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ABSTRACT

Actuator systems are employed widely in
aerospace, transportation and industrial processes
to provide power to critical loads, such as aircraft
control surfaces. They must operate reliably and
accurately in order for the vehicle / process to
complete successfully its designated mission. In-
cipient actuator failure conditions may severely
endanger the operational integrity of the vehi-
cle / process and compromise its mission. The
ability to maintain a stable and credible opera-
tion, even in the presence of incipient failures,
is of paramount importance to accomplish “must
achieve” mission objectives. This paper intro-
duces a novel methodology for the fault-tolerant
design of critical subsystems, such as an Electro-
Mechanical Actuator (EMA), that takes advan-
tage of on-line, real-time estimates of the Re-
maining Useful Life (RUL) or Time-to-Failure
(TTF) of a failing component and reconfigures
the available control authority by trading off sys-
tem performance with control activity. The pri-
mary goal is to complete critical mission objec-
tives within a time window dictated by prognos-
tic algorithms so that the fault mode is accom-
modated and an acceptable level of performance
maintained for the duration of the mission. The
proposed fault-tolerant control design is mathe-
matically rigorous, generic and applicable to a va-
riety of application domains. An EMA is used to
illustrate the efficacy of the proposed approach.

This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and re-
production in any medium, provided the original author and
source are credited.

1 INTRODUCTION

The emergence of complex and autonomous systems,
such as modern aircraft, Unmanned Aerial Vehicles
(UAVs), automated industrial processes, among many
others, is driving the development and implementa-
tion of new control technologies that are aimed to
accommodate incipient failures and maintain a sta-
ble system operation for the duration of the emer-
gency. Historically, when fault tolerance was an is-
sue, controllers were designed targeting specific faults
and specific control actions to accommodate the cor-
responding faults (Isermann, 1984). More recent ap-
proaches applied modern control techniques such as
adaptive or robust control to handle situations where
the fault severity may not be known, but the system
structure is known. While these techniques are capa-
ble of handling many types of fault modes, they do
so in a brute force way (Saberi et al., 2000). For
example, if a fault condition can be modeled as a
change in system parameters, an adaptive controller
can be designed to monitor the changes and constantly
change the control law accordingly (Ward et al., 2001;
Monaco et al., 2004). Similarly, a robust control law
may be designed which can control the system over
a range of potential failure modes (Stoustrup et al.,
1997; Zhou et al., 1996). However, what these ap-
proaches lack is an active reconfiguration of the con-
trol law considering failure prognostic information.
Fault-Tolerant Control (FTC) methodologies typically
have two main objectives: Fault Detection and Isola-
tion (FDI) and Control Reconfiguration (Rausch et al.,
2007). Several authors have reported on the problem of
FDI (Kleer and Williams, 1987; Filippetti et al., 2000;
Skormin et al., 1994; Willsky, 1976; Wu et al., 2004).
Analytical methods for FTC usually assume linear
models of the system dynamics. For large-scale sys-
tems, this is generally a reasonable assumption since
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in a region of the nominal operating point, the system
dynamics are approximately linear. Recent research
has begun to address the issue of FTC for nonlinear
systems, such as using feedback linearization in a re-
structured digital flight control system (Nguyen and
Liu, 1998). The authors in (Birdwell et al., 1986;
Birdwell, 1978) describe a method for reliable control
system design. Reliability is defined as the probabil-
ity that a system will perform within specified con-
straints for a given period of time. In (Watanabe and
Himmelblau, 1982), the author discusses several is-
sues arising in the design of reconfigurable control sys-
tems including the selection of a failure representation
method, the selection of a control law that provides
robustness to particular failures and the formulation
of a diagnostic problem that exploits potentialities in
a control system for diagnostic purposes. Additional
contributions significant to the development of adap-
tive based FTC can be found in (Ye and Yang, 2006;
Zhang and Jiang, 2003). The authors in (Yavrucuk
et al., 1999) present a novel simultaneous FDI and
FTC strategy. Other recent analytical approaches em-
ploy a mathematical model in which failures are cap-
tured as uncertainties in the model parameters (Mufti
and Vachtsevanos, 1995), or controller reconfigura-
tion is affected by considering the redirection of con-
trol authority between parts of the system (Bajpai et
al., 2001). Artificial Intelligence (AI) methods have
been exploited to handle model-free fault diagnosis
and FTC in an expert system setting (Levis, 1987;
Isermann, 1997). Recent extensions to expert system
approaches to fault tolerance include (Wu, 1997), in
which past performance is used to dynamically update
the database of fault controllers / parameters. An al-
ternative hybrid systems approach to FTC combines
modeling with AI and expert systems (Heck et al.,
2003). Many existing reconfigurable control strategies
fall naturally into this category (Boskovic and Mehra,
2001; Liu, 1996). More recently, hybrid hierarchical
approaches to FTC have been proposed (Vachtsevanos
et al., 2005; Gutierrez et al., 2003; Guler et al., 2003;
Kamen et al., 1994). For example, in (Clements,
2003), the high-level of the architecture includes situ-
ation awareness and fault diagnosis routines, whereas
the middle-level consists of three modules that ac-
tively reconfigure the controls, subsystem interconnec-
tions and local controller gains; the low-level con-
sists of the individual subsystems and corresponding
local controller (Clements et al., 2000). In another
manifestation, the high level performs mission adap-
tation functions (Drozeski and Vachtsevanos, 2005;
Drozeski et al., 2005; Tang et al., 2008).

