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ABSTRACT

Differential protection is a popular method to
protect aircraft generators against winding faults.
Traditional relay-based systems have a limited
capability to distinguish between differential cur-
rent resulting from a winding fault, and the one
resulting from measurement noise or current sat-
uration, resulting in false alarms and unnecessary
equipment shutdown. Modern aircraft genera-
tors are monitored and controlled by advanced
generator control units, and therefore, sophisti-
cated signal processing algorithms can be imple-
mented to enhance the differential protection per-
formance. We propose and compare four dif-
ferent differential detector designs, based on the
available information about measured currents,
for detection of persistent, short circuit faults in
the protected windings. Also, current sensors
are subject to intermittent, open circuit, cable
faults, resulting in degradation in the differen-
tial detection performance. We propose an opti-
mal differential protection architecture, based on
the Neyman-Pearson criterion, to detect winding
short circuit faults in the presence of intermit-
tent cable faults. In this architecture, the sys-
tem switches between two different detectors, de-
pending on the cable health state.

1 INTRODUCTION
Differential protection has been successfully used for
decades in detecting generator winding faults (Brein-
gan et al., Oct 1988). It relies on the simple idea of
measuring the phase current before and after the pro-
tected winding, using current transformers (CTs). If
there is a discrepancy in the two measurements, then
a fault is declared and the generator is shutdown as a
protective measure. The zone between the two current
transformers is designated as the protected zone, and
the current transformers are designated as Differential
Protection Current Transformers (DPCTs).

This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and re-
production in any medium, provided the original author and
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Traditional differential protection relies on differen-
tial relays. This architecture is depicted in Figure 1.
In normal operation, the DPCT currents are equal, and
therefore, they do not operate the relay coil. When
there is a winding fault (example is a short to ground),
a difference current will flow through the relay coil.
If the difference current exceeds a certain threshold,
the relay operates and the generator is shutdown. In
practice, a difference current may also be produced
due to CT saturation, CT phase angle errors, or noisy
measurements. Therefore, to prevent unnecessary trip-
ping of the relay, an adaptive threshold is employed
(GmbH, 2007).

Modern generator systems are monitored and con-
trolled by a generator digital control unit (GCU).
DPCT measurements are fed to the GCU, sampled at a
high rate (typically 1 µs) for monitoring, control, and
fault detection purposes. For differential protection,
typically the measurements are averaged and com-
pared to a threshold, to decide if a winding fault ex-
ists. Because of the computational capability of mod-
ern GCU’s, more sophisticated signal processing al-
gorithms can be implemented for winding differential
protection, in contrast to traditional relay-based sys-
tems. Specifically, prior knowledge about current sig-
nals could be incorporated with detection algorithms,
leading to much better performance in terms of the
probability of detection, PD, and the probability of
false alarm PF . The prior knowledge can be obtained
from machine real life data, or from simulation exper-
iments.

To exploit GCU capabilities, we propose a model-
based approach for winding fault differential detec-
tion. By model-based here we refer to the current
signal model, not the generator system model. The
generator system is a nonlinear, time-varying system,
and the use of its model for fault detection is not,
in general, practical (Krause et al., 2002; Tantawy et
al., 2008). Therefore, we resort to a less-informative
and more practical approach by considering the sig-
nal model. We describe and compare different optimal
detector designs, with respect to the available informa-
tion about the generator current signals and the noise
statistical properties.

Intermittent cable faults have been reported as one
of the frequent types of faults in aircraft generators.
Cables are used to connect sensors and control ele-
ments to the GCU. The main intermittent cable fault
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Figure 1: Traditional differential protection architec-
ture using differential relays. Two current transform-
ers are used to monitor the current, and the relay trips
when there is a discrepancy between the two currents.

is a temporary open circuit due to loose terminal con-
nection. An open cable results in loss of measurements
transmitted to the GCU, which leads to degradation in
the control performance, as well as the fault detection
performance. In this paper, we limit ourselves to inter-
mittent faults in sensor cables, specifically intermittent
faults in DPCTs. Since loss of one of DPCT cables
leads to a difference current, the GCU differential de-
tection algorithm may declare a false winding fault,
leading to unnecessary shutdown for the generator. If
the fault profile is known, or could be estimated from
the measurements, then a detector design that incor-
porates the fault profile parameters is expected to out-
perform traditional detector designs. In this paper, we
present an optimal design for the differential detector
in case of intermittent faults, according to Neyman-
Pearson criterion of maximizing PD for a fixed PFA,
assuming that the intermittent fault could be detected
independently.

