
Online Model-based Diagnosis for Multiple, Intermittent and
Interaction Faults

Lukas Kuhn 1, Johan de Kleer 1, and Juan Liu 1

1 PARC, Palo Alto, CA, USA
{lkuhn,dekleer,jjliu}@parc.com

ABSTRACT

This paper extends model-based
diagnosis (MBD) (Reiter, 1987;
de Kleer and Williams, 1987) to systems
which convert, move and process materials or
objects. Examples of such systems are printers,
refineries, manufacturing lines and food process-
ing plants. Such plants present two challenges to
model-based diagnosis: (1) the plant may process
with very high speed while handling multiple
objects in parallel such that retaining full details
of behavior of all past objects is impractical,
and (2) complex multi-way interactions can
occur among components operating on the
same object. We address the first challenge
by synopsizing past behavior and the current
knowledge in a data structure of linear size in
the number of components in the system. The
second challenge is addressed by introducing the
notion of interaction fault. An interaction fault
is present if a set of components operating on
the same object, damage the object even though
each component alone produces non noticeable
damage. Introducing interaction faults is much
simpler than introducing fine-grained models of
component-object interactions. We demonstrate
the approach on a highly redundant printer.

1 INTRODUCTION
Most existing approaches to model-based diagnosis
presume all information flow in a system as signals.
They are good for modeling systems that can be di-
rectly modeled as ODEs as is characterized by system
dynamics (Shearer et al., 1971). However, most real
world systems transport and modify materials or ob-
jects. For example, a refinery converts one kind of fuel
into another with different characteristics, a printer

This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and re-
production in any medium, provided the original author and
source are credited.

converts blank paper to paper with marks on it, and
a food packaging line converts food and cardboard
into packaged food. Such systems need to reason about
both the attributes of system components (e.g., voltage,
current, pressure) and the properties of handled objects
(e.g., wrapped candy bar, unwrapped candy bar, par-
tially assembled automobile). We drawn most of our
experience from a high speed multi-path printing press
illustrated in Figure 1 (Fromherz et al., 2003). The
highly redundant printing press consists of two tow-
ers each containing 2 printers (large rectangles). Sheets
enters on the left and exit on the right. Dark black
edges with small rollers represents a possible paper
path. There are three main paper highways within the
modular printer (horizontal). The printer incorporates
2 types of media handling components represented by
small lighter edge rectangles. The motivation for this
design is to continue printing even if some of the print-
ers fail or some of the paper handling components fail
or jam.

Figure 1: Model of PARC’s prototype highly redun-
dant printer.

The two main challenges of such plants are (1) con-
tinuous high speed and parallel processing which leads
to a data overload with respect to retaining full details
of behavior and current knowledge of all past objects,
and (2) complex multi-way interactions which can oc-
cur among components operating on the same object.

1

Annual Conference of the Prognostics and Health Management Society, 2009

Most refineries, printers, manufacturing lines run
continuously and with high speed. They are expensive
to halt so minor problems are ignored or compensated
for by later manual processing. Unlike simple quali-
tative envisionments of one signal propagated through
the system, we intend to address a continuous move-
ment with large number of objects being processed at
any moment. The closest analog to this type of qualita-
tive reasoning is the parts-of-stuff ontology of (Collins
and Forbus, 1987). Although more difficult to analyze,
continuous high speed operation has the advantage that
it is possible to gather a lot of observations.

The second distinction to classical model-based di-
agnosis is the fact that object or material handling
systems introduce a whole new fault type: interaction
faults. For example, we will often see situations where
component A and component B operate without no-
ticeable error stand-alone, yet fail when they both op-
erate on the same object. Consider a food processing
line for candy bars. There are multiple components
wrapping and boxing candy bars. It may be that com-
ponent A leaves a tiny rip which is of no consequence
for the consumer, but boxing component B has a small
protrusion such that the rip sometimes catches and de-
stroys the candy bar. We call such faults interaction
faults: A and B are perfectly operational individually
but will not work correctly if A and B both operate on
the same candy bar. The classical model-based diagno-
sis approach would be to consider both components A
and B as faulted, but that is not useful for the techni-
cian. The line can be restored to full operation by either
removing the protrusion on B or repairing A. There is
no need to replace both A and B. Such faults occur in
digital circuits as well: Gates A and B may not work
well together as both may be “late”. Replacing either
A or B with one having an average gate delay restores
the circuit to full functioning.

This paper outlines an approach for online diagno-
sis for multiple fault, interaction fault and intermittent
fault scenarios by integrating three main components:
First, we synopsize the knowledge about the past be-
havior in a single linear-size data structure. Necessar-
ily some information will be lost and we rely on high
throughput rates to compensate for eventual informa-
tion loss. Second, we do not explicitly model the de-
tails of component-object-component behavior, but in-
stead introduce a new generic fault category of an in-
teraction fault. Third we adopt the meta-diagnosis ab-
straction framework of (de Kleer, 2007a). This idea
is motivated by how technician reason about sys-
tems. A technician reasons about a system at multi-
ple levels of abstraction. He/she will make the sim-
plest meta-assumptions possible (e.g. single, persis-
tent, non-interaction fault) to diagnose a system. Only
when those meta-assumptions yield a contradiction
will he/she choose a more detailed hypotheses model.