In contrast to FTC, little work has been published
discussing the role of prognosis in control systems. In,
(Bogdanov et al., 2006; Gokdere et al., 2006) the au-
thors describe a framework to consider long-term life-
time prediction, performance and design constraints.
To account for the lifetime constraint, the authors con-
sider a parametrization of a family of LQR controllers
with a single adaptation parameter, and then optimize
the parameter to satisfy the lifetime constraint. Al-
though novel, more work is required in the area of
prognostic-based control to handle uncertainties asso-
ciated with long-term prediction.

This paper is organized as follows. Section 2.1 iden-

Figure 1: Photo of the triplex redundant EMA.

tifies the EMA under investigation and presents a gen-
eral overview of the FTC architecture; Section 3 intro-
duces a particle filtering framework for fault diagnosis
and fault prognosis and follows using an EMA with a
selected failure mode as an example; Section 4 gives
a formulation for a prognosis-based control law utiliz-
ing Model Predictive Control (MPC) and evaluates the
feasibility of the approach using the EMA example;
Section 5 highlights major accomplishments.

2 BACKGROUND
2.1 Actuator subsystem
The actuator evaluated for proof of concept of the pro-
posed fault-tolerant or reconfigurable control scheme
is a triplex redundant rotary EMA, designed to oper-
ate with a triplex redundant Electronic Control Mod-
ule (ECM). The EMA, shown in Figure 1, consists of
three Brushless DC (BLDC) motors, each using a re-
solver for motor commutation, where all motors are
driving a single string output shaft drive mechanism
through a gear system (Brown et al., 2009).1 This
actuator is suitable for this study since it can oper-
ate in a single channel (simplex) mode or in fully re-
dundant, active-active-active system mode, providing
a two fault-tolerant system. In the active-active-active
system, all three motors are actively driven in a torque
sharing mode where the torque applied to the load is
the cumulative sum of the three motor torques. A Ve-
hicle Management Computer (VMC) determines the
drive for each motor/channel and the corresponding
servo controllers. The VMC also monitors each motor
channel for failures or degraded performance, so it can
shut it down when necessary. A block diagram of the
nominal system illustrating the production controller
and three motor components is depicted in Figure 2.

Figure 2: Block diagram of the triplex redundant
EMA.

1Copyright © Moog Inc. Photo courtesy of Moog Inc.
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Figure 3: Reconfigurable control architecture 3-tier hierarchical strategy.

2.2 Fault-Tolerant Control Architecture

The reconfigurable control methodology introduced in
this paper is a constituent module of a more general in-
telligent / hierarchical FTC architecture comprised of
three levels: A low-level, a middle-level and a high-
level, as illustrated in Figure 3. Each level of the con-
trol hierarchy is responsible for different tasks where
the three levels are coordinated via supervisory rou-
tines and contribute synergistically to system fault tol-
erance.

Figure 4 depicts the main elements of the low-level
reconfigurable control architecture. The control ar-
chitecture is comprised of two controllers: the orig-
inal production controller (§1030) and the reconfig-
ured controller (§1040). Initially, the production con-
troller is utilized while diagnostic routines continu-
ously monitor the system for one, or more, fault modes
(§1100). Once a fault is detected the RUL require-
ments are check to assess if the mission can be accom-
plished without control reconfiguration (§1300), if not,
the MPC routine is called upon (§1400).

The functionality of the MPC routine is given by
the flowchart in Figure 5. Soft constraints are initial-
ized (§1410), the RUL of the failing motor is evalu-
ated (§1420) and the RUL requirements are checked
(§1430) to assess if the mission can be accomplished;
if not, the soft constraints are updated to relax perfor-
mance requirements in the MPC (§1450). Then, the
MPC computes the next control sequence (§1460). Af-
ter the control sequence is applied, the performance is
evaluated (§1470) and compared to the required per-
formance (§1440). If the performance requirements
are satisfied the control sequence is reiterated (§1490).
However, if the requirements are not satisfied, or the
soft boundaries can no longer be adapted (§1440), a
control redistribution algorithm (§1500) is activated at
the middle-level of the control hierarchy.

It should be noted that control redistribution is not

Figure 4: State transition diagram for low-level recon-
figurable control.

addressed in this paper. Also, it is assumed that, in the
presence of an incipient failure, the system (actuator)
dynamics remain essentially the same. This assump-
tion is valid when the incipient failure or fault is de-
tected at an early stage of its initiation and evolution
and thus has not affected severely the actuator dynam-
ics. Under these conditions, restructuring of the sys-
tem dynamics is not absolutely necessary in the control
formulation. However, if the motor fault significantly
influences the system dynamics, then a restructuring
step (§1200) can precede the reconfigurable control
routine so the current state of the system is reflected
in the control formulation.
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Figure 5: Flowchart of the reconfiguration state.

3 FAULT DETECTION AND FAILURE
PROGNOSIS

3.1 Actuator Model
A high-fidelity 5th order state-space model was devel-
oped to represent higher order dynamics for a closed-
loop actuator position controller. The model, which
can be expressed by the linear state-space system
(Am,Bm,Cm), is employed to relate the control in-
puts and measured outputs of the actuator to the inter-
nal system states of the BLDC motor,{

˙̃xm = Am x̃m + Bmum
ym = Cm x̃m

(1)

where x̃m0 = x̃m (0). The internal state x̃m =
[ ĩm �̃m !̃m �̃ℓ !̃ℓ ]⊤ ∈ ℝ5 is defined by the
motor current, motor position, motor speed, load po-
sition and load speed, respectively; the control input
um = [ �ref Tload ]⊤ ∈ ℝ2 is defined by the ref-
erence position and external load disturbance; and the
control output ym = [ �ℓ im ]⊤ ∈ ℝ2 is defined by
the load position and motor current.

