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ABSTRACT 

Particle filters (PF) have been established as 
the de facto state of the art in failure 
prognosis, and particularly in the 
representation and management of uncertainty 
in long-term predictions when used in 
combination with outer feedback correction 
loops. This paper presents a novel Risk-
Sensitive PF (RSPF) framework that 
complements the benefits of the classic 
approach, by representing the probability of 
rare and costly events within the formulation 
of the nonlinear dynamic equation that 
describes the evolution of the fault condition 
in time. The performance of this approach is 
thoroughly compared using a set of proposed 
metrics for prognosis results. The scheme is 
illustrated with real vibration feature data from 
a fatigue-driven fault in a critical aircraft 
component. 

1 INTRODUCTION 

A number of approaches have been suggested in the 
recent years for uncertainty representation and 
management in prediction. In fact, probabilistic, soft 
computing methods, and tools derived from evidential 
theory or Dempster-Shafer theory (Shafer, 1976) have 
been already explored for this purpose. Although 
probabilistic methods offer a mathematically rigorous 
methodology, they typically require a statistically 
sufficient database to estimate the required 
distributions. Soft-computing methods (fuzzy logic) 

offer an alternative when scarce data or contradictory 
data are available. Dempster’s rule of combination and 
such concepts from evidential theory as belief on 
plausibility (upper and lower bounds of probability) 
based on mass function calculations can support 
uncertainty representation and management tasks. 
Confidence Prediction Neural Networks (NN) 
(Khiripet, 2001) have also been used to represent and 
manage uncertainty using Parzen windows as the kernel 
and a structure based on Specht’s General Regression 
NN (Specht, 1991). Last but not least, probabilistic 
reliability analysis tools employing an inner-outer loop 
Bayesian update scheme (Cruse, 2004) have also been 
used to “tune” model hyper-parameters given 
observations. 
 Particle-filtering (PF) based prognostic algorithms 
(Orchard, 2005; Orchard, 2008; Orchard, 2009; 
Patrick, 2007; Zhang, 2009) have been established as 
the de facto state of the art in failure prognosis. PF 
algorithms allow to avoid the assumption of Gaussian 
(or log-normal) pdf in nonlinear processes, with 
unknown model parameters, and simultaneously help to 
consider non-uniform probabilities of failure for 
particular regions of the state domain. Particularly, the 
authors in (Orchard, 2008) have proposed a 
mathematically rigorous method (based on PF, function 
kernels, and outer correction loops) to represent and 
manage uncertainty in long-term predictions. However, 
there are still unsolved issues regarding the proper 
representation for the probability of rare and costly 
events, since these events are associated to particles 
located at the tails of the predicted probability density 
functions (pdf’s). 
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 This paper presents a solution for the 
aforementioned problem and it is structured as follows. 
Section 2 introduces the basics of particle filtering (PF) 
and its application to the field of failure prognostics. 
Section 3 presents the proposed Risk-Sensitive PF 
(RSPF) framework and describes implications of the 
algorithm parameter tuning that has to be considered in 
the design. Section 4 proposes a set of novel 
performance metrics to be used in the assessment of 
prognostic results and evaluates the RSPF, when 
compared to the classic PF prognosis framework 
(Orchard, 2009). Section 5 states the most important 
conclusions. 

2 PARTICLE FILTERING AND FAILURE 
PROGNOSIS 

2.1 Risk-Sensitive Particle Filtering 

Nonlinear filtering is defined as the process of using 
noisy observation data to estimate at least the first two 
moments of a state vector governed by a dynamic 
nonlinear, non-Gaussian state-space model. From a 
Bayesian standpoint, a nonlinear filtering procedure 
intends to generate an estimate of the posterior 
probability density function )|( :1 tt yxp  for the state, 
based on the set of received measurements. Particle 
Filtering (PF) is an algorithm that intends to solve this 
estimation problem by efficiently selecting a set of N 
particles ( )

1{ }i
i Nx ="  and weights ( )

1{ }i
t i Nw = " , such that 

the state pdf may be approximated by (Andrieu, 2001; 
Arulampalam, 2002; Doucet, 1998; Doucet 2001)  
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where 0:( )t tq x is referred to as the importance sampling 
density function (Andrieu, 2001). The choice of this 
importance density function is critical for the 
performance of the particle filter scheme. In the 
particular case of nonlinear state estimation, the value 
of the particle weights ( )

0:
i
tw is computed by setting the 

importance density function equal to the a priori pdf 
for the state, i.e., 0: 0: 1 1( | ) ( | )t t t t tq x x p x x− −=  
(Arulampalam, 2002). Although this choice of 
importance density is appropriate to estimate the most 
likely probability distribution according to a particular 
set of measurement data, it does not offer a good 
estimate of the probability of events associated to high-
risk conditions with low likelihood. 