The resulting approach enables diagnosis for
multiple-faults, interaction-faults and intermittent-
faults in the context of high speed manufacturing sys-
tems.

2 RELATED WORK
Researchers in model-based diagnosis have suggested
a multitude of diagnostic frameworks and notions.

These are normally restricted to specific aspects of the
phenomena of interest in order to facilitate modeling or
computation. Example of diagnostic notions are: mul-
tiple faults (de Kleer and Williams, 1987), intermit-
tent faults (Koren and Kohavi, 1977; de Kleer, 2007a),
bridge diagnoses (Davis, 1984; de Kleer, 2007b),
model-based monitoring (Dvorak and Kuipers, 1989),
kernel and prime diagnoses (de Kleer et al., 1992).

In addition to unifying several of the above ap-
proaches we introduce the new notion of interaction
fault which are of great practical significance. We
make possible the unification of all these frameworks
throughout a set of algorithms and illustrate the work-
ings of these algorithms with an example from industry
(Fromherz et al., 2003).

Interestingly, model-based diagnosis has been put in
a common framework with the related disciplines of
planning (Kuhn et al., 2008), scheduling (Muscettola
et al., 1998), but there is a little work on combining
different model-based notations in a single framework.

In the algorithmic part there has been a signif-
cant amount of work in model-based diagnosis. Early
examples of inference algorithms are the GDE (de
Kleer and Williams, 1987), the related Livingston-
2 (Williams and Nayak, 1996), compilation-based
approaches (Darwiche, 2001), SAT formulations
(Grastien et al., 2007), and many others. Our algo-
rithms present a novel viewpoint on diagnosis as op-
posed to the existing single-fault or multiple-fault ap-
proaches. We split the set of components in sets, the
latter labeled: good, bad or unknown and maintain a
set of diagnostic foci for classifying and reclassifying
components into these sets.

3 META-DIAGNOSIS
A main challenge in diagnosis is the selection of the
abstraction level. If the hypothesis space is modeled
to fine grain it might be possible that computation is
impractical. On the other hand if we chose the ab-
straction level to high we might lose important details.
Therefore we integrate the meta-diagnosis abstraction
framework of (de Kleer, 2007a) to enable dynamic
changes of abstraction level in the hypothesis space.
In this approach reasoning is performed in two steps
(1) first we determine the simplest meta-assumptions
which don’t yield a contradiction (2) followed by the
second step in which we chose the corresponding algo-
rithm (see Section 6) to determine the diagnoses with
respect to the meta-assumptions. The diagnosis system
contains therefore two diagnosis engines, one to de-
termine the meta-diagnsis (which meta-assupmptions
are valid) and one to determine the component diag-
nosis. Figure 2 illustrates the overall architecture. The
decision which algorithm to determine the component
diagnosis depends on meta-assumption assignment.

We formalize abstraction model-based diagnosis as:
A system Sys as a tuple < C,P, Z > where:
• C is the set of all components.
• P is a list of plans. A plan pi = (c1, c2, . . . , cn)

is a sequence of components involved in the plan.
• Z is a list of observations. A observation zi ∈
{f, s} is associated with plan pi. We denote a plan
failure as f and a normal plan execution as s.

2

Annual Conference of the Prognostics and Health Management Society, 2009

Component
Topology

Preferred Meta-Diagnosis

Abstraction Library

Meta-Observations

Failure

Diagnoses

Domain

MBD

Component Models

System Observations

Failure

Modeler

Component Model
Library

Abstraction
MBD

Applicable
Models

Meta-Conflicts

Figure 2: Architecture of an abstraction-based, model-
based diagnosis engine.

An abstraction system A-MBD is a tuple
< SD, ABS, OBS > where:
• SD, constraints among possible abstractions, is a

set of first-order sentences.
• ABS, the applicable abstractions, is a finite set of

constants.
• OBS, a set of meta-observations, is a set of first-

order sentences.
Given two sets of abstractions Cp and Cn define
Da(Cp, Cn) to be the conjunction: ∧

c∈Cp

ABa(c)

 ∧ [∧
c∈Cn

¬ABa(c)

]
(1)

where ABa(x) represents that the abstraction x is AB-
normal (cannot be used).

A meta-diagnosis is a sentence describing one pos-
sible state of the abstraction system, where this state
is an assignment of the status normal and abnormal to
each abstraction.
To illustrate the idea we use three dimensions of ab-
straction.
• single vs. multiple faults “M”.
• persistent vs. intermittent faults “I”
• stand-alone vs. interaction faults “N”

The corresponding ABa literals are:
• ¬ABa(M): represents the abstraction that multi-

ple faults need not be modeled.
• ¬ABa(I): represents the abstraction that the sys-

tem is non-intermittent.
• ¬ABa(N): represents the abstraction that the

system contains no interactions faults.