The rest of the paper is organized as follows: in Sec-
tion 2, we propose a differential protection system ar-
chitecture and formulate the research problem. Sec-
tion 3 compares different detector designs, based on
the available information about the machine behavior
and the noise statistical properties, assuming fault-free
DPCT cables. All proposed detectors are optimal in
the sense that, given the information available, the de-
tector maximizes the probability of detection given a
fixed probability of false alarm (Neyman-Pearson cri-
terion). The probability of false alarm here represents
the probability of unnecessarily shutting down the gen-
erator, while the probability of detection represents the
complementary probability of missing a winding fault,
hence operating the machine with a faulty winding. In
Section 4, we formulate the differential detection prob-
lem when there is an intermittent fault in one of the
DPCT cables and provide the optimal detector design,
when the intermittent fault could be detected indepen-
dently. We conclude the work in Section 5.

2 STATEMENT OF THE PROBLEM
Figure 2 illustrates the proposed differential protection
system architecture for a single winding. 2 DPCTs
measure the current before and after the winding. Each
DPCT may have an intermittent, open circuit, fault.
We consider only a single fault in one of the DPCT ca-
bles (namely, CT1), since simultaneous faults in both
DPCTs will produce an equal, zero current, which
is easily detected by the GCU. Also, we focus our

attention on winding short circuit faults, since they
represent the most dangerous type of faults on the
machine operation and lifetime (Sottile et al., 2006;
Batzel and Swanson, 2009). Inside the GCU, an Ana-
log to Digital converter samples the current waveforms
at a much higher rate than the Nyquist rate. During a
winding fault, harmonic currents are produced in the
machine winding, due to the asymmetry in the mag-
netic field. In our current work, we work only on the
fundamental harmonic, and therefore, a digital filter is
added to extract the fundamental harmonic. The de-
sign of the digital filter is not treated in this paper (see
e.g. (Antoniou, 2000)). The intermittent fault detector
uses the sampled observations to decide if there is an
intermittent cable fault. Two differential detector de-
signs are proposed, one for the fault-free cable case,
and the other one is for the cable fault case. The inter-
mittent fault detector switches between the two detec-
tors, based on the cable health condition.

We designate the sampled current waveform for
CT1 by i1[n], and for CT2 by i2[n]. The difference
current is i[n] = i2[n]− i1[n]. When the machine is in
normal operation (i.e., no winding faults), the current
signal in both CT1 and CT2 is given by:

i1[n] = i2[n] = sa[n] = A cos(2πf0n+ φa), (1)

where f0 is the fundamental frequency, and φa repre-
sents the fault-free phase angle. For a balanced three
phase system, the amplitudeA is the same for the three
phases, and the phases differ by 2π/3 degrees radian.

When there is a short circuit winding fault, i1[n] and
i2[n] will have different amplitudes from the normal
operating value (overload condition):

i1[n] = sã[n] = Ã cos(2πf0n+ φ̃a) (2)
i2[n] = sc[n] = C cos(2πf0n+ φc) (3)

Based on the above description, we can pose our re-
search problem as follows: Find the optimal differen-
tial protection detector design, in case of a fault-free,
and faulty cables, according to Neyman-Pearson crite-
rion of maximizing PD for a fixed PFA.

3 DIFFERENTIAL PROTECTION:
FAULT-FREE CABLES

To make the analysis tractable, we will study the
discrepancy in the differential current due to only
the noise effect. We assume White Gaussian Noise
(WGN) process, where samples of the process are In-
dependent and Identically Distributed (IID), according
to the Gaussian distribution with zero mean and vari-
ance σ2.