The transition matrix, Am ∈ ℝ5×5, is defined as a
piecewise linear model,

Am =

{
A1 : !̃m ≥ 0
A2 : !̃m < 0 (2)

where the matrices A1 and A2 ∈ ℝ5×5 are defined in
(3) and (4) accordingly.

A1 =

⎡⎢⎢⎢⎢⎢⎣
−Rtt
Ltt

−kp1kp2

Ltt

−ke−kp1

Ltt
0 0

0 0 1 0 0
kt
Jm

−kcs
JmN2

cm

−bm−Tf

Jm

kcsNcl
JmNcm

0

0 0 0 0 1

0 kcsNcl
JℓNcm

0
−kℓ−kcsN2

cl
Jℓ

−bℓ
Jℓ

⎤⎥⎥⎥⎥⎥⎦ (3)

A2 =

⎡⎢⎢⎢⎢⎢⎣
−Rtt
Ltt

−kp1kp2

Ltt

−ke−kp1

Ltt
0 0

0 0 1 0 0
kt
Jm

−kcs
JmN2

cm

−bm+Tf

Jm

kcsNcl
JmNcm

0

0 0 0 0 1

0 kcsNcl
JℓNcm

0
−kℓ−kcsN2

cl
Jℓ

−bℓ
Jℓ

⎤⎥⎥⎥⎥⎥⎦ (4)

The control and observation matrices Bm ∈ ℝ5×2

and Cm ∈ ℝ2×5 are defined in (5) and (6), respec-
tively.

Bm =

[
kp1kp2Ncm

LttNcl
0 0 0 0

0 0 0 0 −1
Jℓ

]⊤
(5)

Cm =

[
0 0 0 1 0
1 0 0 0 0

]
(6)

3.2 Failure Modes and Effects
Results from a Failure Modes and Effects Criticality
Analysis (FMECA) study of the EMA suggest that
the leading modes of failure are associated with the
bearings (Schoen et al., 1995; Zhang et al., 2008a;
Bodden et al., 2007), position feedback sensors (Mur-
ray et al., 2002; Brown et al., 2008), electronic compo-
nents (Baybutt et al., 2008) and electric motors (Brown
et al., 2008; 2009). In this study, the BLDC mo-
tor was selected as the component of interest where
the primary failure mechanisms is breakdown of in-
sulation between turns of the same winding. Accord-
ing to (Malik et al., 1998; Nandi and Toliyat, 1999;
Tavner and Penman, 1987), stator insulation can fail
due to several reasons: high stator core or winding
temperature; contamination from oil, moisture and
dirt; short circuit or starting stresses; electrical dis-
charges; and leaking in the cooling system. For the
EMA under investigation, winding temperature is the
dominant failure mechanism due to the excessive en-
vironmental factors.

The principle effects of a turn-to-turn winding in-
sulation short result in a three-phase impedance im-
balance in the stator windings (Xianrong et al., 2003).
This leads to asymmetries in the stator phase currents,
shown in Figure 6, resulting in increased harmonic
generation and overall performance degradation (Pen-
man et al., 1994).

3.3 Particle Filtering in Real-Time Fault
Diagnosis and Failure Prognosis

Particle filtering is an emerging and powerful method-
ology for sequential signal processing with a wide rage
of applications in science and engineering. Founded
on the concept of sequential importance sampling and
the use of Bayesian theory, particle filtering is partic-
ularly useful in dealing with difficult nonlinear and/or
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Figure 6: Simulation illustrating phase current asym-
metry.

non-Gaussian problems. The underlying principle of
the methodology is the approximation of relevant dis-
tributions with particles (samples from the space of
the unknowns) and their associated weights. Com-
pared to classical Monte-Carlo methods, sequential
importance sampling enables particle filtering to re-
duce the number of samples required to approximate
the distributions with necessary precision, and makes
it a faster and more computationally efficient approach
than Monte-Carlo simulation. This is of particular ben-
efit in diagnosis and prognosis of complex dynamic
systems, such as engines, gas turbines and gearboxes,
because of the nonlinear behavior when operating un-
der fault conditions. Moreover, particle filtering allows
information from multiple measurement sources to be
fused in a principled manner (Orchard, 2007).

Particle filtering has a direct application in the FDI
arena. Once the current state of the system is known, it
is natural to implement FDI procedures by comparing
the process behavior with patterns regarding normal or
faulty operating conditions.

3.4 Fault Diagnosis
A fault diagnosis procedure involves the tasks of fault
detection, fault isolation and identification (assess-
ment of the severity of the fault). The proposed
particle-filter-based diagnosis framework aims to ac-
complish these tasks, under general assumptions of
non-Gaussian noise structures and nonlinearities in
process dynamic models, using a reduced particle pop-
ulation to represent the state pdf (Orchard et al., 2008).
A compromise between model-based and data-driven
techniques is accomplished by the use of a particle
filter-based module built upon the nonlinear dynamic
state model,⎧⎨⎩ xd (t+ 1) = fb (xd (t) , n (t))

xc (t+ 1) = ft (xd (t) , xc (t) , w (t))
fp (t) = ℎt (xd (t) , xc (t) , v (t))

