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ABSTRACT

Ground-support based satellite health monitoring
and fault diagnosis practices involve around-the-
clock limit-checking and trend analysis on large
amount of telemetry data. They do not scale well
for future multi-platform space missions due to
the size of the telemetry data and an increasing
need to make the long-duration missions cost-
effective by limiting the operations team person-
nel. To utilize telemetry data efficiently, and to
assist the less-experienced personnel in perform-
ing monitoring and diagnosis tasks, we have de-
veloped a hierarchical fault diagnosis method-
ology. The hierarchical decomposition is pre-
sented through a novel Bayesian Network (BN)
whose structure is developed from the knowledge
of component health state dependencies, and the
parameters are obtained by a proposed method-
ology that utilizes both node fault diagnosis per-
formance data and domain experts’ beliefs. Our
proposed model development procedure reduces
the demand for expert’s time in eliciting probabil-
ities significantly, and our approach provides the
ground personnel with an ability to perform diag-
nostic reasoning across a number of subsystems
and components coherently. Due to the unavail-
ability of real formation flight data, we demon-
strate the effectiveness of our proposed method-
ology by using synthetic data of a leader-follower
formation flight configuration. Although our pro-
posed approach is developed from the satellite
fault diagnosis perspective, it is generic and is
targeted towards other types of cooperative fleet
vehicle diagnosis problems.

1 INTRODUCTION
In the case of satellites that operate in near-Earth or-
bits, it has been possible to manage and operate these
systems through additional design margins and ex-
tensive ground-based monitoring and control efforts.
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Fault diagnosis and health monitoring in the Earth or-
biting single spacecraft missions are mostly accom-
plished by human operators at ground through around-
the-clock limit-checking and trend analysis on large
amount of telemetry data utilizing software tools. Cur-
rent spacecraft diagnosis practices do not scale well for
future multi-platform space missions due to the size of
the telemetry data and an increasing need to make the
long-duration missions cost-effective by limiting the
operations team personnel. On the other hand, the ef-
fectiveness of spacecraft autonomy, which may be an
ideal solution to this problem, is yet to be fully demon-
strated. This is mainly constrained due to the exis-
tence of perceived risks for a fully autonomous system,
which has necessitated that the expert human operators
be involved in the spacecraft operations and diagno-
sis processes (Kurien and R-Moreno, 2008). Further-
more, in order to enhance the diagnostic performance
and assist the less-experienced personnel in perform-
ing monitoring and diagnosis tasks at ground stations,
there is a need for efficient utilization of the telemetry
data (Iverson, 2008).

The concept of Integrated Vehicle Health Manage-
ment (IVHM) is used to describe the automation of
activities that are performed onboard as well as off-
board by the ground support teams and maintenance
personnel. Within an IVHM framework, offboard di-
agnosis of various components and subsystems are car-
ried out by employing different types of reasoning al-
gorithms such as Case-Based Reasoning (CBR), Rule-
Based Reasoning (RBR), and Model-Based Reasoning
(MBR). It is often the case that different design and de-
velopment teams are involved in developing diagnostic
algorithms for different components and subsystems.
When these algorithms are employed independently
and in isolation for diagnosing a specific component
or subsystem, correlating faults that are identified at
separate locations for assessing overall system health
become nontrivial and difficult. Therefore, there is a
need to provide the ground personnel with an ability
to perform diagnostic reasoning coherently.

To address the above problems and requirements,
in this paper we develop a systematic and transpar-
ent fault diagnosis methodology within the hierarchi-
cal fault diagnosis concepts and framework that we
introduced in (Barua and Khorasani, 2007; 2008) for
multi-platform space systems or satellites formation
flight. We represent our proposed hierarchical decom-
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position by a Component Dependency Model (CDM)
using a novel Bayesian Network (BN) (Pearl, 1988;
Jensen and Nielsen, 2007) structure. The structure
of our CDM is determined from the knowledge of
component health state dependencies. A methodology
was developed for specifying the CDM parameters that
quantify the health state dependencies and domain ex-
perts’ beliefs. The present work is an extension of one
of our earlier work (Barua and Khorasani, 2009) on
spacecraft fault diagnosis.

