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ABSTRACT

This paper deals with the development of a
model based method for bearing fault diagnos-
tics. This method effectively combines the infor-
mation available in the data and the model for ef-
ficient classification of the bearing and the type of
defect. A four degrees of freedom nonlinear rigid
rotor model is used to simulate the rotor bearing
system. Precession of the shaft is measured using
proximity probes. The deviation of the measure-
ment from the model is used to classify the system.
Typically proximity probe data by itself does not
contain enough information for accurate classifi-
cation. However, when the information from the
model is incorporated the combined features pro-
vide excellent classification performance. Fur-
ther the use of a model also enables better classi-
fication over varying parameters. A support vec-
tor machine is used for classification.

1 INTRODUCTION
Rotating machinery are probably among the most im-
portant components in industry. It is important to
constantly maintain these machines in proper work-
ing conditions. Ability to confidently determine the
state of the system and predict failures would greatly
increase the productivity of the plant. Rotating ma-
chines are composed of different sub-systems interact-
ing with each other in a nonlinear fashion; changes in
any of these components can significantly affect the
overall performance. Bearings are the load bearing
members of rotating machines. They are the key to ef-
fective functioning of the machine and often the cause
of failure. Hence it is critical to be able to detect a
faulty bearing.

Numerous techniques have been developed to an-
alyze the vibration measurements for the purpose of
diagnostics and prognostics. These techniques include
extracting features and analyzing them using pattern
recognition algorithms. The features can be obtained
using time(Tandon, 1994), frequency(Barkova and
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Barkov, 1995; Randall and Gao, 1994; Ypma, 2001)
and time-frequency domain techniques(Cadeet al.,
2005; Mori et al., 1996; Ypma, 2001). For the pur-
pose of prognosis it is necessary to track the progres-
sion of the some health indices and determine the time
to failure based on this progression.

Almost all of these techniques are applied on ac-
celerometer data measured at the bearing casing.
There is little work on bearing fault detection using
displacement data measured with proximity probes.
This is due the fact that proximity probe data does not
contain enough information about the fault.(Holm-
Hansen and Gao, 2000; Yuet al., 2002) are some of
the few works we know that attempted to use proxim-
ity probe data for bearing fault detection. In this pa-
per it attempted to combine the proximity probe data
and a mathematical model in order to increase the us-
ability of proximity probe data for bearing fault de-
tection. The advantage of using proximity probe data
is that there is lesser noise content in the signal. In
some cases it might be more convenient to measure
displacements at the shaft rather than the vibration at
the bearing casing. Further the signal processing to
be performed on the proximity probe data is typically
lesser. Also, displacement measurements at the shaft
are more direct than the vibration measurements at the
bearing casing where the signal passes through the cas-
ing before being captured. However, we do not claim
proximity probe data is better than accelerometer data.
Accelerometer data has useful as it is rich in the fre-
quency information which can easily capture the im-
pulses generated by the rolling element passing thor-
ough the defect(Barkova and Barkov, 1995).

Rotor-bearing models have been well developed.
(Nataraj and Pietrusko, 2005; Sawalhi and Randall,
2008; Liew et al., 2002) are some insightful refer-
ences. The model of rotor-bearing system is a ap-
proximation of the real system, however it is an use-
ful first step in the process of identifying the interac-
tion between various parameters, states and features.
Also models generalize the system so that efficient al-
gorithms based on models can be applied to various
systems with little modifications.

The basic idea in this paper is that the defect free
model would explain the defect free system better than
a system with a defect. Consider the figure shown in
Figure. 1. In the figure let the triangles represent the
defect free model prediction in the feature space, the
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Figure 1: CLUSTERING

circles be the data from a defect free system and the
squares be the data from a system with a defect. If
an accurate enough model is used then the data from a
defect free system would be closer to the model than
the data from a system with a defect. This clustering
of data can be used for effective classification of data.

The experimental setup and the data collected is dis-
cussed in the next section followed by a section on
model development. Support vector machines which
have good performance with lesser data(Haykin,
1999) are used for classification. They also sufficiently
generalize the process; the details are explained in sec-
tion 4. In section 5 the algorithm for classification is
explained. The discussion on the simulations on re-
sults is presented in 6.

2 EXPERIMENTAL SETUP AND DATA
COLLECTION

All the experimental data was collected on a ‘Machine
Fault Simulator (MFS)’(Spectra Quest, 2009) Fig. 2.
It is a test rig with a rotating shaft on a two ball bear-
ings. The speed can be controlled using a closed loop
motor controller from a PC. The shaft and the motor
are connected using a flexible coupling to minimize
misalignment effects. The shaft is loaded using a bear-
ing loader and balancing disks. The different parts of
the system can be connivently assembled and disas-
sembled. The bearings are placed in the bearing cas-
ing and can easily be replaced. The bearing parameters
for the system used are given in Table 1. The system
was loaded with a 5 kg mass. The signals from the
MFS were collected using acclerometers placed on the
bearing casing; once with a defect-free bearing, once
with a bearing with an outer race defect and once with
a bearing with an inner race defect.