 In this sense, the risk-sensitive particle filter (RSPF) 
(Thrun , 2001; Verma 2004) incorporates a cost model 
in the importance distribution to generate more 
particles in high-risk regions of the state-space. 
Mathematically, the importance distribution is set as 
 

( ) ( )( ) ( )
0: 1 0: 1 1: 1:, | , , ( ) , |i i

t t t t t t t t t tq d x d x y r d p d x yγ− − = ⋅ ⋅� �� � ,   (2) 

 
where td  is a set of discrete-valued states representing 
fault modes, xt is a set of continuous-valued states that 
describe the evolution of the system given those 
operating conditions, ( )tr d is a positive risk function 
that is dependent on the fault mode, and tγ  is a 
normalizing constant. This methodology has proven to 
be very helpful in FDI applications, improving the 
tracking of states that are critical to the performance of 
a six-wheel robot (Verma 2004), although no 
applications in the prognostic arena have been 
published so far. It is important to note, though, that 
this PF approach needs the inclusion of exogenous 
models to evaluate and estimate the risk associated with 
every fault mode, a task that may prove to be difficult 
to implement in absence of expert opinions. 
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Figure 1: Particle population using either the a priori 
state pdf or a risk-sensitive pdf as importance 

distribution for x1(t) 

 The RSPF-based approach for failure prognosis 
presented in this paper ensures the existence of 
particles in the tails of the state pdf to represent the 
probability of events associated to high-risk conditions 
with low likelihood, which in practice implies a more 
conservative estimate of the remaining useful life 
(RUL) of a piece of equipment. The weights of the 
particles located at the tails of the pdf (which are 
updated each time a new measurement is obtained) 
represent an estimate of the mass probability of the 
tails, i.e., particles in the regions of the state space that 
are believed to have low likelihood; see Fig. 1. In 
situations where effectively the data shows no signs of 
this critical type of events, the weights of these 
particles should decrease over time. Nevertheless, the 
information provided by these weights is of paramount 
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importance, since it allows considering catastrophic 
events in the schedule of the system operation and 
enables fast adjustments in prognosis results in the 
presence of incipient critical conditions 
(Orchard, 2009). 

2.2 Failure Prognosis using Particle Filters 

Prognosis, and thus the generation of long-term 
prediction, is a problem that goes beyond the scope of 
filtering applications since it involves future time 
horizons. Hence, if PF-based algorithms are to be used, 
it is necessary to propose a procedure with the 
capability to project the current particle population in 
time in the absence of new observations 
(Orchard, 2009).  
 Any adaptive prognosis scheme requires the 
existence of at least one feature providing a measure of 
the severity of the fault condition under analysis (fault 
dimension). If many features are available, they can 
always be combined to generate a single signal. In this 
sense, it is always possible to describe the evolution in 
time of the fault dimension through the nonlinear state 
equation (Orchard, 2008): 
 

1 1 2 1

2 2 2

( 1) ( ) ( ) ( ( ), , ) ( )
( 1) ( ) ( )

x t x t x t F x t t U t
x t x t t

ω
ω

+ = + ⋅ +⎧
⎨ + = +⎩

,   (3) 

where x1(t) is a state representing the fault dimension 
under analysis, x2(t) is a state associated with an 
unknown model parameter, U are external inputs to the 
system (load profile, etc.), ( ( ), , )F x t t U  is a general 
time-varying nonlinear function, and 1( )tω , 2 ( )tω  are 
white noises (not necessarily Gaussian). The nonlinear 
function ( ( ), , )F x t t U  may represent a model based on 
first principles, a neural network, or even a fuzzy 
system. 
 By using the aforementioned state equation to 
represent the evolution of the fault dimension in time, it 
is possible to generate long term predictions using 
kernel functions to reconstruct the estimate of the state 
pdf in future time instants: 
 