For integrated

MIN

paper

Note all the other
lattices have too

MI MN INy

many arrows.

co
m

pl
ex

ity

M I N

c

ø

Figure 3: Meta-Diagnosis lattice: M indicates multi-
ple faults; I indicates intermittent faults; N indicates
interaction faults

4 EXAMPLE: SIMPLEST META-DIAGNOSIS
FAILING

In the example we consider a system with only three
components A, B,C. Initially we make three meta-
assumptions : (1) the system does not have multiple
faults, (2) the fault is not intermittent, (3) the fault is
not interactive. This corresponds to the bottom node
of Figure 3.

Suppose we observe the following plans:
time plan observation conclusion

1 A,B fail ¬M exonerates C
2 B,C success ¬I exonerates B, C
3 A success ¬I exonerates A

Plan 1 (A, B) fails, therefore if the system does
not contain a multiple fault, one of A or B must be
faulted and C cannot be faulted. Plan 2 (B, C) suc-
ceeds, therefore given the system is not intermittent
B and C must be functioning correctly. Plan 3 (A)
succeeds so A cannot be faulted. At this point no sin-
gle fault, non-intermittent, non-interaction faults exist.
This results in the meta-conflict:

ABa(M) ∨ABa(I) ∨ABa(N). (2)

Analysis must consider retracting one of these three
meta-assumptions. Consider multiple faults. Plan 2 ex-
onerates B, C and plan 3 exonerates A with no depen-
dence on the single fault assumption. Therefore, the
meta-conflict is:

ABa(I) ∨ABa(N). (3)

Figure 4 illustrates the resulting meta-diagnosis lat-
tice.

The system can contain either an intermittent fault
or an interaction fault. For example, component A can
be intermittently failing, producing a bad output at
time 1 and a good output at time 3. The system can
also contain an interaction fault. For example, the sys-
tem can contain the interaction fault [AB]. We use [...]
to indicate the interaction fault. Plan 1 is the only plan
in which A and B co-occur, therefore the interaction
fault explains all symptoms.

3

Annual Conference of the Prognostics and Health Management Society, 2009

For integrated

MIN

paper

Note all the other
lattices have too

MI MN INy

many arrows.

co
m

pl
ex

ity

M I N

c

eliminated

ø

Figure 4: Meta-Diagnosis lattice after the minimal
conflict ABa(I) ∨ABa(N).

5 META-INFERENCES
As in conventional model-based diagnosis, a tentative
diagnosis is represented by the set of failing compo-
nents. When a plan p succeeds the following infer-
ences can be drawn:
• If there are no intermittent faults (¬ABa(I)),

then every component mentioned in the plan is
exonerated.
• If there are interaction faults (ABa(N)), then ev-

ery diagnosis containing a interaction fault which
contains only components from p is exonerated.

When a plan p fails the following inferences can be
drawn:
• Every diagnosis not containing a component in p

is exonerated.
Initially, all subsets of components can be diag-

noses. With the introduction of interaction faults, any
combination of components can also be a fault. There-
fore, if a system consists of n components, there are
O(22n

) possible diagnoses (Eiter and Gottlob, 1995).
Figure 5 shows a fraction of the diagnosis lattice for

a simple system with components three components:
{A, B, C}. For simplicity we assume non-intermittent
faults, but multiple and interaction faults are allowed.
Consider the prior example again. Plan 1 which used
A, B produced a failure. By the preceeding rules, C
alone cannot explain the symptom, neither can [AC],
[BC] or [ABC]. The only minimum-cardinality diag-
noses are {A}, {B} and {[AB]}. The successful plan
2 exonerates B and C. Therefore any diagnosis which
contains B or C is exonerated. In addition, any diagno-
sis containing the interaction fault [BC] is exonerated.
Finally, when Plan 3 is observed to succeed, A is exon-
erated. The only minimum cardinality diagnosis which
explains the symptoms is the interaction fault [AB].

The very large size of this diagnosis lattice prompts
a new diagnostic algorithm more akin to what a techni-
cian would use when diagnosing the system. It is also
much more efficient for on-line diagnosis.

6 DIAGNOSTIC ALGORITHM
In this section we present a set of new diagnostic al-
gorithms which differ from classical model-based di-
agnostic algorithms in significant ways. The new diag-
nostic algorithms maintain a set of mutually exclusive

ø

A B C [AB] [AC] [BC] [ABC]

1
1 1 1

1

2

AB AC BC A,[BC]

A

[AC][B,C]

22 2 2 2

3

Only minimal
cardinality
diagnosis

Figure 5: Fragment of diagnosis lattice for the simple
3 component system A, B, C. Includes multiple and
interaction faults. The numbers indicate which plan
eliminates that diagnosis.

sets: diagnostic foci, good components, bad compo-
nents and unknown components. Intuitively, each di-
agnostic focus represents a set within which we are
sure there is at least one fault. Technicians will typ-
ically explore one focus at a time. As the printer or
manufacturing line runs continuously there are far too
many observations to record in detail. Therefore, the
current foci together with the set of bad components
and unknown components combined with a fixed size
buffer will represent the entire state of knowledge of
the faultedness of system components. Some informa-
tion from prior observations will be discarded. The al-
gorithms we describe may take more observations to
pinpoint the true fault(s) due to the eventual informa-
tion loss.

