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ABSTRACT 

This paper presents an empirical model to 

describe battery behavior during individual 

discharge cycles as well as over its cycle life. 

The basis for the form of the model has been 

linked to the internal processes of the battery 

and validated using experimental data. 

Subsequently, the model has been used in a 

Particle Filtering framework to make 

predictions of remaining useful life for 

individual discharge cycles as well as for cycle 

life. The prediction performance was found to 

be satisfactory as measured by performance 

metrics customized for prognostics. The work 

presented here provides initial steps towards a 

comprehensive health management solution 

for energy storage devices.
*
   

1 INTRODUCTION 

Battery powered applications have permeated our lives 

today at every level, from tiny Bluetooth headsets to 

cameras, cell phones and laptops to hybrid and electric 

vehicles. Similarly, the consequences of the failure of a 

battery can have different levels of severity ranging 

from reduced performance to operational impairment 

and even to catastrophic failure. A good understanding 

of battery performance degradation can aid immensely 

in improving user satisfaction and overall reliability for 

such systems. The research presented in this paper 

addresses these issues by developing an empirical 

model for Li-ion battery capacity depletion and by 

using it in a Particle Filtering (PF) framework to predict 

                                                           
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

the remaining useful life (RUL) of the battery for a 

given discharge cycle as well as for its cycle-life. 

Particle Filters are a class of Sequential Monte 

Carlo methods that not only use the information 

available from system measurements but also 

incorporate any models available for system behavior. 

This technique also has the ability to tune non-

stationary model parameters simultaneously with state 

estimation, which combined with the representation of 

state space as multiple weighted particles, makes it 

ideal for state tracking and prediction. In the PF 

approach, the system state is represented by a pdf 

approximated by a set of particles (points) representing 

sampled values from the unknown state space, and a set 

of associated weights denoting discrete probability 

masses. The particles are generated and recursively 

updated from a nonlinear process model (that describes 

the evolution in time of the system under analysis), a 

measurement model, a set of available measurements, 

and an a priori estimate of the state pdf. 

2 MOTIVATION 

Americans purchase nearly 3 billion batteries (dry-

cells) every year. On average, each person in the US 

disposes of 8 batteries every year (PKIDs, 2009). A 

rechargeable battery can replace hundreds of single-use 

batteries over its life. Also, all batteries contain metals 

such as mercury, lead, cadmium, nickel and lithium, 

which may contaminate the environment if disposed of 

improperly, hence reducing consumption eases the 

strain on natural resources. 

During Operation Iraqi Freedom, the Marines used 

3,028 batteries per day, which was “half the 

requirement of the entire battlefield” (Fein, 2003). 

These were non-rechargeable cells that did not have a 

charge indicator. Navy Captain Clark Driscoll said he 

wasn’t sure how much battery life was discarded 

inadvertently by changing batteries early. “[I’m] afraid 

to say that in the first several weeks we threw away a 

lot,” he said. Lt. Cmdr. John LaTulip, of the U.S. 
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Central Command’s maintenance branch, said, “If 

[soldiers] could get a device put on [the battery] that 

tells them what is left in the charge, then they could use 

those batteries to full capability. Right now we can’t do 

that… [We are] looking at policy for using 

rechargeables and how do you program and plan for 

that.” 

Apart from the issue of increasing efficiency, and 

reducing cost and wastage, rechargeable batteries are a 

key enabling technology for solving energy problems 

of the future. One key feature of renewable energy 

sources like solar, wind, tidal, etc. is that they are not 

continually available. A report by the California ISO 

Board says, “Wind generation energy production is 

extremely variable, and in California, it often produces 

its highest energy output when the demand for power is 

at a low point” (CA ISO, 2008). An energy storage 

facility coupled with these power generation sources 

would make these solutions more economically viable. 

Such energy storages, comprising batteries, fuel cell or 

super-capacitors, would in turn need reliable health 

monitoring systems to ensure viable levels of system 

availability, reliability and sustainability and to protect 

the assets from degradation due to non-optimal usage. 

Finally, battery health management will also play a 

critical role in electric vehicles that will be dependant 

on an accurate gauge for remaining charge and for 

trade-offs in long-term durability and short-term usage 

needs.   

3 BACKGROUND 

The main purpose of modeling battery aging is to 

enable effective battery health monitoring (BHM) 

applications that ensure that the battery operation stays 

within design limits and to provide warning or mitigate 

damage when these limits are exceeded.  Current BHM 

efforts come in many flavors, from the data-driven 

(Rufus et al., 2008) to the model-based (Plett, 2004) 

and even hybrid approaches (Goebel et al., 2008). 