( )( ) ( ) ( )
1: 1 1 1

1

ˆ ˆ ˆ( | ) |
N

i i i
t k t k t k t k t k t k

i
p x x w K x E x x+ + − + − + + + −

=

⎡ ⎤≈ − ⎣ ⎦∑ , (4) 

where ( )K ⋅  is a kernel density function, which may 
correspond to the process noise pdf, a Gaussian kernel 
or a rescaled version of the Epanechnikov kernel 
(Orchard, 2008). 
 The resulting predicted state pdf contains critical 
information about the evolution of the fault dimension 
over time. One way to represent that information is 
through the computation of statistics (expectations, 
95% confidence intervals), either the Time-of-Failure 

(ToF) or the Remaining Useful Life (RUL) of the faulty 
system. A detailed procedure to obtain the RUL pdf 
from the predicted path of the state pdf is described and 
discussed in (Orchard, 2009), although the general 
concept is as follows. Basically, the RUL pdf can be 
computed from the function of probability of failure at 
future time instants. This probability is calculated using 
both the long-term predictions and empirical 
knowledge about critical conditions for the system. 
This empirical knowledge is usually incorporated in the 
form of thresholds for main fault indicators, also 
referred to as the hazard zones. 
 In real applications, it is expected for the hazard 
zones to be statistically determined on the basis of 
historical failure data, defining a critical pdf with lower 
and upper bounds for the fault indicator (Hlb and Hub, 
respectively). Since the hazard zone specifies the 
probability of failure for a fixed value of the fault 
indicator, and the weights{ }( )

1

i
t k i N

w + = "
 represent the 

predicted probability for the set of predicted paths, then 
it is possible to compute the probability of failure at 
any future time instant (namely the RUL pdf) by 
applying the law of total probabilities, as shown in 
Eq. (5). Once the RUL pdf is computed, combining the 
weights of predicted trajectories with the hazard zone 
specifications, it is well known how to obtain prognosis 
confidence intervals, as well as the RUL expectation. 
 

( )( ) ( )

1

ˆ ˆ( ) Pr | , ,
N

i i
TTF t lb ub t

i
p t Failure X x H H w

=

= = ⋅∑    (5) 

3 RSPF-BASED PROGNOSTIC FRAMEWORK, 
CASE STUDY AND ANALYSIS OF RESULTS 

A RSPF-based approach for failure prognosis intends to 
represent the probability of rare and costly events 
within the formulation of the nonlinear dynamic 
equation describing the evolution of the fault condition 
in time, and thus modifying the Time-of-Failure (ToF) 
pdf estimate accordingly. In particular, it is proposed to 
implement a variant of this RSPF algorithm where the 
cost function in Eq. (2) allows sampling particles x(i)(t) 
(i = 1…Nr, Nr << N), using the nonlinear model in 
Eq. (3), from regions of the state space where x1

(i)(t) has 
low likelihood. This ensures the existence of particles 
in the tails of the state pdf that represent the probability 
of events associated to high-risk conditions with low 
likelihood.  
 The RSPF-based algorithm is implemented here by 
modifying the kernel of the noise ω1(t) in Eq. (3), and 
thus allowing some particles to be created in regions of 
the state space that represent extreme and rare changes 
in the evolution of the fault condition. In practice, this 
kernel modification implies a more conservative 
estimate of the remaining useful life (RUL). The 
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weights of the particles located at the tails of the 
original noise pdf represent an estimate of the mass 
probability of the tails and are updated accordingly to 
the new measurements. Information provided by these 
weights allows considering the probability of a 
catastrophic event and enables adjustments in prognosis 
results in the presence of incipient critical conditions 
 A test case has been designed to evaluate the 
performance of a RSPF-based prognostic framework 
and to analyze the main aspects of algorithm 
implementation that help to improve online state 
estimates. Consider the case of propagating fatigue 
crack on a critical component in a rotorcraft 
transmission system. The objective in this seeded fault 
test is to analyze how a cyclic load profile affects the 
growth of an axial crack. Although the physics-based 
model for a system of these characteristics may be 
complex, it is possible to represent the growth of the 
crack (fault dimension) using the much simpler 
population-growth-based model (Orchard, 2008): 
 