The decision which algorithm is used at any given
time is determined by the meta-diagnosis abstraction
framework and it’s corresponding meta-assumption
assignment.

6.1 Single Fault Case
The single fault case is rather simple, since we can ex-
onerate all components after isolating the faulted com-
ponent (denoted as ‘DONE!’ in the algorithm). How-
ever, we choose to present the single fault case to help
understand the intuition and introduce our notation.

Single Fault Representation
A system Sys is a tuple < C,P, Z > as in Section 3.
A state of knowledge SK is a tuple < g, b, x, su >
where:
• g ⊆ C is the set of good components.
• b ⊆ C is the set of bad components.
• x ⊆ C is the set of unknown components which

are not under suspicion and not exonerated.
• df ⊆ C is the diagnosis focus. The diagnosis fo-

cus df is a set of suspected components which
cantains at least one faulted component in it.

Single Fault Algorithm
The algoritm 1 is executed for each plan and obser-
vation pair. The algorithm updates the entire state of
knowledge of the faultedness of system components.

4

Annual Conference of the Prognostics and Health Management Society, 2009

Consider the following example. Let Sys be
a simple system with six components C =
{A, B, C,D, E, F}. We assume for simplicity that we
are able to execute any combination of components as
a plan. Suppose component B is faulted.

In Table 1 we show for each time step t the entire
state of knowledge.

t p z g b x su
0 ABCDEF
1 ABCDE f F ABCDE
2 ABC f DEF ABC
3 ADE s ADEF BC
4 ABDE f ACDEF B

Table 1: System with six components C =
{A, B, C,D, E, F} where B is faulted.

Algorithm 1: singleFaults(plan pj , obs zj)
if zj == f then

rpj = pj − g;
if |rpj | == 1 then

b = rpj ;
g = (g ∪ x ∪ df)− b;
x = df = ∅;
DONE!

else
if df == ∅ then

df = rpj ;
else

g = g ∪ ((df ∪ rpj)− (df ∩ rpj));
df = df ∩ rpj ;
if |df | == 1 then

b = df ;
g = (g ∪ x)− b;
x = df = ∅;
DONE!

else
g = g ∪ pj ;
x = x− g;
df = df − g;
if |df | == 1 then

b = df ;
g = (g ∪ x)− b;
x = df = ∅;
DONE!

Note that every component will be a member of ex-
actly one of the sets of the current diagnosis. Consider
the sequence of plans illustrated by Table 1. Plan 1
(ABCDE) fails. Therefore we focus on the fact that
one of {A, B,C, D, E} is faulted. Plan 2 (ABC) fails.
Therefore, we can narrow the focus to the fact that one
of {A, B,C} is faulted, and we know that {D,E} are
good. Plan 3 (ADE) succeeds. Therefore A, D, E are
exonerated. Therefore the focus narrows to {B, C}.
Plan 4 (ABDE) fails. Given that plan 4 intersects only
in B with the suspected set, we know B is faulted (sin-
gle fault assumption). All other components are exon-
erated.

6.2 Multiple Faults Case
In what follows we discuss an algorithm for diagnos-
ing multiple simultaneous faults. Our algorithm allows
variable amount of observation data (which can be ob-
tained throughout execution of plans) to be retained.

Multiple Faults Representation
A system Sys is a tuple < C,P, Z > as in Section 3.
A state of knowledge SK is a tuple < g, b, x,DF >
where:
• g ⊆ C is the set of good components.
• b ⊆ C is the set of bad components.
• x ⊆ C is the set of unknown components which

are not under suspicion.
• DF is the set of diagnosis foci. A diagnosis focus

dfi ⊆ C is a set of suspected components with at
least one faulted component in it.

Multiple Faults Algorithm with Memory
Algorithm 2 executes Procedure 3 (or for the inter-
action fault case Procedure 6) for each plan and ob-
servation pair. The algorithm updates the entire state
of knowledge of the faultedness of system compo-
nents. We focus on high throughput systems (100s-
1000s/min) and therefore the algorithm we describe
may take more observations to pinpoint the true
fault(s), but it will never miss faults. We include a
memory extension to mitigate the loss of diagnosis in-
formation. There are two cases in which the evaluation
of an observation could lead to information loss: (1)
two intersecting plans fail due to different faults or, (2)
a failing plan intersects two diagnosis foci. In the first
case we might not know at evaluation time if two in-
tersecting plans fail because of the same fault or two
different faults and therefore we keep the plan to later
re-evaluate it. In the second case we can not extract
any information before we reduce the diagnostic foci
until the failing plan intersects only one diagnosis foci.
Note that this might not be possible. Failing plans of
either case can be helpful if they are re-evaluated later.
Note that we are able to configure the memory size to
address memory limitations.

Algorithm 2: Multiple (Interaction) Faults Algo-
rithm with Memory

foreach pj : P do
if !multiFaults(pj,zj) then

memorize(pj, zj, memorysize);
else

evaluateMemorizedPlans();

Multiple Faults Example
Let Sys be a simple system with five components C =
{A, B, C,D, E}. Again we assume that we are able
to execute any combination of components as a plan.
Suppose component B and D are faulted.