The methodology that we have developed in this
work for quantifying our CDM parameters is the result
of and is being motivated by the inapplicability of the
existing methods (for example, the ones in (Nikovski,
2000; Fenton et al., 2007)) to our system as discussed
in Section 2.2. Note that several belief or evidence
propagation methods in BN are available in the litera-
ture (Pearl, 1988; Jensen and Nielsen, 2007), and the
methods require that the BN parameters of the nodes
be specified numerically. Our focus in the present pa-
per is on BN-based fault diagnosis model development
(structure and parameters) as opposed to the develop-
ment of a belief propagation method.

The organization of the remaining parts of this paper
is as follows: in Section 2, we develop a generic BN-
based CDM that represents our proposed hierarchical
framework for formation flight fault diagnosis. We dis-
cuss the purpose of our model, explain how the health
states are defined at different nodes, develop procedure
for specifying model parameters, and briefly discuss
how evidences are generated at different nodes. In Sec-
tion 3, we provide a description of the formation flight
system simulation that we have utilized for synthetic
data generation, and demonstrate our proposed fault
diagnosis approach. In Section 4, we briefly discuss
model accuracy and possible validation procedures of
our model. Finally, conclusions are stated in Section
5.

2 BAYESIAN NETWORK MODEL FOR
HIERARCHICAL FAULT DIAGNOSIS

Though the development of our proposed methodol-
ogy is based on the health management of satellites
formation flight, the methodology is generic enough
to be applicable to other systems or a fleet of sys-
tems that require health monitoring decision support
for the operators. Our proposed fault diagnosis strat-
egy aims to perform diagnostic reasoning in complex
systems such as a “formation flight system” by decom-
posing its complex structure hierarchically into sim-
pler modules or components. The decomposition is
driven by the need, from project management perspec-
tive, for supporting the development of the compo-
nents/subsystems of the overall system by a number
of teams and performing integration at the end.

First, we take into consideration that even if a fault
is originated in a subsystem component, the fault is
assumed to have different levels of manifestations in
the hierarchy. In other words, for performing diagno-
sis at different levels, it is assumed that fault symp-
toms/manifestations are available. The definition of an
“level l fault” (Barua and Khorasani, 2008) is formally
stated as follows:

Definition 2.1 (Level l Fault) A fault occurring in a
system that is hierarchically decomposed into L levels
is said to be an “level l fault” (l = 1, 2, ..., L) and is
denoted as fault f lk (k-th fault mode) if and only if its
manifestations are only observable in the fault signa-
tures that belong to level l and in higher levels for the
fault severity level(s) under consideration.

Distinguishing faults at different levels based on the
above definition would allow one to avoid cycles in our
Bayesian Network (BN)-based fault diagnosis model
which we have described in the subsequent sections.
Furthermore, due to the presence of a functional hier-
archy in the system, the components that are located
at lower levels are commanded by the the components
that are located at higher levels. Consequently, in the
case of a system level anomaly that leads to a situation
in which a wrong command is sent to the subsystem
component, the component would follow the wrong
command, and the anomaly may not manifest in the
subsystem component. The concept of level l fault
allows one to identify fault manifestations systemati-
cally in the hierarchy.

2.1 Proposed Bayesian Network Model Structure
and Node States

We represent our proposed hierarchical decomposition
with a novel Bayesian network-based Component De-
pendency Model (CDM), as shown in Figure 1. The
entire system under consideration is represented with
a single node at the highest level and which consists
of sub-components that are located at lower levels. We
denote the p-th component at level l in the hierarchy
as Clp. For example, if we consider a 4-level decom-
position of a fleet of systems, for l = 1, C1

p would
correspond to the p-th sensor or actuator (subsystem
component) whereas for l = 4, C4

1 would correspond
to the “fleet”. For the intermediate levels, i.e., l = 2
and l = 3, a component Clp would correspond to the
p-th subsystem and system, respectively. Let L be the
total number of levels in the hierarchy, and for any Clp,
the set of components that are parents of Clp (as repre-
sented in Figure 1) is denote by pa(Clp).

Figure 1: Bayesian network representation of our pro-
posed hierarchical decomposition.