(7)

where fb, ft and ℎt are non-linear mappings, xd is a
collection of Boolean states associated with the pres-
ence of a particular operating condition in the sys-
tem (normal operation, fault type #1, #2, etc.), xc is
a set of continuous-valued states that describe the evo-
lution of the system given those operating conditions,
fp is a feature measurement, ! and v are non-Gaussian
distributions that characterize the process and feature

noise signals, respectively. The function ℎt is a map-
ping between the feature value, fp (t), and the fault
state xc (t). In the case of a turn-to-turn winding in-
sulation short circuit fault, the values of fp (t) and
L (t) are related by the operating parameters, motor
speed, !m and motor current, im, as will be shown
explicitly in a future publication. For simplicity, n (t)
may be assumed to be zero-mean i.i.d. uniform white
noise. At any given instant of time, this framework
provides an estimate of the probability masses associ-
ated with each fault mode, as well as a pdf estimate
for meaningful physical variables in the system. Once
this information is available within the FDI module,
it is processed to generate proper fault alarms and to
inform about the statistical confidence of the detec-
tion routine. Furthermore, pdf estimates for the sys-
tem continuous-valued states (computed at the mo-
ment of fault detection) may be used as initial con-
ditions in failure prognostic routines. As a result, a
swift transition between the two modules (FDI and
prognosis) may be performed and reliable prognosis
can be achieved within a few cycles of operation af-
ter the fault is declared. This characteristic is one
of the main advantages of the proposed particle-filter-
based diagnosis framework. Customer specifications
are translated into acceptable margins for the type I
and/or II errors, as defined by (Kutner et al., 2004;
Hines et al., 2003), in the detection routine. The algo-
rithm itself will indicate when the type II error (false
negatives) has decreased to the desired level. Figure 7
depicts the major modules of the proposed architecture
for a fault detector.

In this architecture, real-time measurements and in-
formation about the current operational mode are pro-
vided on-line. Then data is pre-processed and de-
noised before computing the features that will assist
to efficiently monitor the behavior of the system. By
taking the standard deviation of the average amplitude
of each phase current (a, b and c) over a finite time in-
terval T , the following feature, denoted as fp (t), can
be used to describe variations in winding symmetry for
a BLDC motor (Brown et al., 2009),

fp (t) = std
k∈(a,b,c)

[
avg

t∈(0,T )

∣∣∣ik (t) + îk (t)
∣∣∣] (8)

where the symbol ik, refers to the measured phase cur-
rent and îk corresponds to the phase current after ap-
plying a Hilbert transformation. Provided in Figure 8
is a (a) snapshot of experimental data acquired during
seeded fault testing and (b) a plot of computed fea-
tures versus time. The feature value fp (t) is computed
from raw current data. The fault dimension L (t) was
simulated by placing a parallel resistance between one
of the winding terminals and the center-tap, thereby
generating current asymmetry. The parallel resistances
used ranged from 25Ω to 3Ω and decreasing monoton-
ically with time. As the parallel resistance decreased,
the fault dimension L (t) increased, resulting in an in-
crease in fp (t). More detailed information regarding
the seeded fault winding insulation test can be found
in (Brown et al., 2009).

It should be noted that the principle feature, fp (t),
is not the only available feature. Other diagnostic fea-
tures for turn-to-turn winding insulation faults were
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Figure 7: Particle filter-based fault detection architecture.

also considered and may be used individually or in
combination via fusion techniques.

Statistical analysis applied to this set of features is
performed to simultaneously arrive at the probability
of abnormal conditions for a given false alarm rate and
confidence level (95% for example). If time and com-
putational resources allow for further analysis, feature
information can be used to complete the tasks of fault
isolation, identification, and failure prognosis (Zhang
et al., 2008b). The fault detector was evaluated using
simulated phase currents generated in Simulink. The
results of the particle-filter based fault detector using
experimental data from Figure 8 (a) are provided in
Figure 9 showing (a) the raw output from the particle
filter over time as a waterfall plot and (b) the corre-
sponding fault detection confidence. The critical fea-
ture value, fp,�=0.05 = 0.02 was computed for a 5%
false alarm rate (� = 0.05 / type I error) using the
initial baseline data. The confidence was computed
by summing all the weights associated with particles
greater than fp,�=0.05. In this paper, confidence is de-
fined as the compliment of the Type II error, �, ex-
pressed as a percentage,

Confidence = 100% (1− �) (9)

3.5 Failure Prognosis
Prognosis is the Achilles’ heel of fault diagnosis and
failure prognosis systems. Prognosis can be under-
stood as the generation of long-term predictions de-
scribing the evolution in time of a particular signal of
interest or fault indicator. Since prognosis projects the
current condition of the indicator in the absence of fu-
ture measurements, it necessarily entails large-grain
uncertainty. This suggests a prognosis scheme based
on recursive Bayesian estimation techniques, combin-
ing both the information from fault growth models
and on-line data obtained from sensors monitoring
key fault parameters (observations or features). Pro-
posed is a prognostic framework that takes advantage
of a nonlinear process (fault / degradation) model,

a Bayesian estimation method using particle filtering
and real-time measurements.

Prognosis is achieved by performing two sequential
steps, prediction and filtering. Prediction uses both the
knowledge of the previous state estimate and the pro-
cess model to generate the a priori state pdf estimate
for the next time instant,

p (x0:t∣y1:t−1)=
∫
p (xt∣xt−1)p (x0:t−1∣y1:t−1) dx0:t−1 (10)

The filtering step generates the posterior state pdf by
using Bayes formula,

p (x0:t∣y1:t−1)∝p (yt∣xt)p (xt∣x0:t−1) p (x0:t−1∣y1:t−1) (11)

Expressions (10) and (11) do not have an analytical
solution in most cases. Instead, Sequential Monte
Carlo (SMC) algorithms, or particle filters, are used to
numerically solve (10) and (11) in real-time through
the use of efficient sampling strategies (Arulampalam
et al., 2002; Doucet et al., 2000). Particle filter-
ing approximates the state pdf using samples of “par-
ticles” having associated discrete probability masses
(“weights”) as,

p (xt∣y1:t) ≈
N∑

i=1

w̃t

(
xi

0:t

)
⋅ �
(
x0:t − xi

0:t

)
(12)

where xi
0:t is the state trajectory and y1:t are the mea-

surements up to time t. The simplest implementation
of this algorithm, the Sequential Importance Resam-
pling (SIR) particle filter, updates the weights using
the likelihood of yt as (Orchard, 2007; Orchard et al.,
2008),

wt = wt−1 ⋅ p (yt∣xt) (13)