In Table 2 we show for each time step t the entire
state of knowledge.

Again note that every component will be a mem-
ber of exactly one of the sets of the current SK. Con-
sider the sequence of plans illustrated by Table 2. Plan
1 (ABCDE) fails. Therefore we focus on the fact that
one of {A, B,C, D, E} is faulted. Plan 2 (ABC) fails.
Therefore, we narrow the focus to the fact that one
of {A, B,C} is faulted, and we don’t know anything
about {D,E}. Plan 3 (ADE) fails. Therefore the fo-
cus narrows to A, while there may be a fault in {B, C}
(But the scope is still {A, B,C}). Plan 4 (A) succeeds.
Therefore, A is exonerated. At this point we backtrack

5

Annual Conference of the Prognostics and Health Management Society, 2009

t p z g b x df1 df2
0 ABCDE
1 ABCDE f ABCDE
2 ABC f DE ABC
3 ADE f DE ABC
4 A s A BC
5 ADE f A BC DE
6 AC s AC B DE
7 ADC f AC BD E
8 ACE s ACE BD

Table 2: System with five components C =
{A, B, C,D, E} where B and D are faulted.

and move the focus to {B, C}. Plan 5 (ADE) fails.
Therefore, given that A is exonerated, we can intro-
duce a new focus on the fact that one of {D,E} is
faulted. Plan 6 (AC) succeeds. Therefore, C is exon-
erated and B is the only component left in focus 1.
Therefore we know B is faulted. We close focus 1.
Plan 7 (ADC) fails. Therefore, given that A, C are ex-
onerated, D is faulted. We close focus 2 and move the
remaining components (here E) in the unknown set.
Plan 8 (ACE) succeeds, thus ACE is exonerated.

Multiple Faults Algorithm

Procedure 3 multiFaults(plan pj , obs zj)

if zj == f then
rpj = pj − g;
if rpj ∩ b = ∅ then

if |rpj | == 1 then
b = b ∪ rpj ;
foreach dfi : DF do

if dfi ∩ rpj 6= ∅ then
x = (x ∪ dfi)− b;
DF.remove(dfi);

else
if rpj ∩

S
k dfk = ∅ then

dfnew = rpj ;
x = x− rpj ;

else
foreach dfi : DF do

if rpj ∩ dfi 6= ∅ ∧ rpj 6= dfi then
if rpj − dfi ⊆ x then

if |rpj | < |dfi| then
x = (x ∪ dfi)− rpj ;
dfi = rpj ;

else
return false;

else
return false;

else
g = g ∪ pj ;
x = x− g;
foreach dfi : DF do

dfi = dfi − g;
if |dfi| == 1 then

b = b ∪ dfi;

return true;

6.3 Multiple Interaction Faults Case
Multiple Interaction Faults Representation
Definition:
Let X = {x1, . . . , xn} be a set of elements.
• P (X) is the power set over X , e.g.

X = {x1, x2} ↔ P (X) =
{{}, {x1}, {x2}, {x1, x2}}.

• X ≡ P (X) represents the power set of X .

• {Y } t {X} ≡

 {Y } : if X ⊆ Y
{X} : if Y ⊆ X

{Y , X} : otherwise

• P (X) ≡
⋃

Y⊆X Y is the set of all power sets
over all possible subsets of X .

• E(X) is the set of all individual com-
ponents mentioned in X , e.g. X =
{{a, b, c}, {a, d, e}, {g}} ↔ E(X) =
{a, b, c, d, e, g}.

A system Sys is a tuple < C,P, Z > as in Section 3.
A state of knowledge SK is a tuple < g, b, x,DF >
where:

• g ⊆ P (C) represents all global good diagnosis
candidates. A diagnosis candidate is a set of com-
ponents that can cause a failure. Let X ⊆ C be a
set of components, than X ∈ P (C) represents all
diagnosis candidates dc ∈ P (X).

• b ⊆ P (C) is the set of bad diagnosis candidates.
{A, [DE]} denotes that A and the diagnosis can-
didate [DE] (interaction fault) are bad.

• x ⊆ P (C) is the set of unknown diagnosis candi-
dates which are not under suspicion.

• DF is the set of diagnosis foci. A diagnosis focus
dfi is a tuple < sui, lgi > where:

– sui ⊆ P (C) is the set of suspected diagno-
sis candidates in the diagnosis focus dfi.

– lgi ⊆ P (C) represents all local (relevant)
good diagnosis candidates.