Assuming no winding faults, the difference current
will be only a noise process, i.e., i[n] = w[n]. When a
short circuit winding fault occurs, harmonics are pro-
duced and two different currents will flow in DPCTs,
with every current composed of a sum of different har-
monics. Since we work only on the fundamental har-
monic, we can express the differential current from
Equations (2) and (3) as:

i[n] = sb̃[n] + w[n] = sc[n]− sã[n] + w[n]

= B̃ cos(2πf0n+ φ̃b) + w[n], (4)
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Figure 2: Differential protection architecture. Two
current transformers are used to monitor the current
and protect the winding.

where

B̃ =
√
Ã2 + C2 + 2ÃC cos(φ̃a + φc)

φ̃b = arctan
C sin(φc)− Ã sin(φ̃a)
C cos(φc) + Ã cos(φ̃a)

The amplitude B̃ and the phase φ̃b depend on the mag-
nitude and location of the winding fault, and they are
not known a priori. Without prior assumptions about
the fault nature, not much can be said about B̃ and φ̃b,
except that Ã−C ≤ B̃ ≤ Ã+C, which holds directly
from the inequality −1 ≤ cos(x) ≤ 1. If we assume
that the winding fault is an almost complete short cir-
cuit, then C is very small and we can assume B̃ ≈ Ã,
without knowledge about the phase angles. If, how-
ever, C cannot be neglected, which is the case when
there is a partial short circuit, then B̃ varies widely
depending on the phase angle values, and further as-
sumptions have to be defined, to accurately quantify
the detection performance.

The above description represents the classical sig-
nal detection problem in WGN, with the signal being
the difference current. This problem could be stated
formally as the following hypothesis testing problem:

H0 : i[n] = w[n]

H1 : i[n] = B̃ cos(2πf0n+ φ̃b) + w[n]
The optimal detector for this hypothesis testing prob-
lem depends on our knowledge about the sinusoidal
signal. Perfect knowledge will produce the best perfor-
mance. However, as mentioned previously, the mag-
nitude and phase are usually hard to know a priori,
since they depend on the fault type, unless the fault
information is known from real life data or simulation
experiments. Therefore, because the signal parame-
ters are not completely known, we have to accept a

performance loss in the detectors. In the following
discussion, we compare different detectors, based on
the signal knowledge available. The results are drawn
directly from classical signal detection theory ((Kay,
1998)).

In the following discussion, we assume that the de-
cision is based on the N -dimensional random vector
i = [i[0] i[1] . . . i[N − 1]]. To simplify the notation,
we assume that the data samples start at the time in-
stant n = 0. The detection for signals with an un-
known delay, n0, can be treated similarly by estimat-
ing n0 from the data samples, with a slight loss in the
detection performance. The interested reader should
refer to (Kay, 1998). The design of the detector is the
determination of the test statistic T (i), as a function of
the observation vector i, and the detector threshold γ:

T (i)
H1
≷
H0

γ (5)

3.1 Sample Average Detector
In this case, no signal knowledge is used, and the de-
tector is given by:

T (i) =

N−1∑
n=0

i[n]
H1
≷
H0

γ (6)

It can be easily shown that the detector Receiver Op-
erating Characteristic (ROC) curve is given by (Kay,
1998):

PD = Q

(
Q−1(PF )−

√
E1
σ2

)
, (7)

where:

E1 =
1

N

[
N−1∑
n=0

sb̃[n]

]2

=
B̃2

N

[
N−1∑
n=0

cos(2πf0n+ φ̃b)

]2

(8)

and Q(.) is the right-tail probability for the standard
normal PDF. Since the signal amplitude, B̃, is a mea-
sure of the fault magnitude, one way to express the de-
tection performance is in terms of the signal to noise
ratio, B̃/σ. From Equations (7) and (8) we get:

PD = Q

(
Q−1(PF )−

(
B̃

σ

) ∑N−1

n=0
cos(2πf0n+ φ̃b)√

N

)
(9)

3.2 Known Sinusoidal Signal Detector
If sb̃[n] is completely known, then the optimal detector
is the matched filter, given by:

T (i) =

N−1∑
n=0

i[n]sb̃[n]
H1
≷
H0

γ, (10)

and the ROC curve is given by:

PD = Q

(
Q−1(PF )−

√
E2
σ2

)
, (11)

where:

E2 =
N−1∑
n=0

s2
b̃
[n] = B̃2

N−1∑
n=0

cos2(2πf0n+ φ̃b) (12)
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Accordingly:

PD = Q

Q−1(PF )−
(
B̃

σ

)√√√√N−1∑
n=0

cos2(2πf0n+ φ̃b)

 (13)

3.3 Unknown Amplitude Detector
If the signal amplitude is not known, the samples are
used to calculate the Maximum Likelihood Estimator
(MLE) for the amplitude, and the detector is given by:

T (i) =

[
N−1∑
n=0

i[n] cos(2πf0n+ φ̃b)