The rotating speed was varied between 1200 rpm
and 2400 rpm with increments of 120 rpm. The data
was captured at a sampling rate of 25 kHz and low
passed filtered at frequency of twice the inner race ball
pass frequency. The ball pass frequency of a bearing
can be calculated from the geometry of the bearing
and the rotating speed using Eq. 1. This was chosen
because of all the common frequencies associated to
bearing signalΩbpfi is the highest in value, hence pro-
viding a good relevant frequency range. At each rotat-
ing speed, 10 sets of data were collected. Five of these

Figure 2: EXPERIMENTAL SETUP

Parameter Value
Number of Rolling Elements (Nb) 8
Pitch Diameter (Dm) 1.319 in
Rolling Element Diameter (Db) .3125 in
Ball Pass Frequency Outer (Ωbpfo) 3.05Ω

Table 1: Bearing Parameters

were used in the training set and five in the test set.

Ωbpfi = Nb(1 + Db/Dm)Ω/2 (1)

3 ROTOR-BEARING SYSTEM MODELING
The rotor-bearing system is modeled as a rigid rotor
model on nonlinear bearings. A rigid rotor model is
well accepted in rotor dynamics literature. It is reason-
ably valid up to the first two critical speeds. The bear-
ings are modeled using Hertzian contact forces and
the outer race defects as pits. The bearing stiffness
and damping are implicit in the bearing force. The
rotor-bearing system and the rolling element bearing
are shown schematically in Figs. 3 and 4.

The rotor-bearing system has four degrees of free-
dom q = [V W B Γ]

T . V, W are the displacement
degrees of freedom andB, Γ are the angular degrees
of freedom. The forces acting on the rigid rotor with
mass m, inertiaID and polar moment of inertiaIp are
the bearing forces (Qb) and the unbalance forces (Qu).
Using the Lagrangian equation, the equation of motion
for the rotor-bearing system is given by Eq. (2).

Mq̈ + (D − ΩG)q̇ = Qb + Qu. (2)
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Figure 4: ROLLING ELEMENT BEARING

where M, D and G are the mass, damping and gyro-
scopic matrices given by Eqs. (3), (4) and (5).ρu and
φu are the unbalance parameters of the rotor, the un-
balance forceQu is given by Eq.(9).

M =







m 0 0 0
0 m 0 0
0 0 ID 0
0 0 0 ID






(3)

D =







d 0 0 0
0 d 0 0
0 0 0 0
0 0 0 0






(4)

G =







0 0 0 0
0 0 0 0
0 0 0 −Ip
0 0 Ip 0






(5)

(6)

ρuy = ρu cos(φu) (7)

ρuz = ρu sin(φu) (8)

Qu = mΩ2







ρuy
ρuz
0
0






+ Ω2







−ρuz
ρuy
0
0






(9)

In order to determine the bearing load on the rotor each
bearing force is transferred from the bearing position
to the center of mass of the rotor and summed as shown
in Eq.(10).

Qb =

Nb
∑

i=1

AT
biQbi (10)

Abi is the transformation matrix of the bearing atai
from the center of mass as shown in Eq. (11).Qbi is
the bearing force vector as shown in Eq.(12).

Abi =

[

1 0 0 −ai
0 1 ai 0

]

(11)

Qbi = [Fxi Fyi]
T (12)

Fxi, Fyi are the x and y components of force exerted
by ith bearing on the rotor. These forces are the re-
sultants of the nonlinear force exerted by each rolling
element. The force exerted by a rolling element in load
zone is obtained from Hertzian contact stress(Harris,
2002). For a rolling element bearing withNb rolling
elements, the force exerted by thejth rolling element
Qj is given by Eq. (13).

Qj = Kpδ
n
j (13)

Kp is the effective stiffness of the bearing,δj is the de-
flection of thejth rolling element and n is a constant
dependent on the type of the bearing. For ball bear-
ings n is 1.5. The effective stiffness of the bearing can
be calculated from the geometry(Harris, 2002) and is
given by Eq. (14).

Kp =

[

(

1

Ki

)1/n

+

(

1

Ko

)1/n
]

−n

(14)
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WhereKi, Ko are the inner and outer race stiffness.
For steel balls and races they are given by Eq.(15)
(Harris, 2002).