Multiple Interaction Faults Algorithm

Procedure 4 minimalCandidates(Set<Comps>
C, P (Set<Comps>) PC)

Beginn
CA = candidates(C, PC);
minCar = |E(CA)|;
MCA = ∅;
foreach cai : CA do

if |cai| = minCar then
MCA = MCA ∪ cai;

if |cai| < minCar then
MCA = ∅;
MCA = MCA ∪ cai;

return MCA;
Ende

Procedure 5 candidates(Set<Comps> C,
P (Set<Comps>) PC)

Beginn
CA = P (C);
foreach pci : PC do

CA = CA− pci;
return CA;

Ende

6

Annual Conference of the Prognostics and Health Management Society, 2009

Procedure 6 multiInterFaults(plan pj ,
zj)

if zj == f then
CAj = candidates(pj, g);
if CAj ∩ b == ∅ then

if |CAj | == 1 then
b = b ∪ CAj ;
foreach dfi : DF do

if CAj ∩ sui 6= ∅ then
DF.remove(dfi);

else
MCAj = minimalCandidates(pj,g);
if CAj ∩

S
k suk == ∅ then

foreach c ∈ g do
lgnew = lgnew t (E(c) ∩ pj);

sunew = MCAj ;
else

foreach dfi : DF do
if MCAj ∩ sui 6= ∅ ∧MCAj 6= sui

then
if MCAj ∩

S
k,k 6=i suk == ∅

then
if |MCAj | < |sui| then

foreach c ∈ g do
lgi =

lgi t (E(c) ∩ pj);

sui = MCAj ;
else

return false;

else
return false;

else
g = g t pj ;
foreach dfi : DF do

lgi = lgi t (E(lgi) ∪ E(sui)) ∩ pj ;
sui = minimalCandidates(sui,lgi);
if |sui| == 1 then

CAlgi
= candidates(E(lgi),lgi);

if |CAj | == 1 then
b = b ∪ CAj ;
foreach dfi : DF do

if CAj ∩ sui 6= ∅ then
DF.remove(dfi);

else
sui =
minimalCandidates(E(lgi),lgi);

return true;

As before, Algorithm 6 is executed for each plan
and observation pair. The algorithm updates the entire
state of knowledge of the faultedness of system com-
ponents.

Consider the following example. Let Sys be
a simple system with five components C =
{A, B, C,D, E}. We assume for simplicity that we are
able to execute any combination of components as a
plan. Suppose component B and D are faulted. In Ta-
ble 3 we show walk through the example.

Consider the sequence of plans illustrated by Ta-
ble 3. Plan 1 (ABCDE) fails. Therefore we focus
on the fact that one of {A, B,C, D, E} is faulted.
Plan 2 (ABC) fails. Therefore, we can narrow the
focus to the fact that one of {A, B, C} is faulted,
and we don’t know anything about {D,E}. Plan 3
(ADE) fails. Therefore the focus narrows to A, while
there may be a fault in {B, C} (But the scope is still
{A, B, C}). Plan 4 (A) succeeds. Therefore, A is ex-

onerated. At this point we backtrack, move the fo-
cus to {B, C} and keep A as a local (relevant) good
({A}). The scope is now {B, C}. Plan 5 (ADE) fails.
Therefore, given that A is exonerated, we can intro-
duce a new focus on {D,E}, but we keep A as a local
(relevant) good ({A}). Plan 6 (AC) succeeds. There-
fore, A, C,AC are exonerated, denoted as AC. The
new global goods are {AC}, because {A} t {AC} =
{AC}. We update the local (relevant) goods in focus
1 to AC, because A, C,AC are relevant to focus 1.
B is the only diagnosis candidate left in focus 1. Plan
7 (ADC)fails. Therefore, given that A, C are exoner-
ated, D is faulted, because it is a minimal diagnosis
candidate. We close focus 2. Plan 8 (ACE)succeeds,
thus A, C,E, AC,AE,CE,ACE are exonerated, de-
noted as ACE. The new global goods are {ACE},
because {AC} t {ACE} = {ACE}. Plan 9 (B)
succeeds, thus B is exonerated, denoted as B. The
new global goods are {ACE, B}, because {ACE} t
{B} = {ACE, B}. At this point we know that the di-
agnosis candidates A, B,C, AC relevant to focus 1 are
goods. Therefore generate all minimal diagnosis can-
didates form the local goods {[AB], [BC]} and move
the focus to them. Plan 10 (AB)fails. Therefore, given
that A, B are exonerated, [AB] is faulted, because it is
a minimal diagnosis candidate.

6.4 Intermittent Fault Algorithm
Intermittent faults are very common in object handling
systems such as printers and manufacturing lines. It is
very difficult to isolate intermittent faults which oc-
cur with low frequency but yet at high enough fre-
quency to be unacceptable. The intermittent nature
of faults brings inherent uncertainties. In this sub-
section, we present a statistical approach to identify
highly suspected defective components. The overall
integrated diagnosis framework switches to this algo-
rithm in case the abstraction framework determines the
meta-assumption ABa(I) to be true.

In the literature, diagnosis of multiple fault
is often formulated as a statistical infer-
ence problem, where the hypothesis space is
X = {00000, 00001, 00010, · · · , 11111}, and
each hypothesis is a bit vector indicating which com-
ponents have fault. For instance x = 00010 means
that all but the fourth component are good. Given an
observation o (or an observation sequence), one can
compute the posterior p(x|o) via the Bayes rule:

p(x|o) =
p(o|x)p(x)

p(o)
,

where p(o|x) is the observation likelihood given the
hypothesis x of which components are defective, p(x)
is the prior fault probability, and p(o) is the probabil-
ity that o is observed. However, the difficulty with this
theoretically-sound formulation is that the hypothesis
space is big — exponential in terms of the number of
components in the system. This brings prohibitively
high computation complexity when updating the pos-
terior p(x|o).