Implementation complexity can range from intermittent 

manual measurements of voltage and electrolyte 

specific gravity to fully automated online supervision 

of various measured and estimated battery parameters 

using dynamic models. The sophistication of the 

models also varies from a collection of basis functions 

(Stamps et al., 2005) to detailed formulations derived 

from physical analysis of the cell (Hartley and Jannette, 

2005). 

Looking at the issue from the application 

perspective, researchers in the aerospace domain have 

examined the various failure modes of the battery 

subsystems. Different diagnostic methods have been 

evaluated, like discharge to a fixed cut-off voltage, 

open circuit voltage, voltage under load and 

electrochemical impedance spectrometry (EIS) 

(Vutetakis and Viswanathan, 1995). In the field of 

telecommunications, people have looked to combine 

conductance technology with other measured 

parameters like battery temperature/differential 

information and the amount of float charge (Cox and 

Perez-Kite, 2000).  

Other works have concentrated more on the 

prognostic angle rather than the diagnostic one. 

Statistical parametric models have been built to predict 

time to failure (Jaworski, 1999). Electric and hybrid 

vehicles have been another fertile area for battery 

health monitoring (Meissner and Richter, 2003). 

Impedance spectroscopy has been used to build battery 

models for cranking capability prognosis (Blanke et al., 
2005). State estimation techniques, like the Extended 

Kalman Filter (EKF), have been applied for real-time 

prediction of state-of-charge (SOC) and state-of-life 

(SOL) of automotive batteries (Bhangu et al., 2005; 

Plett, 2004).  A decision-level fusion of data-driven 

algorithms, like Autoregressive Integrated Moving 

Average (ARIMA) and neural networks, has been 

investigated for both diagnostics and prognostics 

(Kozlowski, 2003). As the popular cell chemistries 

changed from lead acid to nickel metal hydride to 

lithium ion, cell characterization efforts have kept pace. 

Dynamic models for the lithium ion batteries that take 

into consideration nonlinear equilibrium potentials, rate 

and temperature dependencies, thermal effects and 

transient power response have been built (Gao et al., 
2002; Hartmann II, 2008; Santhanagopalan et al., 
2008). 

However, there is still need for a flexible 

prognostics framework that combines the sensor data 

from battery monitors, the models developed, and the 

appropriate state estimation and prediction algorithms, 

in the form of an integrated BHM solution. The 

research described in this paper is an early step in this 

direction. 

4 BATTERY CHARACTERISTICS 

Batteries are essentially energy storage devices that 

facilitate the conversion, or transduction, of chemical 

energy into electrical energy, and vice versa (Huggins, 

2008). They consist of a pair of electrodes (anode and 

cathode) immersed in an electrolyte and sometimes 

separated by a separator. The chemical driving force 

across the cell is due to the difference in the chemical 

potentials of its two electrodes, which is determined by 

the difference between the standard Gibbs free 
energies the products of the reaction and the reactants. 

The theoretical open circuit voltage, Eo
, of a battery is 

measured when all reactants are at 25
o
C and at 1M 

concentration or 1 atm pressure. However, this voltage 

is not available during use. This is due to the various 

passive components inside like the electrolyte, the 
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separator, terminal leads, etc. The voltage drop due to 

these factors can be mainly categorized as: 

• IR drop – This drop in cell voltage is due to 

the current flowing across the internal 

resistance of the battery. 

• Activation polarization – This term refers to 

the various retarding factors inherent to the 

kinetics of an electrochemical reaction, like 

the work function that ions must overcome at 

the junction between the electrodes and the 

electrolyte. 

• Concentration polarization – This factor takes 

into account the resistance faced by the mass 

transfer (e.g. diffusion) process by which ions 

are transported across the electrolyte from one 

electrode to another. 

Figure 1 depicts the typical polarization curve of a 

battery with the contributions of all three of the above 

factors shown as a function of the current drawn from 

the cell. Since, these factors are current-dependent, i.e. 

they come into play only when some current is drawn 

from the battery, the voltage drop caused by them 

usually increases with increasing output current. 

 
Figure 1: Typical polarization curve of a battery. 