Ki,o = 2.15 × 105

(

∑

ρi,o

)

−1/2
(

δ∗i,o
)

−3/2

(15)
∑

ρ is the sum of the curvatures andδ∗i,o is a func-
tion of ρ that can be determined by interpolation
from standard references such as(Harshaet al., 2004;
Harris, 2002). Thus ifθj is the angular position ofjth

rolling element the force exerted by theith bearing on
the shaft is given by Eq. (16)

Qbi =

[

∑Nb
j=1

Kpγjδ
n
j cos(θj)

∑Nb
j=1

Kpγjδ
n
j sin(θj)

]

(16)

Whereγj given by Eq.(17) is a constant to determine
if the rolling element is in the load zone.

γj =

{

0 δj < 0
1 δj > 0 (17)

As modeled in (Nataraj and Pietrusko, 2005;
Sawalhi and Randall, 2008; Liewet al., 2002), the de-
flection of thejth rolling element is a function of shaft
displacement. It is shown in Eq.(18).

δj = v cos(θj) + w sin(θj) − c (18)

4 SUPPORT VECTOR MACHINES
Support vector machines are statistical learning theory
based supervised learning machines. These are feed-
forward linear learning machines and were pioneered
by Vapnik (Vapnik, 1998). Support vector machines
are approximate implementations of the principle of
structural risk minimization. These machines provide
good generalization performance on pattern classifica-
tion (Haykin, 1999).

A brief overview of support vector machines is pro-
vided in this section. More detailed analysis can be
found in(Haykin, 1999; Shawe-Taylor and Christian-
ini, 2004). As a simple case consider linearly sepa-
rable two dimensional data as shown in Fig. 5. Any
plane in the space is given by Eq. 19.w is the weight
vector,x is a point in the feature space andb is the bias
vector. If data in the first class are associated with a
labeld = + 1 and the data in the second class with
d = − 1 then the division of data by the hyperplane
is be given by Eq. 20.

wT x + b = 0 (19)

wT xi + b ≥ 0 for di = +1

wT xi + b < 0 for di = −1 (20)

For a givenw andb the separation between the hy-
perplane and the closest data point is called the margin.
The goal of the support vector machine is to maximize
the margin of separation. The points which lie closet
to the separating hyperplane and hence are most diffi-
cult to classify are called the support vectors. At these
points Eq. 21 is satisfied. The margin of separation is
inversely proportional to the norm of the weight vec-
tor. Based on the above discussion the primal optimal

Figure 5: SUPPORT VECTOR MACHINE

problem can be defined for solving for the optimal hy-
perplane.

wT xi + b = 1 for di = +1

wT xi + b = −1 for di = −1 (21)

Given training data,

min Φ(w) =
1

2
wT w (22)

di(w
T xi + b) ≥ 1 for i = 1, 2, N (23)

The above convex problem can be solved using N
Lagrangian multipliersαi and KKT conditions. How-
ever for easy execution, a dual problem can be devel-
oped which has the same solution as Eq. 22. This is
given in Eq. 24.

Q(α) =

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjdidjx
T
i xj (24)

such that

N
∑

i=1

αidi = 0 (25)

αi ≥ 0 (26)

For nonlinearly separable patterns the data is mapped
into a high-dimensional feature space using a kernel
K. The cost function now is given by Eq. 27.

Q(α) =

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjdidjK(xi, xj)

(27)
This can be solved using any of the popular opti-

mization methods.

5 ALGORITHM
In this section an algorithm is developed for bearing
fault identification using the data, model and support
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Figure 6: ALGORITHM

vector machines explained in the previous sections.
The algorithm is shown in Fig. 6.

Bearing fault detection is treated as a classification
problem. The three classes here are defect free system,
system with inner race defect and system with an outer
race defect.

The first step of the process is data collection. Data
is collected at various speeds as explained earlier. The
data is divided into a test set and a training set.

Since the data is collected at various speedsΩ is a
varying parameter in the model. Also, each time the
machine is disassembled and assembled (for changing
the bearings) the unbalance parameters change. It is
essential that each time right parameters are used for
simulation. This is the next step in the method. Train-
ing data and least squares method are used for estimat-
ing unbalance parameters in each case.

Now, the difference between the measurement and
the corresponding model for one rotation is evaluated.
This is called the residue. Variance, skewness and kur-
tosis of the residue are used as features. The mean
square error between the model and measurement is
also used as a feature.

Next, the features are used to train the support vec-
tor machine. A gaussian kernel is used in the support
vector machine. The test set is used for evaluating the
performance of the method.

6 SIMULATION AND RESULTS
As the first step in the algorithm the data collected
from the experiment is used to the estimate the un-
known parameters in the model developed in section
2. Unbalance magnitude and unbalance angular po-
sition are the unknowns in the system. Least-squares
method is used to estimate these parameters. The er-
ror is the difference between the model and the data
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Figure 7: DEFECT FREE BEARING

over all speeds for one rotation. Mathematically this is
given by Eq. 28.

f(ρu, φu) =

Ns
∑

ı=1

1

Ni
[Ri(ρu, φu)]

2 (28)

where Ns is the number of rotating speeds over
which the data is collected andNi are the number of
data points in the signal at a particular rotating speed.
Ri is the residue of the signal given by Eq. 29, where
Vdi

, Vmi
are the data and simulation for one rotation

respectively.