In this section, we propose a fast approximation ap-
proach to estimate component fault probabilities with-

7

Annual Conference of the Prognostics and Health Management Society, 2009

t p z g b df1 df2
su1 lg1 su2 lg2

1 ABCDE f ABCDE
2 ABC f ABC
3 ADE f ABC
4 A s A BC A

5 ADE f A BC A DE A

6 AC s AC B AC DE A

7 ADC f AC D B AC

8 ACE s ACE D B AC

9 B s ACE,B D [AB][BC] AC, B

10 AB f ACE,B [AB],D

Table 3: System with five components C = {A, B,C, D, E} where [AB] and D are faulted.

out handling the exponential complexity. We first con-
sider an example:
• (ABC) fails
• (AE) fails
• (ABD) fails
• (CD) fails

The observations suggest that there are at least two
faults in the system. The min-cardinality diagnosis is
AC or AD. If all components have equal prior proba-
bility of being defective, our intuition is that A is the
most likely component to be faulty because it has the
highest count of occurence in failed observations (3
in this case). This makes sense in statistical inference:
we can count the number of occurence of each com-
ponent in failed observations, weighted by a propoer
weight. The component with the highest count is the
most likely to have fault.

Rather than computing the posterior with respect to
the fault combination of hypothesis x, we seek to com-
pute the probability that module m is having a fault
given a failed observation o:

p(m = 1|o = 1) =
p(m = 1)p(o = 1|m = 1)

p(o = 1)
. (4)

This formulation decouples component from each
other in the sense that only the posterior marginal
probabilities p(m|o), rather than the joint posterior
probabilities p(x|o) are tracked. This is a much sim-
pler computation, but incurs the loss in information.
From the posterior marginals, one may not be able to
fully reconstruct the joint probability. We can define
the following probabilities:
• p(m = 0) = rm is the prior probability that com-

ponent m is faulty;
• p(o = 1) is the probability that o is observed.
• p(o = 1|m = 1) is the probability that o is ob-

served given that m has fault. Note that if m is
not involved in o, we have p(o = 1|m = 1) =
p(o = 1).

Taking logarithm of the above, we have: Note that
log p(m = 1) is a constant term, hence the only dif-

ference is the weight cm
4
= log po|m − log po.

We now outline a simple algorithm: given an obser-
vation sequence o1, o2, · · · , oT , we compute the accu-
mulative weight for each component m. For any fail-
ure observation ot, we compute the weight ct

m for each

module m. If module m is not involved in the observa-
tion, the weight ct

m is set to 0. This weight is then ac-
cumulated over all observations. The component with
a high accumulative cm is likely to be defective.

By summing up the total number of appearance
weighted by log po, the algorithm above is effec-
tively computing

∑
o log p(m = 1|o). This is sim-

ilar to, but not identical to computing log p(m =
1|o1, o2, · · · , oT). If oi are mutually independent given
m = 1, then the two are identical. Taking the most
suspected module is similar to find the module with
highest posterior arg max log p(m = 1|o1, · · · oT).

The computation of cm is easy. It boils down to the
computation of two terms:
• p(o = 1) is the probability that a failure is ob-

served. It is straightforward to show that p(o =
1) = 1 −

∏
k∈o(1 − rkqk), where k is the num-

ber of modules involved in observation o, rk is
the prior probability that component k is defec-
tive, and qk is the intermittency probability (i.e.,
the probability that component k malfunctions
given that it is defective). Note that rkqk is the
probability that component k malfunctions. The
derivation is straightforward: the output is good if
and only if all modules involved do not malfunc-
tion. In the case of persistent faults, it is simply
p(o = 1) = 1−

∏
k∈o(1− rk).

• p(o = 1|m = 1) is the likelihood. If the fault
is persistent, we have p(o = 1|m = 1) = 1 if
module m is involved in o. On the other hand, if
the fault is intermittent, p(o = 1|m = 1) is more
complicated, since the observation is not only de-
pendent on module m, but also on other mod-
ules involved. We use R to denote the event that
some modules (other than m) malfunctions, then
we have p(R = 1) = 1 −

∏
n(1 − rnqn). Since

all the r’s and q’s are know, we can evaluate this
term easily.

The modification from the qualitive diagnosis dis-
cussed earlier to statistical inference is relatively sim-
ple: rather than identify the bad modules with cer-
tainty, we identify the highly suspected modules.