At this point, it is important to describe the main ob-
jective of our proposed hierarchical fault diagnosis and
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health monitoring approach in detail. We intend to uti-
lize our scheme as follows: when the faulty or healthy
state of a node is observed by executing a diagnosis
algorithm, the evidence (refer to Section 2.3) is intro-
duced to our proposed CDM by instantiating that node.
The evidence is propagated in the CDM by utilizing
a standard propagation algorithm (such as the junc-
tion tree algorithm, recursive conditioning algorithm,
etc.). In the nodes that have updated health states
corresponding to the faulty states with high probabili-
ties, diagnosis algorithms are executed to confirm the
hypotheses. When a fault evidence is determined at
some intermediate level in the hierarchy, the evidence
is propagated downwards to identify the component in
which the fault has originated from. On the other hand,
the evidence is propagated upwards to identify com-
ponents that are probably affected by the fault, and to
determine if higher level specifications are still possi-
ble to be accomplished since the diagnosis algorithms
at higher levels are usually based on certain rules that
check the system (or, system of system) level specifi-
cation.

It is possible to encounter situations where there
is no identification of a faulty state at a higher level,
whereas a low level fault is actually identified at a
lower level. However, in such cases, it is worthwhile
to propagate the evidence upwards in the hierarchy to
identify the high level components that are possibly
impacted by the identified fault. On the other hand,
when the diagnosis at a higher level is accurate, it is
worthwhile to propagate the evidence downwards in
the hierarchy to identify the components where one
should expect to observe fault manifestations even-
though fault identification cannot be performed at the
current instant.

It should be noted that there are certain cost that
is associated with performing fault diagnosis at
each node in terms of data processing, algorithm
development, validation and performance evaluation.
Furthermore, in case of having a large number of
components, it is natural from the users’ resource
considerations that the number of nodes that are to
be actively/ round the clock monitored is as few as
possible. Consequently, it is possible that diagnosis
algorithms are not employed at some of the interme-
diate nodes but it is desired that the nodes be included
in the diagnosis model to determine which subsystem
or system a faulty node at lower levels belongs to.
Such representation allows systematic fault cause
identification. In subsequent paragraphs we will
investigate a general case of an L level hierarchical
decomposition.

Node Health States: The possible states of a given
node in our proposed CDM represent the health states
of the corresponding component. It should be clear,
according to Definition 2.1 that the origin of a fault
(level l fault) is at one of the nodes Clp (refer to Fig-
ure 1) for which pa(Clp) = ∅. If pa(Clp) 6= ∅, the
states of the parent nodes have impact on the states of
Clp, and the fault may manifest at Clp after originat-
ing from some other node at lower levels. Depending
on whether a node Clp has parent nodes or not, we as-

sign its health state as follows: given a component Clp
and its parents pa(Clp) = {Cl−1

1 , ..., Cl−1
m , ..., Cl−1

M },
the possible health states X l

p of Clp are represented
as X l

p = {x0, ..., xm, ..., xM}; where x0 corresponds
to the state “healthy Clp” and xm corresponds to the
state “component Cl−1

m fault in Clp”. If pa(Clp) = ∅,
the possible health states X l

p of Clp are represented as
X l
p = {x0, ..., xk, ..., xK}; where xk corresponds to

the level l fault f lk that originates at Clp.
Note that it is possible to represent an anomaly in a

node that corresponds to multiple simultaneous faults
by a health state of the node. However, the diagnosis
algorithm that is employed at that node must be capa-
ble of distinguishing among say, two single faults and
their simultaneous occurrences. In such a case, from a
fault identification perspective, the anomaly involving
multiple faults can be treated as a “single fault” while
generating a node performance evaluation matrix such
as a confusion matrix (SAE, 2008). For sake of sim-
plicity, in this paper we do not consider health states
xm ∈ X l

p (or xk ∈ X l
p) that correspond to multiple

fault scenarios.
As mentioned above, node’s states are observed by

executing appropriate fault diagnosis algorithm at that
node. Therefore, evidence should be introduced to net-
work nodes when the states are identified by the diag-
nosis algorithms without ambiguity.