By using the state equation to represent the evolution
of the fault dimension in time, it is possible to generate
a long-term prediction for the state pdf, in the absence
of new measurements, in a recursive manner using the

6
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(a)

(b)

Figure 8: Plot of (a) three-phase current data and (b)
features computed from experimental data.

current pdf estimate for the state,

p̃ (xt+p∣y1:t) ≈

∫
p̃ (xt∣y1:t)

t+p∏
j=t+1

p (xj ∣xj−1) dxt:t+p−1

(14)

which can be approximated as,

p̃ (xt+p∣y1:t) ≈
N∑

i=1

w(i)
t

∫
⋅ ⋅ ⋅
∫
p̃
(
xt+1∣x(i)

t

)
⋅ . . .

t+p∏
j=t+2

p (xj ∣xj−1) dxt+1:t+p−1

(15)

The information about the distribution of the state for
future time instants is given by the position of the parti-
cles, not by the particle weight value. A computation-
ally affordable solution is based on the use of kernel
transitions and Monte Carlo resampling techniques for
the state pdf,

p̂ (xt+k∣x̂1:t+k−1) ≈

N∑
i=1

w(i)
t+k−1K

(
xt+k − E

[
x(i)

t+k∣x̂t+k−1

]) (16)

(a)

(b)

Figure 9: Fault detection using experimental data. Il-
lustrated are (a) the results after applying a particle fil-
ter to the incoming feature and (b) the level of confi-
dence computed from the particle weights.

Long-term predictions are used to estimate the proba-
bility of failure in a system given a hazard zone that is
defined via a probability density function with lower
and upper bounds for the domain of the random vari-
able, denoted as Hlb and Hup, respectively.

The probability of failure at any future time instant
is estimated by combining both the weights w(i)

t+k of
predicted trajectories and specifications for the hazard
zone through the application of the Law of Total Prob-
abilities. The resulting RUL pdf, p̂tRUL , provides the
basis for the generation of confidence intervals and ex-
pectations for prognosis,

p̂tRUL =
N∑

i=1

p
(
Fail∣X = x̂(i)

tRUL
, Hlb, Hup

)
⋅w(i)

RUL (17)

Fault Growth Model
The motor winding insulation degrades at a rate related
to the winding temperature, Tw. The fault-growth rate
can be related to temperature through Arrhenius’ law
(Gokdere et al., 2006),

L̇ (t) ∝ exp

(
− Ea
kBTw

)
(18)

where the symbols Ea and kB refer to the activation
energy and Boltzmann’s constant, respectively. How-
ever, this expression does not consider the current state
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of the fault dimension. By incorporating concepts
from Paris’ law (Paris and Gomez, 1961) into (18), the
rate of degradation for the winding insulation fault is
modeled as,

L̇ = �0exp

(
− Ea
kBTw

)
L (19)

where �0 > 0. This suggests that the rate of degrada-
tion is proportional to the fault dimension itself where
the constant of proportionality follows a relationship
with winding temperature according to Arrhenius law.

Thermal Model
In the case of the brushless DC motor, the winding
temperature is related to the power loss in the copper
windings. Note: this assumes the copper losses are the
primary source of power loss. A model describing the
relationship between the power loss and winding-to-
ambient temperature, Twa, as defined in (20), is shown
in Figure 10 (Gokdere et al., 2006; Nestler and Sattler,
1993). The symbols Ta, Cwa and Rwa refer to the
ambient temperature, thermal capacitance and thermal
resistance of the windings, accordingly.

Twa = Tw − Ta (20)

Figure 10: Schematic of the simplified thermal model.

The power loss is computed using (21), where ik
and Rk refer to the motor current and resistance of
each winding phase (k = 1, 2, 3), respectively.

Ploss =

3∑
k=1

Rki
2
k (21)

An equivalent state equation representation for Figure
7 can be written as,

Ṫwa =
PlossRwa − Twa

RwaCwa
(22)

The unknown parameters in (22) can be identified us-
ing a linear reference model,

Ṫwa = âm (t)Twa (t) + b̂m (t)u (t) (23)

where u (t) =
√

1
3

∑3
k=1 i

2
k. The unknown model pa-

rameters can be identified on-line in real-time by in-
voking an indirect Model Reference Adaptive Control
(MRAC) scheme (Hovakimyan, 2008) using measure-
ments for Ta, Tw, and u,⎧⎨⎩

˙̂am = 
aTwae (t)

˙̂
bm = 
bu (t) e (t) bm>b


bu (t) e (t) +
b̄m − b̂m

b̂m − b̄m + �
bm<b

e (t) = Tw (t)− Ta (t)− Twa

(24)

where 
a > 0 and 
b > 0 are adaptation gains, � > 0 is
a sufficiently small number so that b̄m− � > 0 and the
initialization of b̂ (0) > b̄m is done with correct sign.
It should be mentioned that (23) does not consider the
non-linear effects that occur due to the thermal depen-
dence of the winding resistance (Nave, 2008). Since
the adaptation parameters, âm and b̂m, vary slowly
with time (22) provides a good localized estimate for
Cwa and Rwa. However, a non-linear model would
improve the accuracy of long-term predictions over a
broader range of operating conditions.