7 QUALITATIVE ATTRIBUTE BASED
DIAGNOSIS

Unlike conventional qualitative reasoning about quan-
tities such as voltage, current, force, pressure, veloc-
ity, etc., we introduce reasoning over the attributes of

8

Annual Conference of the Prognostics and Health Management Society, 2009

log p(m = 1|o = 1) =
{

log po|m − log po + log p(m = 1) if m ∈ o
log p(m = 1) if m /∈ o

(5)

p(o = 1|m = 1) =
∑

R=0,1 p(o = 1|m = 1, R)p(R)
= 1 · p(R = 1) + qm · p(R = 0))
= (1−

∏
n(1− rnqn)) + qm

∏
n(1− rnqn)

(6)

the objects being manipulated by the system. For ex-
ample, a sheet of paper has attributes including blank,
ripped, dogeared and scuffed. In conventional model-
based diagnosis, an abnormal output can be caused by
any component upon which the output depended. This
makes sense when reasoning about circuits or physical
mechanisms. However, we can reason with far greater
diagnostic precision. When technicians see a printed
sheet when it should be blank, they know that it can
only be caused by a printer within the machine and not
by the paper tray. It is physically impossible for a pa-
per tray to print on a sheet of paper. In model-based
diagnosis terms, the conflict corresponding to an ob-
served incorrect print only contains the printers within
the machine.

A single observed sheet can lead to multiple con-
flicts. For example, a sheet might be misprinted and
dogeared. The system thus may have two faults: a
printer and an paper handling component.

These extensions make no fundamental change to
the algorithms presented earlier. At each time, the cor-
responding algorithm of Section 6 takes as input the
set of conflicts generated through the use of attributes,
instead of the plan itself.

8 CONCLUSIONS
This paper is a first step towards an integrated qual-
itative diagnostic approach to systems which process
material such as manufacturing lines and printers. It
presents a novel algorithm for diagnosing multiple in-
teraction faults which is far more memory efficient
than the traditional model-based algorithms. The over-
all approach is similar to how technicans address trou-
bleshooting.

REFERENCES
(Collins and Forbus, 1987) John W. Collins and Ken-

neth D. Forbus. Reasoning about fluids via molec-
ular collections. In AAAI, pages 590–594, 1987.

(Darwiche, 2001) Adnan Darwiche. Decomposable
negation normal form. Journal of the ACM,
48(4):608–647, 2001.

(Davis, 1984) R. Davis. Diagnostic reasoning based
on structure and behavior. Artificial Intelligence,
24(1):347–410, 1984.

(de Kleer and Williams, 1987) J. de Kleer and B. C.
Williams. Diagnosing multiple faults. aij,
32(1):97–130, April 1987. Also in: Readings in
NonMonotonic Reasoning, edited by Matthew L.
Ginsberg, (Morgan Kaufmann, 1987), 280–297.

(de Kleer et al., 1992) J. de Kleer, A. Mackworth, and
R. Reiter. Characterizing diagnoses and systems.
Artificial Intelligence, 56(2-3):197–222, 1992.

(de Kleer, 2007a) J. de Kleer. Diagnosing intermit-
tent faults. In 18th International Workshop on Prin-
ciples of Diagnosis, pages 45–51, Nashville, USA,
2007.

(de Kleer, 2007b) J. de Kleer. Modeling when con-
nections are the problem. In Proc 20th IJCAI, pages
311–317, Hyderabad, India, 2007.

(Dvorak and Kuipers, 1989) D. Dvorak and
B. Kuipers. Model-based monitoring of dy-
namic systems. In Proc. 11th IJCAI, pages
1238–1243, Detroit, 1989.

(Eiter and Gottlob, 1995) Thomas Eiter and Georg
Gottlob. The complexity of logic-based abduction.
J. ACM, 42(1):3–42, 1995.

(Fromherz et al., 2003) M.P.J. Fromherz, D.G. Bo-
brow, and J. de Kleer. Model-based computing for
design and control of reconfigurable systems. The
AI Magazine, 24(4):120–130, 2003.

(Grastien et al., 2007) Alban Grastien, Anbulagan,
Jussi Rintanen, and Elena Kelareva. Diagnosis
of discrete-event systems using satisfiability algo-
rithms. In AAAI, pages 305–310, 2007.

(Koren and Kohavi, 1977) Israel Koren and Zvi Ko-
havi. Diagnosis of intermittent faults in com-
binational networks. IEEE Trans. Computers,
26(11):1154–1158, 1977.

(Kuhn et al., 2008) Lukas Kuhn, Bob Price, Johan de
Kleer, Minh Do, and Rong Zhou. Pervasive diagno-
sis: Integration of active diagnosis into production
plans. In proceedings of AAAI, Chicago, Illinois,
USA, 2008.

(Muscettola et al., 1998) Nicola Muscettola, P. Pan-
durang Nayak, Barney Pell, and Brian C. Williams.
Remote agent: To boldly go where no AI system has
gone before. Artificial Intelligence, 103(1-2):5–47,
1998.

(Reiter, 1987) R. Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32(1):57–96,
1987.

(Shearer et al., 1971) J. L. Shearer, A. T. Murphy, and
H. H. Richardson. Introduction to System Dynam-
ics. Addison Wesley, Reading, MA, 1971.

(Williams and Nayak, 1996) B. C. Williams and P. P.
Nayak. A model-based approach to reactive self-
configuring systems. In Proceedings of the National
Conference on Artificial Intelligence (AAAI96),
pages 971–978, 1996.

9