Since the output current plays such a big role in 

determining the losses inside a battery, it is an 

important parameter to consider when comparing 

battery performance. The term most often used to 

indicate the rate at which a battery is discharged is the 

C-Rate (Huggins, 2008). The discharge rate of a battery 

is expressed as C/r, where r is the number of hours 

required to completely discharge its nominal capacity. 

So, a 2 Ah battery discharging at a rate of C/10 or 0.2 A 

would last for 10 hours. The terminal voltage of a 

battery, as also the charge delivered, can vary 

appreciably with changes in the C-Rate. Furthermore, 

the amount of energy supplied, related to the area under 

the discharge curve, is also strongly C-Rate dependent. 

Figure 2 shows the typical discharge of a battery and its 

variation with C-Rate. Each curve corresponds to a 

different C-Rate or C/r value (the lower the r the higher 

the current) and assumes constant temperature 

conditions. 

 
Figure 2: Schematic drawing showing the influence of 

the current density upon the discharge curve. 

(Reproduced from Figure 1.14 in (Huggins, 2008)). 

Moving on from the theoretical aspects to the 

application point of view, the relevant physical 

properties of a battery may be different in different 

cases. Sometimes specific energy and specific power 
(energy and power available per unit weight) are 

important, as in vehicle propulsion applications. Other 

times the amount of energy stored per unit volume, 

called the energy density, can be more important for 

batteries that power portable electronic devices, like 

cell-phones, laptop computers, cameras, etc., while 

power per unit volume, known as power density, can be 

important for some uses like cordless power tools. 

However, in recent times when the use of rechargeable 

batteries is proliferating in consumer products, an 

important parameter to consider is cycle life, which is 

the number of times a battery can be recharged before 

its capacity has faded beyond acceptable limits 

(typically ~20-30%). 

The degradation of battery capacity with aging, as 

encapsulated by the cycle life parameter, can be 

modeled by the concept of Coulombic efficiency, ηC, 

defined as the fraction of the prior charge capacity that 

is available during the following discharge cycle 

(Huggins, 2008). This depends upon a number of 

factors, especially current and depth of discharge in 

each cycle. The temperature at which batteries are 

stored and operated under also has a significant effect 

on the Coulombic efficiency. Figure 3 shows the 

degradation of battery capacity with cycling for 

different values of Coulombic efficiency. Notice how 

even a small inefficiency factor of 0.5% (Coulombic 

efficiency = 0.995) can reduce the capacity by about 

60% within 100 cycles. 



Annual Conference of the Prognostics and Health Management Society, 2009 

 

 

4 

 

 
Figure 3: Influence of Coulombic efficiency upon 

available capacity during cycling. (Reproduced from 

Figure 1.8 in (Huggins, 2008)). 

5 LI-ION PROPERTIES 

There are several rechargeable battery technologies 

available on the market right now, each having distinct 

characteristics. However, Li-ion batteries are becoming 

increasingly popular for a variety of applications, from 

consumer electronics to power tools, to electric 

vehicles and even to space applications. Li-ion batteries 

have a number of important advantages over competing 

technologies (Huggins, 2008):  

• Since the electrodes of a Li-ion battery are 

made of lightweight lithium and carbon, they 

are usually lighter than other types of 

rechargeable batteries of the same size. 

Lithium is also a highly reactive element; 

hence a lot of energy can be stored in its 

atomic bonds. This translates into a very high 

energy density for Li-ion batteries as 

compared to other chemistries like lead-acid 

or NiCd (nickel-cadmium) or NiMH (nickel-

metal hydride).  

• They have a low self-discharge rate, meaning 

that they hold their charge for longer periods 

of time.  Self-discharge is caused by the 

residual ionic and electronic flow through a 

cell even when there is no external current 

being drawn. 

• They have no memory effect, which means 

that Li-ion batteries do not have to be 

completely discharged before recharging in 

order to retain full charge capacity, as with 

some battery chemistries like NiCd.  

• Li-ion batteries have a long cycle life. They 

can handle hundreds of charge and discharge 

cycles without significant degradation of their 

capacity.  

However, they have a few disadvantages as well 

(Buchmann, 2001; Huggins, 2008):  

• The service life or shelf life of a Li-ion battery 

decreases with aging even if it is not used 

unlike other chemistries. This means that from 

the time of manufacturing, regardless of the 

number of times it was cycled, the capacity of 

a Li-ion battery will decline gradually. This is 

due to an increase in internal resistance, which 

makes the problem more pronounced in high-

current applications than low-current ones. 