Feature-Based Fault Growth Model
Prognosis requires the definition of a process model
to incorporate information present in the feature data.
Proposed in (25) is a fault / degradation growth state
model, based on (19), for insulation degradation in a
brushless DC motor. The state variable � is an un-
known time-varying model parameter to be estimated.
Additionally, the stochastic variables !1, !2 and v are
represented using Gaussian distributions. Finally, the
function ℎt is a mapping between the feature value and
fault dimension L.⎧⎨⎩

L̇ (t) = � (t) exp
(
− Ea
kBTw

)
L+ !1 (t)

�̇ (t) = !2 (t)

fp (t) = ℎt (L (t) , !m, im) + v (t)

(25)

Long-term prediction of the failure evolution is based
on an estimation of the current state and a model de-
scribing the fault progression, more specifically the
fault-growth model. Once an incipient failure is de-
tected and isolated, sensor data is collected to initialize
the fault-growth model parameters used in the prog-
nostic routines. Then, corrective terms are estimated
in a learning paradigm to improve model parameter
estimates and/or update the operating profiles thus re-
sulting in better accuracy and precision of the algo-
rithm for long-term prediction. Uncertainty associated
with long-term predictions is managed, or reduced,
by using the current state pdf estimate, process noise
model, and a record of corrections made to previously
computed predictions. In the first prognosis level, a
p−step ahead prediction is generated on the basis of
an a priori estimate, adjusting probabilities that are
associated with the prediction according to the noise
model structure. At the second prognosis level, these
predictions are used to estimate the RUL pdf.

Particle filter-based prognosis was demonstrated for
the turn-to-turn winding insulation fault using artificial
data generated from the simulation model discussed
earlier. A result showing the particle filter updates, di-
agnostic assessment and long-term predictions of RUL
are provided in Figure 11.

4 RECONFIGURABLE CONTROL
STRATEGY

The primary goal in this study is to introduce a recon-
figurable controller to trade-off RUL for performance.
In the case of the EMA, the RUL can be increased
by lowering the applied motor current, im. Although,
the motor current cannot be adjusted directly, it can be
controlled indirectly by making adjustments to the ref-
erence input, �ref , shown in Figure 12. The purpose

8
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Figure 11: Example of particle filter based prognosis using artificial data.

of the MPC is to find the optimal �̃ref for a given RUL
and performance requirement.

Figure 12: Block diagram showing actuator inputs and
outputs

4.1 RUL Control Boundaries
The control input associated with a specific RUL value
can be determined from the fault-growth model in (19).
However, instead of using the particle filtering frame-
work as mentioned earlier, the first approach utilizes an
analytical expression for the expectation of the fault di-
mension. First, consider the equations that result from
steady-state operating conditions for the motor cur-
rent, winding-to-ambient temperature, and adaptation

parameters im, Twa, am and bm, respectively. Then, a
steady-state equation can be written as,

amTwa + bmi
2
m = 0 (26)

where u (t) =
√

1
3

∑3
k=1 i

2
k. Next, the set of steady-

state expressions from (25) can be used to write the
expectation of the fault-growth dynamics in terms of
the steady-state motor current and adaptation parame-
ters, ⎧⎨⎩

E
[
L̇ (t)

]
= 
0E [L (t)]


0 = � exp
(
− Ea

kbTw

)
Tw = Ta − bmi

2
m

am

(27)

Solving this differential equation leads to the following
expression for the expected fault dimension, where L0
is the initial value of the fault at time t = t0.

E [L (t)] = L0 exp (
0 (t− t0)) (28)

Now, consider a value for the fault dimension Llim =
L (tRUL) where tRUL is the predicted mean RUL. An
illustration showing the time-evolution of the expected

9
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fault growth model from (27) is presented in Figure 13
where t0, tRUL, L0 and Llim are labeled accordingly.
The RUL is computed by projecting the intersection of
Llim and the expectation of the fault dimension trajec-
tory, E [L (t)], onto the time axis as shown. Control
boundaries for a given tRUL corresponding to a partic-
ular motor current, uRUL, are found and used as soft
cost constraints in the MPC cost function J , discussed
in the next section.

Figure 13: Prognosis prediction of fault dimension
highlighting the control input corresponding to the tar-
geted RUL.

4.2 Model Predictive Controller
The MPC formulation presented in this section max-
imizes the system performance by minimizing the
tracking error between the desired set point r and the
measured plant output y. (Cairano et al., 2007; Ca-
macho and Bordons, 2004; Qin and Badgwell, 2003;
Maciejowski, 2002)

System Model
A general non-linear state equation can be expressed as
(29) where x, u, d, v and w represent the model states,
control input, measured disturbance, measured noise
and process noise, respectively. An illustration of the
non-linear system with MPC is provided in Figure 14.⎧⎨⎩ x (t+ 1) = fm (x,u,v)

y (t) = ℎm (x,u,v,w)
(29)

Figure 14: Block diagram of MPC with plant and sig-
nals

Cost Function
The MPC is obtained by solving the optimization
problem,

J=
tk+1∫
tk

[
(r− y)⊤Q (r− y)+Δu⊤RΔu

]
dt+���

2 (30)

where the variables r, y and Δu correspond to the in-
put reference, plant output and control correction. The
soft control boundaries, uRUL, corresponding to a par-
ticular tRUL are introduced implicitly in the MPC cost
function through the terminal cost. The terminal cost
term is comprised of a terminal weight �� and the slack
variable �. The weight matrices Q and R are defined a-
priori as the inverse of the maximum allowable track-
ing error and control correction, respectively.