Ri = Vdi
− Vmi

(ρu, φu) (29)

Using the unbalance parameter obtained, the model is
simulated. Figures 7, 8, and 9 show the comparison
between the model and simulation for a defect free sys-
tem, a system with an outer race defect and a system
with an inner race defect respectively.

From the figures it can be seen that the measured
signal in the system with outer race defect deviates
more from the simulation when compared to the other
two signals. The inner race defect signal and defect
free signal are closer to each other. In fact the least
square algorithm converged faster in these cases.

To exploit this observation the SVM was applied in
two steps. In the first step the classification was per-
formed as a system with and without an outer race
defect. In the second step the data without an outer
race defect was classified as defect free or otherwise.
Variance, skewness and kurtosis of the residue were
used as features. A zero mean gaussian kernel with
a variance of 0.9 was used for the SVM. The upper
bound for the lagrangian constants was109. Figure 10
shows the performance of the SVM. In this figure x-
coordinate is the sample number and the y-coordinate
is the label associated with each class. There are five
samples at each speed. The defect free samples are
labeled 1, the outer race defect samples are labeled 2
and the inner race defect samples are labeled 3. The
upper subplot is the performance on the training set
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Figure 8: BEARING WITH OUTER RACE DEFECT
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Figure 9: BEARING WITH INNER RACE DEFECT
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Figure 10: CLASSIFICATION PERFORMANCE
WITH RESIDUAL FEATURES

DF ORD IRD
DF 31 0 2
ORD 1 31 1
IRD 3 0 30

Table 2: CONFIDENCE MATRIX: RESIDUAL FEA-
TURES

and the lower is the test set performance. There was
100 percent training success. The confidence matrix
of the classification is shown Table. 2.

There were 99 observations in the test set and 99 in
the training set. Both training and test sets had equal
distribution of all the three classes. SVM correctly
classified defect free system 31 of the 33 times. In
the other two cases it classified the system as an inner
race defect. SVM performed similarly in classifying
the system with outer race defect. The performance
was slightly less classifying inner race defect. The first
stage SVM (2 misclassifications from 99 samples) per-
formed better than the second stage SVM (4 misclassi-
fications from 66 samples). In should be noted that the
system was never misclassified as outer race defect.

In order to compare the performance of residual fea-
tures, a classification based on the time domain fea-
tures of the signal is also performed. In this case too
variance, skewness and kurtosis were used as features.
The output of this classification is shown in Fig. 11
and corresponding confidence table is shown in Table.
3. There were 99 samples in this case too and the dis-
tribution was similar to the previous case. There was
100 percent training success in this case too. But the
performance of classification was degraded on the test
set. There were 12 misclassifications in all. In this case
there were more number of instances when the system
was misclassified as an outer race defect.

7 CONCLUSION AND FUTURE WORK

In this paper nonlinear model based features were used
for detecting inner race and outer race faults in a rotor
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Figure 11: CLASSIFICATION PERFORMANCE
WITH SIGNAL FEATURES

DF ORD IRD
DF 28 3 2
ORD 4 29 0
IRD 1 2 30

Table 3: CONFIDENCE MATRIX: SIGNAL FEA-
TURES

bearing system. Proximity probes data which typically
has poor performance for bearing fault detection was
augmented with information from a nonlinear model
to obtain better performance. A support vector ma-
chine was used for pattern classification. The model
based features performed better than just signal based
features. The outer race defect system deviated more
from the model than the inner race defect system and
hence easier to classify. The model based features per-
formed better in classifying outer race defects than in-
ner race defects. The signal based features performed
similarly on all three classes.

This work is just an initial study in the advantages
and feasibility of using model based features. Only
simple time domain features have been used in this
study. More complicated features need to be devel-
oped for further study. The information in the model
based features needs to be studied and compared with
signal features and their performance together needs
to be evaluated. More complicated models for systems
with defects are being developed and time frequency
domain features are being looked at. Model based fea-
tures are also being studied for fault monitoring and
prognostics.
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NOMENCLATURE
q Degree of freedom vector
m Mass of rotor
d Damping coefficient
ID Inertia of the rotor
Ip Polar moment of inertia of the rotor
Ip Polar moment of inertia of the rotor
ρu Unbalance magnitude
φu Unbalance angle
Nb Number of rolling elements in a bearing
θj Angular position of thejth rolling element
δj Deflection at thejth rolling element
Kp Effective bearing stiffness
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