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ABSTRACT

In this paper we present a statistical approach to
the estimation of the time in which an operating
gear will achieve the critical stage. The approach
relies on measured vibration signals. From these
signals features are extracted first and then their
evolution over time is predicted. This is done
owing to the dynamic model that relates hidden
degradation phenomena with measured outputs.
The Expectation-Maximization algorithm is used
to estimate the parameters of the underlying state-
space model on-line. Time to reach safety alarm
threshold is determined by making the prediction
using the estimated linear model. The results ob-
tained on a pilot test bed are presented.

1 INTRODUCTION

On-line condition monitoring of rotational machinery
has become an almost indispensable part of modern
control and supervision systems. Due to almost four
decades of development of the underlying methodolo-
gies the field is believed to have reached the maturity
phase. On the other hand, progress in the area of prog-
nosis of the machine condition is relatively recent so
that a lot of work has to be done in the future(Howard,
1994). The driving force is the obvious importance of
accurate predictions of fault propagation. This allows
for alarm setting well before the machine reaches the
critical stage.

In this paper we present a data driven approach to
gear health monitoring and prognosis. We employ
vibration signals and their processing by means of
Hilbert transform (HT)(Rubini and Meneghetti, 2001;
Ho and Randall, 2000). Components from Hilbert
spectrum are used as fault indicators (or features). The
sequence of features can be viewed as a time series i.e.
a realization of the stochastic process, which is tightly
related to the condition of the gear. The objective of
this work is to extend feature extraction with the pre-
diction of the feature time series in order to estimate

This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and re-
production in any medium, provided the original author and
source are credited.

the time of occurrence of the safety alarm (first pas-
sage time - FPT).

As feature evolution over time is a nonstationary
stochastic process, we focus on an adaptive on-line
tracking of the essential parameters of the dynamic
model that describes the process. In the literature there
are several different techniques available for time-
series prediction(Wanget al., 2003), among them neu-
ral networks and neuro-fuzzy systems(W. Q. Wanga
and Ismailb, 2004). In this paper we assume that the
time series can be viewed as an output of a second or-
der linear, discrete time, stochastic dynamic system.
Because of the progress of faults in gears, the systems
parameters are expected to change in time. For on-
line estimation of model parameters an Expectation-
Maximization (EM) algorithm is used. The EM algo-
rithm is a well established method, which arose in the
mathematical statistics community(Dempsteret al.,
1977), but has found wide engineering applications in
different areas. One of the applications is the use of
the algorithm for estimating state-space model param-
eters in the presence of hidden variables (unmeasured
states)(Gibson and Ninness, 2005).

Fault prognosis techniques developed so far can be
roughly divided into three different classes: (1) ex-
ploiting experimental models, (2) approaches based on
physical models and (3) data driven techniques.

In the first case, the models of the components are
typically designed by experts and validated on a large
set of experimental data(Howard, 1994). The under-
lying models typically take the form of the probability
laws, which describe the probability for the occurence
of failure. Generally, such an approach is costly and
applicable to a specific class of systems components.

In the second class of the approaches the damage
model of the component is derived from either physi-
cal of semi-physical model in the form of state-space
models. These models are further enhanced with the
failure propagation entries in terms of deterministic
or stochastic states. Unknown parameters can be ob-
tained by means of the stochastic filtering approaches
(Orchard and Vachtsevanos, 2009).

The third category is least demanding in terms of
prior knowledge. Actually these approaches rely on a
set of features, which correlate with the failure evolu-
tion over time. The time-to-failure can be estimated
from the operating data provided an appropriate train-
ing process has been conducted first. The key enabler
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in these approaches is time series prediction which can
be solved in many ways(W. Q. Wanga and Ismailb,
2004),(G. Niu, 2009). According to this segmentation,
our approach can be placed in the last category.

The outline of the paper is as follows. Chapter 2
will present the experimental setup used for this study
along with the experimental protocol and feature ex-
traction. Chapter 3 will describe the stochastic time se-
ries properties and prediction along with the EM algo-
rithm for model parameter estimation. Results of pre-
diction using the data from the test bed are presented
in Chapter 4.