2.2 Determination of Model Parameters
Parameters of our proposed Bayesian network-based
CDM are the conditional probabilities that are spec-
ified in the form of Conditional Probability Tables
(CPT). It is well-known that the CPT that is specified
at Clp has a number of parameters (conditional proba-
bilities) that are exponential in the number of parents
pa(Clp); i.e., one must specify P (X l

p|pa(X l
p)) for each

configuration of the parents. An overview of the meth-
ods that are commonly employed for probability elic-
itation from domain experts is available in (Renooij,
2000), and the limitations of eliciting probabilities ex-
haustively with domain experts are well-known. In our
case, elicitation of CPTs from the domain expert opin-
ions will be difficult because as the possible number
of faults becomes large in the parent nodes of a given
node, a number of parent configurations will become
too specific for the expert to specify a distribution of
the node’s health state. Furthermore, it is not reason-
able to assume that real data corresponding to different
faults and all of their combinations are available. Gen-
erating synthetic data for combinations of fault occur-
rences will be cost prohibitive and challenging. There-
fore, a requirement for parameter learning from data is
likely to impose a significant barrier in model develop-
ment and deployment.

Note that existing methods for generating CPTs
are not useful in our case because of the following
reasons: though noisy-OR (Jensen and Nielsen, 2007)
is a well established method, it applies only to boolean
nodes. The method available in (Nikovski, 2000)
utilizes domain-dependent constraints that are not
relevant to our problem. The method that is available
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in (Fenton et al., 2007) is also not applicable because
it was developed for ranked nodes whose states
are expressed on an ordinal scale which is mapped
to a continuous, monotonically ordered, bounded
numerical scale.

Uncertainty Information: Recall that our central
problem at hand is to manage and utilize the health
observations that are available from different sub-
systems and components. In our proposed CDM,
the health state of a given node is observed by
employing appropriate fault diagnosis algorithms.
Despite the fact that the algorithms are developed
by different teams separately and are often propri-
etary to the teams, it is expected that the diagnosis
algorithms that are employed at different nodes
have their respective performance evaluation data,
in the form of confusion matrices (SAE, 2008;
Davison and Bird, 2008), available. It is possible to
obtain the following conditional probabilities form
the confusion matrix associated with a given node:
P (X l

p = xk|I lp = xn); where,N is the maximum pos-
sible value of k (and n), k = 0, ..., N , n = 0, ..., N ,
and I lp is the health state identification at the node. By
utilizing these local conditional probabilities, one can
derive the conditional probabilities that are necessary
to specify P (X l

p|pa(X l
p)), and qualify the uncertainty

in our proposed CDM as described in the subsequent
paragraphs.

Overview of the Proposed Procedure: In (Laskey
and Mahoney, 2000), it is argued that the care with
which any given probability distribution needs to
be elicited in a BN model depends strongly on the
structure of the model and the queries that are intended
to be processed. Our proposed procedure for CPT
generation focuses on a set of initial distributions
that are easily verifiable by a human expert. The
idea is to construct a set of initial distributions from
the information that is available in the confusion
matrices, and provide a flexibility to a human expert
for modification, if necessary. There may not be
any need for modification if the expert agrees with
the initial distributions. In this way, rather than
asking the expert to provide a new distribution, we
develop a procedure to construct distributions that the
expert can modify, if necessary, according to his/her
belief. These initial distributions mainly correspond to
non-simultaneous sub-component (parent node) faults
within a component (child node). Another rational for
providing the non-simultaneous sub-component faults
significance and importance is due to the fact that most
diagnosis algorithms are designed by incorporating
this assumption.

Initial Distributions: Consider a generic segment of
our proposed model as shown in Figure 2, where the
child node Clp at level l has N parent nodes at level
l − 1; i.e., pa(Clp) = {Cl−1

1 , ..., Cl−1
n , ..., Cl−1

N } and
their corresponding number of health states are (m1 +
1), ..., (mn+1), ..., (mN +1). Consequently, the pos-
sible health sates of Clp are X l

p = {x0, ..., xn, ..., xN}

and the possible health sates of the n-th parent node
are X l−1

n = {xi}; i = 0, 1, ...,mn. In other
words, the possible number of parent configurations is∏N
n=1(mn + 1). Our objective is to determine a CPT

that specifies P (X l
p|X l−1

1 , ..., X l−1
N ).