• They are more sensitive to high temperatures 

than most other chemistries. Hot storage and 

operating conditions causes Li-ion battery 

packs to degrade much faster than they 

normally would.  

• Li-ion batteries can be severely damaged by 

deep discharge, i.e. by discharging them 

below the minimum voltage threshold 

recommended by the manufacturer (usually 

2.7 V for a single cell). Consequently, Li-ion 

battery packs come with an on-board circuit to 

manage the battery. This makes them even 

more expensive than they already are.  

• In general Li-ion chemistry is not as safe as 

NiCd or NiMH. This is because the anode 

produces heat during use, while the cathode 

produces oxygen (not for all Li-ion 

chemistries). Lithium being highly reactive 

can combine with this oxygen, leading to the 

possibility of the battery catching on fire. 

Considering both the advantages and the 

drawbacks, Li-ion batteries seem one of the more 

important battery technology for the present and the 

future. It is for this reason that we chose them for our 

battery prognostics research. 

6 MODELING APPROACH 

Modeling a Li-ion battery from the first principles of 

the internal electrochemical reactions can be very 

tedious and computationally intractable. Hence, we 

take the approach of representing the various losses 

inside a battery, like the IR drop, activation polarization 

and concentration polarization, as impedances in a 

lumped parameter model (Figure 4). The IR drop due to 

the electrolyte resistance is denoted as RE. The 
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activation polarization is modeled as a charge transfer 
resistance RCT and a dual layer capacitance CDL in 

parallel, while the concentration polarization effect is 

encapsulated as the Warburg impedance RW. 

 

Figure 4: Lumped parameter model for a Li-ion battery 

(reproduced from Figure3 in (Goebel et al., 2008)). 

This lumped parameter model may be analyzed in 

the time domain to derive the discharge curves of the 

battery or in the frequency domain to derive the Nyquist 
plots. The latter can be achieved by EIS measurements, 

and the plots can subsequently be used to reason about 

the internal degradation processes. However, EIS 

measurements require specialized equipment and 

measurement conditions that prevent them from being 

widely used in everyday applications. For the purposes 

of this paper we will disregard the frequency domain 

analysis and concentrate on the time domain aging 

characteristics of the battery. 

6.1 End-of-discharge 

As mentioned earlier, the goal of this research is to 

predict the RUL for any given discharge cycle of the 

battery as well as the cycle life. This is a two-part 

problem with different physical processes affecting the 

RUL prediction for the end-of-discharge (EOD) and 

end-of-life (EOL). To tackle the EOD problem, we 

need to predict the way the impedance parameters 

change with charge depletion during the discharge 

cycle. Since the impedance parameters are essentially 

representations of electrochemical reactions and 

transport processes inside the battery, they are strongly 

affected by the internal temperature of the battery, the 

current load and the ionic concentrations of the 

reactants. We postulate that as discharge progresses the 

heat generated by the reactions and the current flow 

causes the internal temperature to go up, effectively 

increasing the mobility of the ions in the electrolyte, 

thus decreasing RW. Decreasing RW, however, increases 

the self-discharge rate, effectively increasing the 

electrolyte resistance RE of the battery. Also, the 

increase in temperature results in faster consumption of 

the cell reactants causing them to be used up rapidly 

near the end of the discharge resulting in an increase in 

RCT and a sharp drop in the cell voltage. EOD is 

reached when the output voltage hits the minimum safe 

voltage threshold, EEOD, of the cell. For a cell current of 

I, the output voltage E is given by: 

         E = Eo
 – I(RE + RCT + RW).              (1) 

The variations in Eo
 with internal temperature 

(Hartmann II, 2008) are not explicitly modeled, but 

accounted for by the adaptive powers of the PF 

framework described later. For the empirical charge 

depletion model considered here, we express the output 

voltage in terms of the effects of the changes in the 

internal parameters: 

 E(t) = Eo
 – ∆Esd(t) – ∆Erd(t) – ∆Emt(t),         (2) 

where, t is the time variable during a discharge 

cycle, ∆Esd is the drop due to self-discharge, ∆Erd is the 

drop due to cell reactant depletion and ∆Emt denotes the 

voltage drop due to internal resistance to mass transfer 

(diffusion of ions). These individual effects are 

modeled as: 

  ∆Esd(t) = α1 exp(– α2/t),              (3) 

  ∆Erd(t) = α3 exp(α4t),               (4) 