2
1 1 2 1

2 2 2

( 1) ( ) ( ) ( ) ( )
( 1) ( ) ( )

mx t x t C x t a b t t t
x t x t t

ω
ω

⎧ + = + ⋅ ⋅ − ⋅ + +
⎨

+ = +⎩
,    (6) 

where x1(t) is a state representing the fault dimension, 
x2(t) is a state associated with an unknown model 
parameter, C and m are constants associated with the 
fatigue properties of the material. The constants a and b 
depend on the maximum load and duration of the load 
cycle (external input U). Given a set of vibration 
feature data such as described in (Orchard, 2008; 
Orchard, 2009, Patrick, 2007), it is possible to use this 
model to obtain an approximate (and noisy) estimate of 
the crack length via the use of a PF-based algorithm 
(Orchard, 2009).  Once the estimate of the state pdf is 
available, it can be used as initial condition of the 
model to generate long-term predictions, if the integrals 
in the aforementioned recursive expression are 
evaluated.  
 The evolution in time of the fault dimension is 
described by Eq. (6), where 1( )tω  is white noise 
distributing as a Gaussian mixture; i.e., the distribution 
of the process noise 1( )tω  can be written as: 
 

*
1 1 1( )  ( ) (1 ) ( )t t tω δ ω δ ω′⋅ + − ⋅∼ , (7) 

where 0 ≤ δ ≤ 1, 2
1( ) (0, )t Nω σ′ ′∼ , { }*

1 ( ) 0d E tω= ≠ , 

and * *2
1 ( ) ( , )t N dω σ∼ . 

 Consequently, RSPF-based prognostic algorithms 
have three extra parameters to be defined, compared 
with classic PF-based implementations. However, if the 
variance of the Gaussian kernels are selected in such a 
way that *σ σ′ = and equal to the process noise 

variance of the classic PF approach, then only d and δ 
must be considered as extra design parameters.  
 In the test case used for the analysis, feature data 
associated to the fault is fed into the RSPF-based 
prognostic algorithm to estimate the ToF pdf. Arbitrary 
initial conditions are set for the unknown model 
parameter in Eq. (6), and it is known that failure 
mechanisms may undergo changes after the 400th cycle 
of operation due to the size of the fault. Result analysis 
will focus on the quality of the estimate for the 
unknown model parameter, [ ]2 ( )E x t , after the 400th 
cycle of operation and on the accuracy exhibited by the 
corresponding ToF pdf estimate. Performance 
comparison is done with respect to a classic (SIR) PF-
based prognostic framework (Orchard, 2009), given 
same initial conditions at time t = 400. It must be noted 
that this implementation considers a correction loop 
that simultaneously updates the variance of kernel 
associated to the white noise ω2(t) according to the 
short-term prediction (Orchard, 2008). 

 Three qualitative aspects are considered in the 
analysis: 

1. Effect of parameter d in online state estimates 
2. Effect of parameter δ in the aforementioned 

estimates 
3. Effect of parameter d in ToF pdf estimates 

3.1 Effect of parameter “d” in online state estimates 

Figures 2 and 3 show a comparison of estimation 
results when using values of d (i.e., E{ω1

*}) selected 
from the set {0.00, 0.10}. Before commenting these 
outcomes, it is important to mention that higher 
absolute values of d imply that the risk-sensitive 
approach draws particles far away from the most likely 
range, according to the received measurements. 
Consequently, the approach will become more sensitive 
to the appearance of sudden changes in the dynamic of 
the system, at the price of a possible bias in the 
estimate. 
 Indeed, from Fig. 2, there exists a bias in the 
estimate of the fault dimension when d = 0.10 (magenta 
line in the first plot) that will affect the estimate of the 
ToF pdf, although there is a compensation effect that 
translates into a decrement in the value of the unknown 
model parameter estimate (magenta line in Fig. 3) that 
diminishes the impact on the resulting ToF pdf 
estimate. This biased estimate, though, allows the 
algorithm to quickly react in the presence of changes in 
operation conditions: the fault dimension estimate is 
much more accurate between the 420th - 450th cycles of 
operation, helping the adjustment of the ToF estimate 
during that time period. 
 



Annual Conference of the Prognostics and Health Management Society, 2009 

 5 

300 350 400 450 500 550 600
2.5

3

3.5

4

4.5

5

Time [cycles]

Fa
ul

t D
im

en
si

on

Feature
Classic PF
RSPF Var( w2 ) = 0.10

 
Figure 2: RSPF-based state estimation, E{ω1

*} = 0.10 
 
 From Fig. 3, it can be stated the existence of this 
bias basically forces the estimate of x2(t) to absorb any 
inconsistencies in the a posteriori state estimate. On top 
of that, the weight of particles associated to areas of the 
domain with low likelihood are very small and 
therefore the algorithm loses its capability to react (in 
the event of sudden changes in operational conditions) 
using those particles. Thus, it is recommended for the 
design to consider an absolute maximum value for the 
parameter d no bigger than 3σ′ . 
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Figure 3: RSPF-based parameter estimate, 