]2
H1
≷
H0

γ, (14)

and the ROC curve is given by:

PD = Q

(
Q
−1

(PF /2)−

√
E2
σ2

)
+Q

(
Q
−1

(PF /2) +

√
E2
σ2

)

= Q

Q
−1

(PF /2)−
(
B̃

σ

)√√√√N−1∑
n=0

cos2(2πf0n + φ̃b)


+ Q

Q
−1

(PF /2) +

(
B̃

σ

)√√√√N−1∑
n=0

cos2(2πf0n + φ̃b)

 (15)

where E2 is given by Equation (12). The performance
of this detector can be easily shown to be worse than
the matched filter.

3.4 Unknown Amplitude and Phase Angle
Detector

In practice, when a fault occurs, the resulting sinu-
soidal signal has unknown amplitude and phase angle.
Therefore, this case represents the practical situation
with most winding faults, and its performance should
be compared with the sample average detector, where
no signal knowledge is exploited. The unknown am-
plitude, B̃, and the phase angle, φ̃b, could be estimated
from the sample data, using MLE, and the detector is
given by:

T (i) =
1

N

[(
N−1∑
n=0

i[n] cos(2πf0n)

)2

+

(
N−1∑
n=0

i[n] sin(2πf0n)

)2]
H1
≷
H0

γ

(16)

and the ROC curve is given by:

PD = Q
χ′

2
2 (λ̃)

(
2 ln

1
PF

)
, (17)

where λ̃ = NB̃2/2σ2, and Q
χ′

2
2 (λ̃)

is the right tail
probability for the non-central chi-squared PDF with 2
degrees of freedom, and non-centrality parameter λ̃.

3.5 Performance Comparison
Figure 3 illustrates the detection performance for the
four detectors presented in Sections 3.1 to 3.4. The
probability of detection is plotted against the signal to
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Figure 3: Detection performance for the four detec-
tors in Section 3. The sample average detector has the
worst performance, since it does not use the available
signal information. Slight degradation is noted when
the amplitude and phase of the sinusoidal signal are
not known.

noise ratio B̃/σ (using a semilog scale), using the pa-
rameters in Table 1. As expected, the best performance
is achieved by the matched filter detector, which as-
sumes complete knowledge about the sinusoidal sig-
nal. The detector with unknown amplitude has a slight
degradation in the performance, and the loss of perfor-
mance is not significant when, additionally, the phase
is not known.

The sample average detector has the worst perfor-
mance, and not comparable to the other three detec-
tors. This is because the detector does not use any
signal information. Traditional differential protection
systems rely on this type of detectors, and therefore,
using the detector with unknown amplitude and phase
outperforms it by a large magnitude. For example,
from Figure 3, at signal to noise ratio = 1, the sam-
ple average detector achieves PD ≈ 0.115, while the
detector with unknown amplitude and phase achieves
PD ≈ 0.5. The advantage of the later detector is that
it requires only knowledge about the frequency of the
sinusoidal signal.

Table 1: Parameter values used for evaluating the de-
tection performance of the four detectors presented in
Section 3. The performance is plotted in Figure 3.

Parameter Value
N 10
f0 1/7
φ̃b 0
PF 0.05

4 DIFFERENTIAL PROTECTION:
INTERMITTENT CABLE FAULTS

In this section, we consider the case of an intermittent
cable fault in one of the CT cables. We assume the
fault occurs in CT1 (refer to Figure 2), and the other
case could be treated similarly. The intermittent fault is
an open circuit condition, where the measured current
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Figure 4: Intermittent cable fault model. The detection
windows size is much smaller than the fault time. The
shaded detection window covers both faulty and fault-
free samples, and its effect on the overall performance
is neglected.

by the GCU becomes zero, instead of its normal value
as a sample from a sinusoidal signal.

4.1 Fault Model
We represent the intermittent fault by the discrete-
time, binary, random process Z[n], defined as:

Z[n] =
{

0 no fault
1 cable fault (18)

We have four different cases: 1) no cable fault and no
winding fault, the measured current difference is only
the measurement noise. 2) cable fault and no winding
fault, the current difference is between the normal si-
nusoidal signal of the generator, sa[n], (see Equation
(1)), received from CT2, and the zero current received
from CT1. The sinusoidal signal in this case is the nor-
mal signal of the generator, sa[n]. Therefore, its mag-
nitude and phase can be assumed known. 3) no cable
fault and winding fault, the current difference is sb̃[n],
defined by Equation (4). 4) cable fault and winding
fault, the current difference is between an unknown si-
nusoidal signal from CT2, sc[n], defined by Equation
(3), and the zero current from CT1.