  ∆Emt(t) = ∆Einit – α5t,              (5) 

where, ∆Einit is the initial voltage drop when 

current I flows through the initial value of the internal 

resistance RE at the start of the discharge cycle, and α = 

{α1,α2,α3,α4,α5} represents the set of model parameters 

to be estimated from the data. Figure 5 shows how the 

different voltage drop components defined in eqns. (3)-

(5) combine to give the Li-ion discharge profile. 
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Figure 5: Decomposition of the Li-ion discharge profile 

in to different components. 
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6.2 End-of-life 

In order to effectively determine the EOL of a Li-ion 

battery, we need to understand how the different 

operational modes, namely charge, discharge and rest, 

influence the charge capacity, C. The aging model 

presented in (Hartmann II, 2008) considers only the 

reduction in capacity with usage while neglecting the 

effects of rest periods. The use of a smoothing filter on 

the capacity measurements also reduces the fidelity of 

the prediction scheme.  

In the work presented here, the combined effect of 

charge and discharge cycles is captured by the 

Coulombic efficiency factor ηC, as described in Section 

4. The remaining factor that needs to be accounted for 

is the self-recharge during rest. In any battery, reaction 

products build up around the electrodes and slow down 

the reaction (HowStuffWorks, 2000). By letting the 

battery rest, the reaction products have a chance to 

dissipate, thus increasing the available capacity for the 

next cycle. For our empirical model, we represent this 

self-recharge as an exponential process, as suggested 

by data. The equation for battery aging can then be 

written as: 

         Ck+1 = ηC Ck + β1 exp(–β 2/∆tk),              (6) 

where, Ck denotes the charge capacity of the kth 

cycle, ∆tk is the rest period between cycles k and k+1, 

and β1 and β1 are the model parameters to be 

determined. Figure 6 shows the validity of equations 

(2)-(6) in modeling the discharge and self-recharge 

processes for an actual Li-ion battery cycle. Although 

the model is used to estimate the cell voltage during the 

self-recharge process in Figure 6, we assume the SOC 

of the battery to be correlated enough to the voltage 

during rest or relaxation periods (Huggins, 2008), when 

no external current is being drawn, so as to maintain the 

exponential functional form. 

time

v
o
lt
a
g
e

 

 

discharge self-recharge

from measurements from model

 
Figure 6: Model fit for Li-ion discharge and self-

recharge processes. 

7 PARTICLE FILTERING FRAMEWORK 

The formulation of a model, though, is just a part of the 

solution. As mentioned above there are a number of 

unknown parameters that need to be identified. Even 

after identification, they may not be directly applicable 

to the test set since the values may differ from one 

battery to another, or for the same battery from one 

cycle to the next. Furthermore, for any given cycle the 

parameter values may be non-stationary. In general, 

given a model, the task of tracking a state variable and 

predicting future values is usually cast as a filtering 

problem. The variety of filtering techniques published 

in literature is enormous with each having performance 

advantages over others depending upon the application. 

For our task of battery prognostics, comprising the 

prediction of EOD and EOL, we need to reconcile our 

method with non-exact non-linear non-stationary 

models with non-Gaussian noise. Particle Filtering 

provides us a viable framework that allows us to 

explicitly represent and manage the uncertainties 

inherent to our problem. 

Particle Filters (Gordon et al., 1993) are a novel 

class of non-linear filters that combine Bayesian 

learning techniques with importance sampling to 

provide good state tracking performance while keeping 

the computational load tractable. The idea is to 

represent the system state (in this case the battery SOC 

or voltage or capacity) as a probability density function 

(pdf) that is approximated by a set of particles (points) 

representing sampled values from the unknown state 

space, and a set of associated weights denoting discrete 

probability masses. The particles are generated from an 

a priori estimate of the state pdf, propagated through 

time using a nonlinear process model, and recursively 

updated from measurements through a measurement 

model. The main advantage of PFs here is that model 

parameters can be included as a part of the state vector 

to be tracked, thus performing model identification in 

conjunction with state estimation (Saha et al., 2009). 

After the model has been tuned to reflect the dynamics 

of the specific system being tracked, it can then be used 

to propagate the particles till the failure (e.g. EOD or 

EOL) threshold to give the RUL pdf (Saha et al., 2009). 