2 THE EXPERIMENTAL SET-UP
The experimental test bed consists of a motor-
generator pair with a single stage gearbox (Fig. 1).
The motor is a standard DC motor powered through
a Simoreg DC drive. A generator is being used as a
break. The generated power is being fed back in the
system, thus achieving the breaking force.

Figure 1: The test bed

The test bed is equipped with 8 accelerometers.
The mounting position and sensitivity axis of each ac-
celerometer are shown in Figure 2.

Figure 2: Vibration sensors placement scheme

The placment of the sensor determines its sensiti-
fity for incresed vibrations caused by the degrated gear
health. The highest sensitivity in our experiment has
been observed in sensors labeledvib8andvib3, which
measure the vibrations on gearbox output and input
shafts respectively.

2.1 The experimental protocol
The test run was done with a constant torque of
82.5Nm and constant speed of 990rpm. This speed of
990rpm generates gear mesh frequency (GMF)fgm =
396Hz, rotational speed of input shaftfi = 16.5Hz,

and rotational speed of output shaftfo = 24.75Hz.
The signals were sampled with sampling frequency
fs = 80kHz. Each acquisition session lasted for 5 sec-
onds. The acquisition was repeated every 10 minutes
as illustrated in Figure 3.

Figure 3: The concept of signal acquisition

In order to speed up the experiment, the contact sur-
face between the gears was decreased to 1/3 of the
original surface. In this manner the fault evolution
horizon is made shorter. The displacement is shown
in Fig. 4.

The overall experiment run took 65 hours. At the
end both gears were heavily damaged i.e. on both
gears spalling can be seen on all teeth, which pro-
gressed even into a plastic deformation of some of
them, as shown in Fig. 4.

2.2 Feature extraction
Signals from all 8 sensors were acquired simulta-
neously. These signals acquired at each acquisi-
tion session, were analyzed using envelope analysis
(Ho and Randall, 2000). From each sensorsi ∈
{s1, · · · , s8}, at each acquisition sessionk, a feature
vector [ysi,1(k), ysi,2(k), · · · , ysi,m(k)] was derived,
where m is the total number of extracted features.
Each element of the feature set represents the value of
the amplitude of specific spectral component from the
envelope spectrum for the particular sensorsi.

3 STOCHASTIC TIME SERIES PREDICTION
3.1 State space model of time series
State-space representation is a very general model, that
can describe a whole set of different models. In our
case we assume that condition of the machine is a dy-
namic process influenced by random tribological in-
puts which occur due to the impact between moving
surfaces. Condition can be viewed as a random pro-
cess, which can be described by a state space model:

xt+1 = f(xt,wt,Θ),

yt = g(xt, et,Θ) (1)

whereyt is a measured data (i.e. the output of the
vibration sensor),xt an unmeasured system state,wt

is an i.i.d. random process,et measurement noise and
Θ model parameters.
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(a) Output gear

(b) Input gear

Figure 4: Output and input gear at the end of the ex-
periment (notice heavily pitted teeth)
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Figure 5: Feature extraction procedure

For practical use, the expression (1) can be in many
cases simplified and transformed into linear form. The
resulting model is described as

xt+1 = Axt + wt,

yt = Cxt + et, (2)

We assume that the system starts with initial vector
x0 with meanµµµ0 and covariance matrixΣ0.

The observed system output data, indexed by time
(yt), which represent the time series we wish to ana-
lyze or predict.

3.2 EM algorithm for dynamic state-space
system estimation

Expectation-Maximization is applied as an iterative
method to estimate a vector of unknown parameters
(Θ), given measurement data (YYY = {y1, y2, . . . , yn}).
In other words, we wish to find the set of parameters
Θ, such thatp(Y|Θ) is a maximum. This estimate

of Θ is known asmaximum likelihood (ML) estimate.
Usually, the log-likelihood function of the parameters
is defined as,

L(Θ) = ln p(Y|X,Θ), (3)

where X = [x1,x2, . . . ,xn]. Since ln(x) is a
strictly increasing function, the value ofΘ that max-
imizesp(Y|X,Θ) also maximizesL(Θ).