Discrete MPC Cost Function
The discretized version of the MPC is defined as,

min
Δ(k ∣ k)...Δ(m−1+k ∣ k)

[
J (Δu, r,y)

]
(31)

using the cost function,

J =
p−1∑
i=0

[
ny∑
j=0

∣wy
i+1,j yj (k+i+1∣j)− rj (k+i+1)∣2

+
nu∑
j=1

∣wΔu
i,j Δuj (k+i ∣ k)∣2

]
+ ���

2
(32)

where the subscript “()j” denotes the j-th component
of a vector, “(k + i ∣ k)” denotes the value predicted
for time k+i based on the information available at time
k; r (k) is the current sample of the output reference
subject to,⎧⎨⎩

y (k+i+1∣k) ∈ [yj,min (i) , yj,max (i)]

u (k+i∣k) ∈ [uj,min (i) , uj,max (i)]

Δu (k+i∣k) ∈ [Δuj,min (i) ,Δuj,max (i)]

y (k+i+1∣k) ∈ [yRUL
min − �V RUL

min , y
RUL
max + �V RUL

max ]

(33)

s.t. i ∈ (0, p− 1), ℎ ∈ [m, p− 1], � > 0 and m ≤
p− 1 with respect to the sequence of input increments
{Δ (k ∣ k) . . .Δ (m+ k − 1 ∣ k)} and to the slack vari-
able � and by setting u (k) = u (k − 1) + Δu (k ∣ k)

∗,
where Δu (k ∣ k)

∗ is the first element of the optimal
sequence. In matrix form, the MPC cost function can
be written as,

J=(ỹp−r̃p)⊤W2
y(ỹp−r̃p)+Δũ⊤pW

2
ΔuΔũp+���

2 (34)

Weights
Weights for the optimal control problem in (33) are
represented as Wu, WΔu and ��. The weights of each
term relate to the emphasis placed on the performance
of the system tracking error, level of control correction,
and prognosis, respectively.

Hard Constraints
The real-valued constraints ymin, ymax, umin, umax,
Δumin, and Δumax set the absolute lower and upper
bounds on the variables y, u and Δu, respectively.

Soft Constraints
The prognosis-based constraints on the internal states
xRUL

min and xRUL
max are introduced as “soft” boundaries

through a slack variable �. Violations in the soft
boundaries are introduced as the quadratic terminal
cost in (33). The constants V RUL

min and V RUL
max are non-

negative entries which represent the concern for relax-
ing the corresponding constraint; the larger V RUL, the
softer the constraint. For example, setting V RUL = 0
implies that the constraint is a hard constraint that can-
not be violated.

10
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The MPC Algorithm
Consider for simplicity the prediction model given by:⎧⎨⎩ x (k + 1) = Ax (k) + Bu (k) + w (k)

y (k) = Cx (k) + v (k)
(35)

where A ∈ ℝnx×nx , B ∈ ℝnx×nu , C ∈ ℝny×nx ,
x ∈ ℝnx and the initial conditions for the state vari-
able x and control input u are defined as x0 = x (0)
and u−1 = u (0−). Then, the prediction of the future
trajectories of the model starting at time k = 0 is,

y (i∣0) = C

[
Aix (0) +

i−1∑
k=0

Ai−1B ⋅ . . .(
ℎ∑

j=0

�u (j) + w (ℎ)

)]
+ w (i)

(36)

which, written in vector form gives,

ỹp = Sxx0 +Su1u−1 +SuΔũp +Hww̃p +Hvṽp (37)

Consider the deterministic case where the random
variables and are both omitted from the plant dynam-
ics in (35). The corresponding cost function in (34)
can be expressed as,

J = krΔũp + Δũ⊤p KΔuΔũp + ���
2 + const. (38)

Where the matrices kr and KΔu are functions of A,
B, C, x0 and u−1. Now, reconsider the inequality
constraints from (33) which can be written in matrix
form as,

Mz z̃p ≤ cz (39)

where z̃p = [ Δũp � ]⊤ ∈ ℝp+1 absorbs the
slack variable into the constraint optimization prob-
lem. Now, define a linear constraint mapping gz :
ℝp+1 → ℝ6p ,

gz (z̃p) = MzΔz̃p − cz (40)

Next, define the LaGrangian Lz : ℝp+1 → ℝ,

Lz (z̃p) = kz z̃p + z̃⊤p Kz z̃p (41)

where kz = [ kr 0 ]⊤ ∈ ℝ1×(p+1) and Kz =
diag(KΔu, ��) ∈ ℝ(p+1)×(p+1). The constraints
on the system dynamics can be adjoined to the La-
Grangian Lz by introducing time-varying LaGrange
multiplier vector � with gz. The result is the Hamil-
tonian function,

H� = kz z̃p + z̃⊤p Kz z̃p + �⊤ (Mz z̃p − cz) (42)

By taking the partial derivative of H with respect to
z̃p,

∂Hz
∂z̃p

= kz + 2z̃⊤p Kz + �⊤Mz (43)

Finally, by setting (43) identically equal to zero, the
optimal solution z★p can be expressed as,

z★p = −1

2
K−1
z

(
k⊤z + Mz�

★
)

(44)

where �★ satisfies the following Kuhn-Tucker condi-
tions (45) (Fletcher, 2000) for optimality,

⎧⎨⎩

Mz z̃p − cz ≤ 0

kz + 2z̃⊤p Kz +
(
�★p
)⊤

Mz = 0

�★pgz = 0

�★p ≥ 0

(45)

Several algorithms exist for solving the linear inequal-
ity constraints posed by the MPC such as the Dantiz-
Wolfe algorithm (Bemporad et al., 2004).

4.3 Simulation Results
The time-evolution of the turn-to-turn winding faults
for different operating conditions were simulated in
Simulink using (28).

The model parameters am and bm were computed
using the following equation,⎧⎨⎩ am = − 1

RwaCwa

bm = R0
Rwa

(46)

Using these modeling parameters, the fault dimension
trajectories were generated for different motor cur-
rents, as shown in Figure 15. The initial fault condition
was set to L0 = 0.05 for each trajectory.