Figure 2: Health states of a child node at level l and its
parent nodes at level l − 1.

Let I lp denote the output of the health state iden-
tification algorithm that is employed at the node
Clp. Hence, the possible outputs of I lp correspond
to the possible node health states X l

p; i.e., I lp =
{x0, ..., xn, ..., xN}. Form the confusion matrix, it is
possible to obtain the following information: P (X l

p =
xk|I lp = xn); where, k = 0, ..., N , and n = 0, ..., N .
Similarly, at level l−1, the information available at the
n-th sub-component of Clp are: P (X l−1

n = xk|I l−1
p =

xi); where, k = 0, 1, ...,mn and i = 0, 1, ...,mn.
In order to determine the

∏N
n=1(mn + 1) belief or

probability distributions P (X l
p|X l−1

1 , ..., X l−1
N ) from

the conditional probabilities above, first we focus
on the distributions that correspond to single (non-
simultaneous) component faults at level l − 1 and the
one that corresponds to the healthy states of all the
components at level l − 1. Our objective is to deter-
mineNλ+1 initial distributions overX l

p, whereNλ =∑N
j=1mj . Note that these distributions correspond to

the parent configurations which can be verified rela-
tively easily by a human expert. The Nλ initial distri-
butions that correspond to the fault occurrences at level
l − 1 are in the following general form

P (X l
p|X l−1

1 = x0, ..., X
l−1
n−1 = x0, X

l−1
n = xi,

X l−1
n+1 = x0, ..., X

l−1
N = x0)

(1)

where n = 1, ..., N and i = 1, ...,mn. The remaining
one initial distribution is as follows

P (X l
p|X l−1

1 = x0, ..., X
l−1
n = x0, ..., X

l−1
N = x0) (2)

Computation of Initial Distributions: First, we note
that there is a systematic pattern by which the health
states at level l− 1 are mapped to the health states X l

p

at level l in our proposed CDM which is as follows:
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Observaton 2.1 (Health State Mapping) The
health states X l

p of a component at level l and its
sub-components at level l − 1 are mapped as follows:

• X l−1
n = xi; i = 1, ...,mn are mapped to the state

X l
p = xn for a given component at level l − 1.

• X l−1
n = x0;n = 1, ..., N (non-faulty states of

multiple components) are mapped to a single state
X l
p = x0.

It is important to note that according to the way node
health states are mapped in our modes, as stated in Ob-
servation 2.1, X l

p = x0 is to be considered “true” only
when all the parent nodes are healthy; i.e., X l−1

n =
x0;∀n. It is now reasonable to state the following as-
sumption.
Assumption 2.1 (Independent Influences) Faults or
faulty states of the components at level l− 1 influence
the component health states at level l independently.

Assumption 2.1 is particularly valid if the target
severity range (refer to Definition 2.1) is low and the
components are monitored frequently enough so that
the occurrences of faults in one component do not af-
fect the fault identification in other components (Barua
and Khorasani, 2008). Based on this independence
assumption, the distribution in (1) is approximated as
follows

P (X l
p|X l−1

1 = x0, ..., X
l−1
n−1 = x0, X

l−1
n = xi,

X l−1
n+1 = x0, ..., X

l−1
N = x0)

≈
(
P (X l

p = x0|X l−1
1,...,N = x),

P (X l
p = x1|X l−1

n = xi),

..., P (X l
p = xN |X l−1

n = xi)
)

(3)

where the first term is conditioned on the health states
of all the parent sub-components at level l − 1 with
x 6= x0 for the n-th sub-component, and x = x0 oth-
erwise. Since P (X l

p) = 1, the distribution in Eq. (3)
is subjected to the constraint

N∑
j=1

P (X l
p = xj |X l−1

n = xi) = 1 (4)