Θk+1 = arg max
Θ

{

EX|Y,Θ
k
{ln p(Y,x|Θ)}

}

(4)

EM algorithm is an iterative procedure for maximiz-
ing L(Θ), meaning that afterkth iteration, we obtain
the estimate forΘ, denoted byΘk.

The advantage of the algorithm is, that it can also
operate when system states (x) are not known. Be-
cause the output is dependant on the unobserved sys-
tem states, direct maximization is not possible. The
EM algorithm alternates between two steps, first max-
imizing the likelihood function with respect to the sys-
tem states (E-step) and than with respect to the param-
eters (M-step).

E-step
Given an estimete of the parameter values
(Θk = {A, Q, C, R, xA, Q, C, R, xA, Q, C, R, x0,QQQ0}), the Rauch-Tung-
Striebel (RTS) smoother provides an optimum
estimate of the unobserved state sequence (xxxt) of a
state space model (2). In dynamical systems with
hidden states the E-step corresponds directly to
solving the smoothing problem.

In other words, for any timet we would like to com-
pute

p(xt|y1:T ) (5)

wherey1:T = {y1, y2, . . . , yT }, T > t. The RTS
smoother procedure is as follows:

• First, Kalman filter is applied to the observable
data in a forward manner (t = 1, 2, . . . , n), start-
ing with initial estimate of the state mean and
variance (x0,Σ0).

• Recursive smoother is applied in a backward
manner (t = n, n − 1, . . . , 1), taking the filtered
state estimate at timen as initial condition.

Summary of the algorithm is given in Table 1.

M-step
As stated above, the vector of unknown system param-
eters in the case of state space model is given as

Θ = {A, Q, C, R, xA, Q, C, R, xA, Q, C, R, x0,QQQ0} (6)

If the system states can be observed in addition to
system outputs, the joint pdf can be written as

p(YYY |Θ) = p(YYY |XXX,Θ)p(XXX |Θ)

Assuming Gaussian distributions and ignoring the
constants, the complete data log-likelihood can be
written as
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Table 1: RTS smoother algorithm

Forward filter
Initialization
xxx0 = xxx0
PPP 0 = PPP 0
Computation: For t = 1, 2, . . . , n
xxxt+1|t = AAAxxxt|t

PPP t+1|t = AAAPPP t|tAAA
T + QQQ

KKKt = PPP t+1|tCCC
T (CCCPPP t+1|tCCC

T + RRR)−1

xxxt+1|t+1 = xxxt+1|t + KKKt(yt+1 −CCCxxxt+1|t)
PPP t+1|t+1 = PPP t+1|t −KKKtCCCPPP t+1|t

Backward filter
Computation: ForT = n, n − 1, . . . , 1
JJJ t = PPP t|tAAA

TPPP−1
t+1|t

xxxt|T = xxxt|t + JJJ t(xxxt+1|T − xxxt+1|t)
PPP t|T = PPP t|t − JJJ t(PPP t+1|T −PPP t+1|t)JJJ

T
t

−2 lnL(Θ) = ln |Σ0| + (x0 − µ0)
′Σ−1

0 (x0 − µ0)

+ n ln |Q|

+

n
∑

t=1

(xt − Axt−1)
′Q−1(xt − Axt−1)

+ n ln |R|

+

n
∑

t=1

(yt − Cxt)
′R−1(yt − Cxt) (7)

wherex0 ∼ N (µ0,Σ0). Taking the expected value
of the expression with respect to the current parameter
estimate(Θk) and complete observed dataYn

l(Θ|Θk) = E {−2 lnL(Θ)|Yn,Θk} (8)
Using the results from RTS smoother equations:

EX|Yn,Θ
k
(xtx

′
t) = xn

t xn
t
′ + Pn

t (9)

EX|Yn,Θ
k
(xtx

′
t−1) = xn

t xn
t−1

′ + Pn
t,t−1(10)