In the case of our application, the EOD estimation 

problem is cast in the PF framework as follows: 

        State transition model ≡     

 αj,i+1 = αj,i + ωj,i ,∀j = 1,…,5, 

 Ei+1 = Ei – {α1,i α2,i exp(– α2,i /ti)/ti
2
  

      – α3,i α4,i exp(α4,i ti) – α5,i}/fs + ωi ,           (7) 

         Measurement model ≡  Ẽi = Ei +νi,              (8) 

where, i is the time index, fs is the sampling 

frequency, Ẽi denotes the measured cell voltage at time 
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index i, and ωj,i (∀j = 1,…,5,), ωi and νi are 

independent zero-mean Gaussian noise terms. 

The EOL estimation problem is similarly cast as: 

         State transition model ≡     
 β j,k+1 = β j,k + φj,k , j = 1,2, 

 Ck+1 = ηC Ck + β1,k exp(–β 2,k /∆tk) + φk ,        (9) 

         Measurement model  ≡  C=k = Ck +ψk ,            (10) 

where, k is the cycle index, C=k denotes the charge 

capacity measured (as the integral of current over 

discharge time until cell voltage reaches EEOD) at cycle 

index k, and φ1,k, φ2,k, φk and ψk  are independent zero-

mean Gaussian noise terms. The first term on the right 

hand side in the second line of equation (9) takes care 

of the Coulombic efficiency factor while the second 

term models the capacity gain due to rest. 

Note that in both state equations (7) and (9) we 

have included the model parameter as part of the state 

vector, so that the PF can perform model identification 

in conjunction with state tracking. 

8 RESULTS 

The data used to validate the above approach have been 

collected from a custom built battery prognostics 

testbed (shown in Figure 7) at the NASA Ames 

Prognostics Center of Excellence (PCoE). This testbed 

comprises: 

• Commercially available Li-ion 18650 sized 

rechargeable batteries, 

• Programmable 4-channel DC electronic load, 

• Programmable 4-channel DC power supply, 

• Voltmeter, ammeter and thermocouple sensor 

suite, 

• Custom EIS equipment, 

• Environmental chamber to impose various 

operational conditions,  

• PXI chassis based DAQ and experiment 

control, and 

• MATLAB based experiment control, data 

acquisition and prognostics algorithm 

evaluation setup. 

 
Figure 7: Battery prognostics testbed at NASA Ames 

PCoE. 

In this testbed Li-ion batteries were run through 3 

different operational profiles (charge, discharge and 

EIS) at room temperature, 23 
o
C. Charging was carried 

out in a constant current (CC) mode at 1.5 A until the 

battery voltage reached 4.2 V and then continued in a 

constant voltage (CV) mode until the charge current 

dropped to 20 mA. Discharge was carried out at a 

constant current (CC) level of 2 A until the battery 

voltage fell to 2.7 V. Experiments with more realistic 

variable load currents are planned for later. As 

mentioned before the EIS measurements are not used 

for the purposes of the research presented here. 

Repeated charge and discharge cycles result in 

accelerated aging of the batteries. The experiments 

were stopped when the batteries reached the EOL 

criteria of 30% fade in rated capacity (from 2 Ah to 1.4 

Ah). Due to the differences in depth-of-discharge 

(DOD), the duration of rest periods and intrinsic 

variability, no two cells have the same SOL at the same 

cycle index. The aim is to be able to manage this 

uncertainty, which is representative of actual usage, and 

make reliable predictions of RUL in both the EOD and 

EOL contexts. Although several (> 16) batteries were 

aged in this setup, we present the results from a single 

battery. The accuracy and precision of the predictions 

shown below is representative of the performance on 

the other batteries as well. 

Figure 8 shows the EOD predictions generated by 

the PF algorithm for an arbitrarily selected discharge 

cycle of a Li-ion battery under test. The red solid line 

shows the measured cell voltage, while the green patch 

represents the envelope of the PF tracking performance. 

The battery model is tuned continuously until we reach 

one of the predetermined prediction points (denoted by 

blue asterisks), at which time we freeze the model and 

use it to extrapolate the particle distribution till the 

EEOD threshold.  
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Figure 8: EOD prediction. 



Annual Conference of the Prognostics and Health Management Society, 2009 

 

 

8 

 

It is to be noted that we do not generate a single-

valued prediction or a mean value with confidence 

bounds, but a full EOD pdf. Predictions are made at 

multiple points to test the robustness of the algorithm to 

model parameter drift. The pdfs generated have high 

accuracy and precision as can be seen from the overlap 

of the blue shaded areas to the right of Figure 8 and 

tEOD marked by the vertical red broken line. Since the 

pdfs overlap each other, they are differentiated by 

varying shades of blue with the earliest one being the 

lightest and the later ones being progressively darker. 