We assume that during any detection window of size
N , the random process is either in state 0 or state 1,
but not both, i.e., Z[n] = 0 or Z[n] = 1. This assump-
tion is justified by the fast sampling rate of the GCU,
and the relatively slow dynamics of the intermittent
fault. Figure 4 depicts this scenario, where the time
scale is divided into small detection windows. The
case where the detection window covers both faulty
and fault-free samples will have a very small effect on
the overall detection performance, and therefore, could
be neglected.

4.2 Detector Design
The detection of an open-circuit intermittent cable
fault can be achieved by a zero-crossing detector for
the sampled current waveform from CT1. The details
of the intermittent fault detector are not in the scope of
this paper. Rather, we assume that an intermittent fault
is detected successfully. Using the above-mentioned
fault model, the four cases mentioned in Section 4.1
could be split into the following two hypothesis testing
problems:

Z[n] = 0 : i[n] =

{
w[n] H0

B̃ cos(2πf0n+ φ̃b) + w[n] H1
(19)

Z[n] = 1 : i[n] =

{
A cos(2πf0n+ φa) + w[n] H0

C cos(2πf0n+ φc) + w[n] H1
(20)

The overall performance of the DP detector is the
average performance of the two detectors for the
hypothesis testing problems in Equations (19) and
(20).Therefore, to maximize the overall performance,
we maximize the individual detectors performance.

Equation (19) represents the detection problem dis-
cussed in Section 3.4, and the detector performance
is given by Equation (17). The detection problem in
Equation (20) is to detect one of two sinusoidal signals,
one with known amplitude and phase, and another with
unknown amplitude and phase. If we defined i′[n] =
i[n] − sa[n], then we obtain an equivalent hypothesis
testing problem for i′[n]. This can be easily shown by
noting that the distributions pI(i;Hk), k = {0, 1} are
only shifted when subtracting a deterministic quantity.
Therefore, the likelihood ratio is the same, and hence,
the detector performance is the same. Using Equations
(1) and (3), we define:

sb[n] = sc[n]− sa[n]
= B cos(2πf0n+ φb), (21)

where:

B =
√
A2 + C2 + 2AC cos(φa + φc)

φb = arctan
C sin(φc)−A sin(φa)
C cos(φc) +A cos(φa)

Accordingly, we obtain the following equivalent hy-
pothesis testing problem:

i′[n] =

{
w[n] H0

B cos(2πf0n+ φb) + w[n] H1
(22)

This problem is identical to the one in Equation (19),
and therefore, the detector design is given by Equation
(16), by replacing i[n] by i′[n]:

T (i) =

(
N−1∑
n=0

[i[n]− A cos(2πf0n + φ0)] cos(2πf0n)

)2

+

(
N−1∑
n=0

[i[n]− A cos(2πf0n + φ0)] sin(2πf0n)

)2

(23)

The detector performance is given by Equation (17),
with the non-centrality parameter λ = NB2/2σ2.

The same comment for signal sb̃[n] is applied here
for sb[n], where A−C ≤ B ≤ A+C. For the case of
an almost complete short circuit, C ≈ 0, and B ≈ A,
regardless of the phase information. It should be high-
lighted that in this later case, B ≤ B̃, since when a
short circuit fault occurs, the machine is overloaded
and A < Ã (refer to Equation (4)). This has the impli-
cation that the differential detection performance with
a fault-free cable is better than the case with an inter-
mittent cable fault, since the detector performance in-
creases with increasing the detected signal magnitude.

4.3 Optimal Detection Performance
We now have two differential detectors, one for the
fault-free cable case (Equation (16)), and another de-
tector for the faulty cable case (Equation (23)). If we
assume that the probability of the cable being in state 0

5
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(no fault) is π0, and the probability of being in state 1
(open circuit fault) is π1 = 1−π0, then we can express
the overall performance by:

E[PD] = π0Qχ′22 (λ̃)

(
2 ln

1

PF1

)
+ (1− π0)Qχ′22 (λ)

(
2 ln

1

PF2

)
(24)

E[PF ] = π0PF1 + (1− π0)PF2 (25)

for every pair of PF1 and PF2 . This new ROC curve
represents an average of the two ROC curves for the
fault-free cable and faulty cable cases, with π0 and π1
as the weighting factors.