E{ω1*}=0.10 

3.2 Effect of parameter “δ” in online state estimates 

Following the same methodology, a test was performed 
considering two values for δ the parameter associated 
to the weight of the risk-sensitive kernel ω1

*. Fig. 4 and 
5 illustrate the obtained results. It is clear that the 
bigger the weight of the risk-sensitive kernel, the 
stronger is the adjustment made by the algorithm in the 

estimate of the unknown model parameter. Regarding 
ToF estimates, it is also clear that these adjustments go 
in a conservative direction, forcing the ToF pdf 
estimate to be on the “safer” side (ToF estimate smaller 
that actual failure time). Conversely, the bigger the 
value of δ, the more particles will be drawn for areas 
representing sudden and unexpected changes in 
operational conditions. Hence, there is an explicit 
relationship between how conservative the design is, in 
terms of the ToF estimate, and how sensitive the 
algorithm is to detect abnormal conditions in the 
evolution of the fault condition. The more conservative, 
the more sensitive is the algorithm. 
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Figure 4: RSPF-based state estimation, δ = 0.05 vs. 

δ = 0.15 
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Figure 5: RSPF-based parameter estimate, 

δ = {0.05, 0.15} 

3.3 Effect of parameter “d” in ToF estimates 

Conclusions stated in Section 3.2 are reinforced when 
analyzing the results in terms of the ToF pdf estimate 
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that is computed (at the 600th cycle) on the basis of the 
online PF-based state estimate; see Fig. 6, where the 
vertical line indicates the ground truth failure time. 
Indeed, larger values of d = E{ω1

*} are associated to 
more conservative estimates for the most likely ToF 
pdf, given the measured data. Thus, it is an essential 
part of the design process to define the maximum 
acceptable bias that is needed to include tails of the 
probability density function that do not necessarily 
maximize the likelihood of observations. As a separate 
note, it is important to mention that the amount of 
processed data is directly related to the precision of the 
pdf estimate regardless of the utilized PF approach; see 
Fig. 7 where the magenta pdf considers data from the 
0th cycle, being more precise that the cyan pdf that only 
considered data from the 400th cycle of operation. 

4 PERFORMANCE METRICS AND 
ASSESSMENT OF RSPF-BASED 
PROGNOSTIC ALGORITHMS 

The estimate obtained from a Particle Filtering 
algorithm is based on a realization of the stochastic 
process that is associated to the measurement data. In 
addition, the generation of the particle population 
involves sampling procedures that consider a proposed 
importance distribution. In this sense, it is important to 
mention that the assessment or the comparison between 
different uncertainty management strategies should 
consider statistics for the evaluation of a particular 
performance metric. In the absence of different sets of 
measurement data, at the least it is recommended to 
evaluate several realizations of the particle filter 
algorithm, calculating the mean and standard deviation 
of the resulting performance metric values. 
 In general, indices used as performance metrics for 
prognosis purposes should be capable of representing 
and evaluating the concepts of “accuracy” and 
“precision” of the RUL pdf estimate (Vachtsevanos, 
2006). “Accuracy” is intimately related to the 
difference between the actual failure time and the 
estimate of its expectation, while “precision” is 
associated to its variance (or standard deviation). 
 The following proposed indicators intend to help in 
the assessment of the algorithm effectiveness over time, 
given a realization of the stochastic process. Since a 
measure of “accuracy” needs the knowledge of the 
ground truth failure time, which is unknown before the 
actual failure in any on-line implementation of 
prognostic routines, it is proposed to consider the 
concept of “steadiness” of the RUL estimate instead. 
The aforementioned indicators must also consider the 
fact that both the RUL and Et{RUL} (estimate, at time t, 
of the expectation of the equipment RUL) are random 
variables. Moreover, it is assumed that at any current 
time t it is possible to compute an estimate of the 95% 

confidence interval for the time-of-failure (CIt), also 
referred to as the end-of-life (EOL). 
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Figure 6: RSPF-based EOL estimate. 

E{ω1
*} = {0.005, 0.05, 0.20} 
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Figure 7: RSPF-based EOL estimate, t0 = {0, 400} 

4.1 RUL On-line Precision Index (RUL-OPI) 

Considers the relative length of the 95% confidence 
interval computed at time t (CIt), when compared to the 
remaining useful life. It quantifies the concept: “the 
more data the algorithm processes, the more precise 
should the prognostic result be”. Good prognostic 
results present values of 1 1I ≈ . 