Also, to improve visibility, the pdfs have been scaled 

by a factor of 50 and shifted to the EEOD threshold. 

In order to better quantify the prognostic 

performance, we calculate the α-λ performance metric, 

as defined in (Saxena et al., 2008), for the prediction 

means computed as the weighted sum of the particle 

populations. We include several more prediction points 

in order to compute this metric, as shown by the blue 

asterisks in Figure 9. It can be seen that we achieve 

90% accuracy (α = 0.1) right from the first prediction 

point onwards (λ = 0). This means that 500 seconds into 

the discharge, which is about 55 minutes long, we can 

predict the EOD point to within ±4 minute confidence 

limits. Halfway into the discharge we can predict to 

within ±2 minutes 45 seconds, and so on. 
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Figure 9: α-λ performance for EOD prediction. 

The performance of the PF algorithm for EOL 

prediction problem is shown in Figure 10. The 

measured capacity values are shown by the red solid 

line, the PF tracking by the green patch and the 

prediction points by the blue asterisks. The EOL pdfs 

are denoted by the blue patches, lighter shades 

indicating earlier predictions. Note that modeling the 

capacity gain due to rest, as shown in equation (9), 

allows the PF to maintain track of the capacity during 

rests and make predictions accordingly. When 

predicting, the planned future usage and rest conditions 

are made available to the PF framework. 
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Figure 10: EOL prediction. 

As can be seen, the EOL pdfs do overlap the cycles 

where the measured capacity crosses the EOL threshold 

of 1.4 Ah, however, due to the multiple crossings 

caused by the capacity gain during relaxation periods, 

the predictions keep shifting over them. Consequently, 

it is also difficult to compute convergence metrics like 

α-λ performance since it is difficult to define the true 

EOL. These issues are beyond the scope of this paper 

and will be tackled in future research. Figure 10, 

though, does demonstrate the viability of our PF based 

approach. 

9 CONCLUSION 

In summary, this paper lays out an empirical model to 

describe battery behavior during individual discharge 

cycles as well as over its cycle life. The basis for the 

form of the model has been linked to the internal 

processes of the battery and validated using 

experimental data. Subsequently, the model has been 

used in a PF framework to make predictions of EOD 

and EOL effectively. Although the model has been 

developed with Li-ion battery chemistries in mind, it 

can be applied to other batteries as long as effects 

specific to those chemistries are modeled as well (e.g. 

the memory effect in Ni-Cd rechargeable batteries).  

The prediction results have been satisfactory so far, 

however, there remains considerable room for 

improvement. The model fidelity will improve when 

the influence of factors like temperature, discharge C-

rate, DOD, SOC after charging, etc., are explicitly 

incorporated. This requires further intensive theoretical 

as well as experimental investigation of battery 

behavior. As the understanding of these factors 

improves, we will be able to better take advantage of 

advanced filtering techniques like unscented PF, Rao-

Blackwellized PF (Saha et al., 2009), and others, to 

further refine prognostic performance. 
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NOMENCLATURE 

DOD     depth-of-discharge 

EOD     end-of-discharge 

EOL     end-of-life 

RUL     remaining useful life 

SOC     state-of-charge 

SOL     state-of-life 

C     charge capacity 

I     load current 

r     hours required to drain nominal capacity  

ηC     Coulombic efficiency 

RE     electrolyte resistance 

RCT     charge transfer resistance 

CDL     dual-layer capacitance 

RW     Warburg resistance 

t     time 

i     time index 

k     cycle index 

E     cell voltage 

Eo
     theoretical open circuit voltage 

∆Esd      voltage drop due to self-discharge 

∆Erd      voltage drop due to reactant depletion 

∆Emt      voltage drop due to mass transfer resistance  

∆Einit     initial voltage drop during discharge 

αj=1,…,5  EOD model parameters 

βj=1,2      EOL model parameters 

∆tk       rest period between cycles k and k+1 

ω,ν,φ,ψ  zero-mean Gaussian noise terms 

EEOD     EOD voltage threshold (2.7 V) 

tEOD     time when E reaches EEOD 

CEOL     EOL capacity threshold (1.4 Ah) 

kEOL     cycle when C reaches CEOL 
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