To design the two detectors, we need to specify their
respective thresholds. In (Tantawy et al., 2009), it
is proved that the optimal detection that maximizes
E[PD] with the constraint E[PF ] = α occurs when
all individual detectors have the same likelihood ratio
threshold, γ, but for the detector in Equation (17), we
have (see (Kay, 1998)):

PF =
1
γ

(26)

Therefore, by using Equation (25), we have the result:

PF1 = PF2 =
1
γ

= α (27)

where α is the constraint on E[PF ] = α. Ac-
cordingly, to maximize E[PD] with the constraint
E[PF ] = α, we select the individual operating points
for the two ROC curves as

(
α,Q

χ′
2
2 (λ̃)

(
2 ln 1

α

))
and(

α,Q
χ′

2
2 (λ)

(
2 ln 1

α

))
, for the fault-free and faulty ca-

ble detectors, respectively. The performance is then
given by:

E[PD] = π0Qχ′22 (λ̃)

(
2 ln

1

α

)
+ (1− π0)Qχ′22 (λ)

(
2 ln

1

α

)
(28)

E[PF ] = α (29)

It should be highlighted that for the proposed detector,
the operating point does not depend on the fault pro-
file parameters π0 and π1. This is not true in general
(see (Tantawy et al., 2009)), and it may be necessary to
estimate the fault model parameters online, and adapt
individual detector thresholds accordingly.

Figure 5 is a 3D plot for Equation (24), using the
parameters shown in Table 2. From the figure, it is
clear that for all combinations of PF1 and PF2 , E[PD]
is maximized along the line PF1 = PF2 , which coin-
cides with the result obtained in Equation (27).

Figure 6 illustrates the ROC curves for the two dif-
ferential detectors. The curves are direct plots for
Equation (17), using the parameters in Table 2. Also,
the average optimal performance (Equation 28) for dif-
ferent values of α is shown. The optimal average per-
formance is bounded by the individual detectors per-
formance.

Using Equation (27), we can also represent the de-
tection performance for a fixed PF = α, as a function
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Figure 5: 3D plot for Equation (24), representing the
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Table 2: Parameter values used for evaluating the aver-
age detection performance for the differential detectors
with and without intermittent cable faults. The perfor-
mance is plotted in Figures 5,6, and 7

Parameter Value
N 10
f0 1/7
B̃/σ 1
B/σ 2
π0 0.1

Figure 7: Performance of the optimal average detec-
tor versus individual signal to noise ratios. The plot
could be used to quantify the performance for different
faults, and accordingly, different signal to noise ratios.

of individual signal to noise ratios. This is a 3D plot
for Equation (28) as a function of B̃/σ and B/σ, us-
ing the parameters in Table 2, and E[PF ] = α. This
plot is useful in specifying the performance with re-
spect to different winding faults, if a mapping could
be constructed between winding faults and signal to
noise ratios.

5 CONCLUSION AND FUTURE WORK
Differential protection performance can be enhanced
by utilizing prior information about the measured cur-
rent signals. Information about the sinusoidal signal
frequency can enhance the performance by orders of
magnitude, compared to the traditional sample average
detector. Information about the magnitude and phase
angle of the measured signal cannot be obtained a pri-
ori, since they depend on the fault magnitude and lo-
cation, and their effect on the detection performance is
slight.

With intermittent, open circuit, current sensor cable
fault, two detectors have to be designed for the fault-
free and faulty cable case. The optimal detection, ac-
cording to Neyman-Pearson formulation, occurs when
the individual detectors have the same probability of
false alarm, which is set equal to the desired global
constraint on the expectation of the probability of false
alarm. The optimal detection operating point does not
depend on the fault profile, and therefore, online esti-
mation for the fault probabilities is not required. If a
mapping could be established between different types

of faults and the corresponding generated sinusoidal
wave in the generator windings, then detection perfor-
mance can be quantified for every fault type. This
mapping could be constructed by simulation studies
and from real-life data. We will pursue this direction
in future work. Also, more sophisticated intermittent
cable faults, and a comparison between detection per-
formance with these models and the cable fault model
presented here, are currently being investigated.
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