clusters are generated with ratio set
to 0.3. All the signals in the same cluster look similar.
(b) The clusters are generated with ratio set to 0.4.
Many different signals are grouped into cluster C1.

4.2 Coherence of Tool-Revolution Cluster
From Figure 6, the effect on different setting of adap-
tive clustering threshold ratio is shown. Larger ratio
results in smaller number of clusters and larger com-
pression of information. However, larger ratio also re-
duces the accuracy to represent the individual signals
by clusters.

5 CONCLUSION

In this paper, we have studied the problem of monitor-
ing tool condition in real time. We have argued that
tool revolution, which is the lowest resolution, retains
detailed tool condition information and hence the need
of monitoring in tool-revolution view. We have ad-
dressed the research challenge to provide visualization
in both tool-revolution and overall views in real time
with our two-phase clustering technique.

Our clustering technique have been implemented
and tested on force signal generated by two-flute cut-
ting tool. The visualization generated with our cluster-
ing technique is effective in comparing the difference
of tool condition at tool revolution level and showing
the stability of milling process in real time. Thus, our
clustering technique enables machine operators to ac-
cess the tool condition and performance in the most
detailed level.

For future work, we intend to obtain failure signa-
tures and provide diagnosis by correlating the obtained
clusters with failure events in real time.
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