EX|Yn,Θ
k
(xt−1x

′
t−1) = xn

t−1x
n
t−1

′ + Pn
t−1(11)

EX|Yn,Θ
k
(xt) = xn

t (12)

and taking expectation over the expression (7) yields

l(Θ|Θk) =

= ln |Σ0|

+ tr
[

Σ−1
0 (Pn

0 + (x0
n − µ0)(x0

n − µ0)
′)

]

+ n ln |Q|

+ tr
[

Q−1 {S11 − S10A
′ − AS′

10 + AS00A
′}

]

+ n ln |R|

+ tr
[

R−1 {S22 − S20C
′ − CS′

20 + CS11C
′}

]

(13)

where

S11 =

n
∑

t=1

xn
t xn

t
′ + Pn

t (14)

S10 =

n
∑

t=1

xn
t xn

t−1
′ + Pn

t,t−1 (15)

S00 =
n

∑

t=1

xn
t−1x

n
t−1

′ + Pn
t−1 (16)

S22 =

n
∑

t=1

E(yty
′
t) =

n
∑

t=1

(yty
′
t) (17)

S20 =
n

∑

t=1

ytx
n
t
′ (18)

Our goal is to find the maximum of the
function l(Θ|Θn) with respect to parameters
A,C,Q,R,x0,Σ0. Calculating derivatives of the
Eq. (13) with respect to all parameters we obtain the
following result

A = S10S
−1
00 (19)

Q = n−1
(

S11 − S10S
−1
00 S′

10

)

(20)

C = S20S
−1
11 (21)

R = n−1
(

S22 − S20S
−1
11 S′

20

)

(22)

x0 = xn
0 (23)

Q0 = Pn
0 (24)

Both E and M steps are iterated until the increase in
the likelihood at the current time step, compared to the
previous one, is greater than the selected threshold.

Time series prediction
With known model parameters, predicting the future
values of the time series is straightforward. We start at
the time of the last measure, with the filter estimate of
the state vector distribution (xxxn|n, PPPn|n), wheren is
the time index of the last measured sample.

At every future time stept > n, the mean and vari-
ance of the output vectoryt can be calculated analyti-
cally.

4 EXPERIMENTAL RESULTS
The algorithm has been used to predict first passage
time in the setup as described in section 2. Each fea-
ture is represented by a time series of 390 samples.
The goal is to use the algorithm for online prognosis,
which is done in the following way.

At time t, we estimate the parameters of the under-
lying stochastic model (Eq. 2) based on data window
y(t−Nw+1):t, whereNw is window length. As the con-
dition of the machine will change over time, the values
of the model parameters will change as well. Model
parameters will determine the trend in the feature val-
ues, while noise covariance parameters comprise the
influence of the varying noise component (which in-
creases as the damage progresses).

The estimated model, obtained from each time win-
dow is used to predict future behavior, that is timeT
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wheny(T ) crosses the alarm valuey∗ i.e. y(T ) ≥ y∗

for the first time.
The alarm valuey∗ has been set to values7000 and

1100 for feature values ofvib8 andvib3 respectively,
which corresponds to the time of60 hours after the
start of the experiment.

4.1 Model structure
The underlying model is assumed to be of the follow-
ing form:

x1(t + 1) = a11x1(t) + a21x2(t) + w1(t)

x2(t + 1) = a22x2(t) + w2(t)

y(t) = c1x1(t) + e(t) (25)

or in matrix state-space form

xt+1 = Axt + wt,

yt = Cxt + et, (26)

It is important to note, that the system states (x) in
this model do not directly correspond to state of ma-
chine or gear health or have any physical meaning. The
system states serve only to describe the dynamical be-
haviour of the feature values.

4.2 Online tracking of model parameters
Whenever a new measurement is obtained, the algo-
rithm estimates model parameters using the last 100
samples. Initial parameters of the model are set to the
following values:

A =

[

1 1
0 1

]

,

Q =

[

1 0
0 1

]

,

C = [ 1 0 ]

R = [ 1 ]

x0 =

[

0
0

]

Σ0 =

[

1 0
0 1

]

,

(27)

Convergence of the EM procedure is achieved when
the relative increase of the log likelihood function is
less than10−4.