 

{ } { }
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sup( ) inf( ) sup( ) inf( )

1

1

( )
0 ( ) 1, [1, ),

t t t t
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t

I t e e
I t t E ToF t

⎛ ⎞ ⎛ ⎞− −
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠= =

< ≤ ∀ ∈ ∈`

 (8) 

 Results of the evaluation of the RUL-OPI index are 
shown in Fig. 8. The RUL-OPI index strongly 
penalizes the width of the 95% confidence interval as 
the number of cycles associated to the fault condition 
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increases. It is interesting to note that the 
implementation of a RSPF-based approach does not 
dramatically affect the precision of the obtained 
confidence interval. 
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Figure 8: RSPF-based prognostic algorithm. RUL-OPI 

index 
 
 From obtained results it can be stated that the 
overall effect of RS approaches in algorithm precision 
is not significant; moreover, precision differences 
obtained near the end of the analysis (600th operating 
cycle) are negligible. In this sense, the aggregated value 
of implementing risk-sensitive techniques exceeds the 
associated costs. 

4.2 RUL Accuracy-Precision Index 

It represents the error of ToF estimates relative to the 
width of the corresponding 95% confidence interval 
CIt, penalizing whenever the expected ToF 
Et{ToF} > GroundTruth{ToF} (actual failure happened 
before the expected time). Accurate prognostic results 
are associated to values of the index such that 
0 ≤ 1 - I2(t) ≤ ε, where ε is a small positive constant. 
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 The effect of implementing RSPF-based approaches 
is more noticeable when measuring the accuracy of the 
resulting ToF estimates. In fact, the proposed accuracy 
metric strongly penalizes estimates that are beyond the 
ground truth failure time and therefore conservative 
approaches (such as RSPF) are better evaluated than 
more aggressive ones. In general, the bias introduced in 
the state estimation procedure reflects itself in low 
values of the accuracy-precision index, although 
accuracy improves as more data comes into analysis. 

Again, the design question that must be answered is: 
how conservative must the approach be? More 
conservative approaches will affect the overall 
accuracy, but will have more sensitivity to abrupt (and 
dangerous) changes in the failure dynamics or 
operating conditions. It is important to mention that the 
proposed restriction for the parameter d of the 
algorithm helps to narrow the effect on accuracy 
performance. 
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Figure 9: RSPF-based prognostic algorithm. RUL 

accuracy-precision index 

4.3 RUL On-line Steadiness Index (RUL-OSI) 

This indicator considers the quality of the current ToF 
expectation, which is computed given measurement 
data available at time t. It quantifies the concept: “the 
more data the algorithm processes, the steadier the 
prognostic result” Good prognostic results are 
associated to small values for the RUL-OSI. 
 

{ }( )3

3

( )

( ) 0,
tI t Var E ToF

I t t

=

≥ ∀ ∈`
 (10) 

  
 The analysis of the steadiness index has special 
meaning when is performed on a sliding window, since 
it also allows to keep track of the effect of outer 
correction loops in the prognostic framework. Results 
of this analysis are shown in Fig. 10, considering a 
sliding window of 40 samples to compute the value of 
the RUL-OSI index. It must be noted that the steadiness 
index with sliding window shows similar results for all 
approaches, which basically indicates that  prognostic 
results have similar ranges for the updates performed 
on the ToF pdf estimates over the time period 
represented by the sliding window. Increments in the 
value of this index are typically associated to the 
activation of outer correction loops, since strong 
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updates in the unknown model parameter estimate will 
affect the ToF estimate similarly.   
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Figure 10: RSPF-based prognostic algorithm. RUL-OSI 

(steadiness) index 

5 CONCLUSION 

This paper presents a novel RSPF-based prognostic 
framework that helps to represent the probability of 
rare and costly events in the evolution of the fault 
condition in time. A detailed performance analysis, 
using a set of proposed metrics for prognostics, shows 
that the presented approach ensures the existence of 
particles in the tails of the state pdf, generally providing 
a more conservative estimate of the remaining useful 
life (RUL) of the faulty piece of equipment. In addition, 
it has been shown that precision and steadiness of the 
prognostic result is not affected significantly, although 
it is recommended to activate the RSPF-based 
framework in a secondary stage, once the classic PF 
state estimate has shown adequate steadiness (generally 
after the reaction of outer correction loops). The 
scheme is illustrated with real vibration feature data 
from a fatigue-driven fault in a critical aircraft 
component.  
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