Figure 15: Fault dimension trajectories for different
current values.

Notice, as the operating current decreases, the tra-
jectory becomes longer for the same initial fault con-
dition. The horizontal line in Figure 15 denotes the
hazard zone. The hazard zone defines the maximum
allowable value for the fault dimension. The intersec-
tion of the hazard zone with each fault dimension tra-
jectory can be used to determine the expected RUL.
The expected RUL computed from Figure 15 for each
operating condition is provided in Table 1.

According to Figure 15 the expected RUL is in-
versely proportional to the magnitude of the operating
current. Thus, the RUL can be extended by reducing
the operating current. The MPC controller discussed
earlier takes advantage of this relationship by reducing

11
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Table 1: Simulation results for the fault-growth model.

Motor Current [A] RUL [min] ΔRUL [min]

20 2200 2444
25 310 344.4
30 41.0 45.56
35 6.00 6.667
40 0.90 1.000

the operating current magnitude based on the RUL re-
quirement. The degree of relaxation is dependent on
the weight matrices chosen during the controller de-
sign phase. To demonstrate the feasibility of the ap-
proach the MPC toolbox in MATLAB was used to ex-
pedite the design process. The MPC controller con-
tained the variables listed in Table 2. In addition, each
constraint has an associated cost as defined in Table 3.

Table 2: Variable types.

Sym Description Constraint Min Max

�ref Reference pos. Hard -120° 120°
�l Actuator pos. Hard -120° 120°
im Motor current Soft -40A 40A

Table 3: Cost function weighting factors used in the
simulation.

Symbol Description Weight DoS

�ref − �l Position Error [(30/�) /100]2 0
im Motor Current [1/40]2 0
� Soft Violation 1 1

The actuator was simulated using the 5th order ac-
tuator model from (1). Results for three different fault
scenarios were generated using the MPC (parameters
given in Table 4) with the corresponding boundaries
and weights defined in Tables 2 and 3, respectively.
The results are provided in Figure 16. Notice, as
the fault dimension increases (left-to-right), the MPC
places more emphasis on reducing the magnitude of
the motor current. As a consequence, the rise time of
the actuator position increases and the magnitude of
the winding temperature decreases thereby increasing
the estimated RUL.

5 CONCLUSIONS
Fault-tolerant and reconfigurable control strategies for
improved critical system reliability and survivability
under fault/failure conditions has attracted the atten-
tion of the controls community in recent years. To ap-
ply these technologies it is essential the system health
status be monitored continuously and incipient failures
be tracked so that remedial action can be taken as soon
as possible to assure its safety. Control reconfigura-
tion at the component level, constitutes the first level
of the hierarchical framework for fault-tolerance. The
reconfigurable control framework was evaluated using
an EMA Simulink model. The results acquired from

the simulation demonstrated the feasibility of the ap-
proach. Finally, complexity issues must be addressed
for specific application domains. Other modules of the
integrated fault-tolerant control hierarchy, such as the
control redistribution, mission adaptation, etc., are not
addressed in this paper but they contribute significantly
towards the development of high-confidence systems.
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NOMENCLATURE

Table 4: List of commonly used symbols.

Sym Units Value Description

âm
1
s – Thermal

parameter

b̂m
∘K

s⋅A2 - ""

bℓ
in⋅lbf
rad/s 2.50× 10−1 Load damping

bm
in⋅lbf
rad/s 1.00× 10−4 Motor damping

im A - Motor current

kB
eV
∘K 8.62× 10−5 Boltzmann’s

constant

kcs
rad
rad 1.00× 105 Coupling

stiffness

ke
V

rad/s 1.10× 10−1 Back-emf
coefficient

kℓ
in⋅lbf
rad 2.00× 10−3 Load stiffness

kp1
V

rad/s 1 Controller gain

kp2
1
s 1 ""

kp3
rad
rad 100 ""

kt
in⋅lbf

A 1.01 Motor torque
coefficient

r̃p - - Reference array
tRUL s - RUL
yRUL - - RUL output

bound
u−1 - - Set-point i.c.
wu
i - - Wt. vector for u

wΔu
i - - Wt. vector for

Δu

wy
i - - Wt. vector for y

ỹp - - Measurement
array
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(a) (b) (c)

Figure 16: Simulation results for the reconfigurable control with initial fault dimensions (a) L0 = 1 × 10−6 (b)
L0 = 1× 10−2 and (c) L0 = 1× 10−1

z - - Concat. state

Cwa
W
∘K/s 5.00× 10−5 Thermal

capacitance
Ea eV 7.00× 10−1 Activation

energy

Jℓ
in⋅lbf
1/s2 2.00× 10−3 Load inertia

Jm
in⋅lbf
1/s2 2.10× 10−3 Motor inertia

Llim - 2.00× 10−1 Fault dim. limit
Ltt H 3.00× 10−4 Turn/turn

inductance
Ncl - 1 Load coupling
Ncm - 1 Motor coupling
R0 Ω 1.60× 10−1 Nominal

resistance
Rtt Ω 1.60× 10−1 Winding

resistance

Rwa
∘K
W 7.50× 10−1 Thermal

resistance
Twa

∘K - Winding-to-
ambient
temperature

Tload in⋅lbf - Load torque

V
RUL

- - Degree-of-
softness

Wy - - Tracking error
weight

WΔu - - Set-point adj.
weight

� 1
s 1× 10−6 Fault-growth

coefficient
� - - Slack var.
�p - - LaGrange

coefficients

�ℓ rad - Load position
�m rad - Motor position

!ℓ
rad
s - Motor speed

!m
rad
s - Load speed

Δũm - - Set-point adj.
array
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