The algorithm has been first tested on the time se-
ries corresponding to the 8th vibration sensor measure-
ments (c.f.vib8 in Figure 2), which measures the vi-
brations inz direction on the output shaft. Because
of the gear placement, the impacts between gear teeth
are causing the strongest vibrations in this direction,
therefore the feature values from this particular sensor
are expected to be the most informative about the gear
health.

Figure 6 shows the measured time series, the first
eigenvalue of the estimated matrixA and diagonal el-
ements of the estimated noise covariance matrixQ.
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Figure 6: Values of the estimated parameters

Up to 40 hours of operation, it can be seen that the
feature values are relatively small and there is no trend
present. Consequently, the estimated system turns to
be stable (eigenvalue less than 1). However, when the
feature values start to increase, the system eigenvalues
become greater than one. The increase in system noise
parameters corresponds to stronger noise component
present in the signal, which can be clearly seen from
time series (between 40 and 65 hours).

4.3 Prediction of the first passage time

The goal of our prediction is to determine the time, at
which the feature will exceed the critical value. Our
approach goes the following way. At a given data ac-
quisition session (t), model parameters are estimated
using windowed data (y(t−Nw+1):t). Based on the es-
timated model, a Monte-Carlo simulation of the future
feature trend is repeated1000 times. Each simulation
run results in a realization of the FPT. Based on all re-
alizations a probability density function for the FPT is
calculated, in particular its first and second moment.
The results obtained for the feature that corresponds
to the gear-frequency of the envelope spectrum of the
vibration sensor (Figure 7).

It can be seen, that the first estimates of the FPT’s
are made around 20 hours before the feature actually
achieves the critical value. The estimation variance
gradually decreases and 15 hours before the actual FPT
the uncertainty of the predicted FPT’s falls in the range
±5 hours.

The validation of the concept has been performed on
a different time series, in this case 3rd vibration sensor
(c.f. vib3 in Figure 2), the results of which are shown
in Figure 8.

Again, the mean predicted time is approximately the
same as the true time as early as 20 hours in advance.
Due to higher noise variance in this time series, the
variance of the predicted FPT is greater and is approx-
imately±10 hours.

5



Annual Conference of the Prognostics and Health ManagementSociety, 2009

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

Time [h]

F
ea

tu
re

 v
al

ue

(a) Feature

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

30

40

50

60

70

80

90

100

110

120

Time [h]

P
re

di
ct

ed
 ti

m
e 

[h
]

 

 

measured time

(b) Prediction

Figure 7: Results of MC analysis usingvib8 sensor
data
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Figure 8: Results of MC analysis usingvib3 sensor
data

5 CONCLUSION

It has been shown that the dynamic behavior of the vi-
bration feature value can be approximated as the out-
put of a second order dynamic linear stochastic state
space model. Model parameters have been estimated
using Expectation-Maximization algorithm, which it-
eratively maximizes the model likelihood function

with respect to hidden states and to unknown parame-
ters. The results show, that the model obtained in this
way can effectively predict the future behavior of the
feature and can therefore be used to predict the time of
safety alarm. From current experiments, we estimate
that using this method, the accurate prediction can be
made 15 to 20 hours in advance. This offers the ma-
chine operators or maintenance a reasonable amount
of time to replace the gear system without causing un-
necessary production downtime.

In this stage, our algorithm has only been tested in
the case of constant load. In real application, it is com-
mon that the load as well as rounds per minute are
changing in time. Next step in the development of the
procedure is to modify the algorithm so that it will in-
clude these as a measured system input. There are also
several other issues that will have to be addressed for
this approach to be used in industrial applications. One
is the selection of the reference feature values, where
the algorithm signals the alarm. Because there is no di-
rect relation between our system states and the state of
gear health, the alarm values for each setup will have to
be determined experimentaly and in cooperation with
system operators.
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