As indicated above, the conditional probabilities
that are available from the confusion matrices at levels
l and l − 1 are local to the nodes at a given level. On
the other hand, our problem is to quantify dependen-
cies between levels l and l − 1. The difficulty is that
due to different sensitivities of the diagnostic signals
at the two levels there is no guarantee that whenever
a fault is identified at level l − 1 at a given instance,
its manifestation at level l − 1 is also identified at that
instance as well or vice versa. One way to determine
the dependencies is to conduct extensive experiments
to observe the relative diagnostic performances of the
nodes at the two levels for obtaining each CPT which
is quite difficult, if not impossible. Alternatively, ac-
cording to the way the health state mapping is set up in

our model, it is easy to see that whenever a faulty state
X l−1
n = xi is identified at level l − 1, the component

Clp becomes faulty (since Cl−1
n is a sub-component of

Clp) — whether the health state of Clp is identified as
X l
p = xn or not. In the case where the fault is not iden-

tified al level l, the fault is latent in the sub-component
Cl−1
n within Clp. Therefore, to practically overcome

an unrealistic requirement for conducting extensive ex-
periments, we propose to quantify dependencies by in-
troducing the notion of hierarchical health state agree-
ment as follows:

Definition 2.2 (Hierarchical State Agreement)
Given the health state mapping in Observation 2.1,
and an identified fault that is manifested as X l

p = xn,
(n 6= 0) at level l and X l−1

n = xi, (i 6= 0) at level
l − 1, the health state identifications are in agreement
if whenever I lp = xn at level l, I l−1

n = xi, at level
l − 1.

Based on Definition 2.2, if I lp and I l−1
n are known to

be in agreement, given I l−1
n = xi, the probabilities of

X l
p and X l−1

n are the same. We propose the following
policy to quantify the degree of agreement by a belief
adjustment factor that is denoted by hp,nn,i as follows

hp,nn,i =
{
al−1
xi /a

l
xn if al−1

xi < alxn
alxn/a

l−1
xi if al−1

xi > alxn
(5)

where alxn is the accuracy with which the health state
xn is identified at level l. The notion of accuracy is
computed by constructing a “one-versus-all” (Barua
and Khorasani, 2008) decision matrix from the con-
fusion matrix by following the procedure that is de-
scribed in the next paragraph.

Let Ccon denote a (N + 1) × (N + 1) confusion
matrix associated with N + 1 health states of a node
at level l in which the actual and the identified health
states are along the rows and the columns, respectively.
To compute the accuracy in identifying the n-th state,
a 2 × 2 dimensional “one-versus-all” decision matrix
Cn is constructed as follows. Let ci,j denote the el-
ement in the i-th row and the j-th column of Ccon,
and c′i,j denote the element in the i-th row and the j-
th column of Cn. The elements of the Cn matrix are
computed from c′2,2 =cn,n, c′2,1 =(

∑N
k=1 cn,k)−cn,n,

c′1,2 =(
∑N
k=1 ck,n)− cn,n, and c′1,1 =(sum(Ccon)−

c′2,2−c′2,1−c′1,1). The accuracy of identifying the n-th
state is now defined as alxn = trace(Cn)/sum(Cn).

Similar procedure is followed to determine al−1
xi .

The superscripts p, n in hp,nn,i correspond to the p-th
component Clp and its n-th health state. The subscripts
n, i correspond to the n-th sub-component of Clp and
its i-th health state. It is important to note that the
belief adjustment factor provides one’s degree of be-
lief (in terms of probabilities) about the health states
that should be decreased when the level l is changed.
Therefore, if the probability of X l−1

n is known given
certain condition I , to find the probability of X l

p given
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the same condition I , P (X l−1
n |I) should be multiplied

by the belief adjustment factor. We consider (1−hp,nn,i )
to be a representative of the degree of disagreement.

It is not unusual that, in most cases, a diagnosis al-
gorithm that is employed at a specific module or com-
ponent meets the user specified accuracy (say, γspec)
in identifying the component health states by using the
test data. For example, in (SAE, 2008), the acceptance
criteria for fault isolation/identification given a detec-
tion is recommended as γ = 0.95 in a major compo-
nent; i.e., the deployed fault identification algorithms
should be capable of identifying 95% of faults that
are detected by the fault detection mechanism. Con-
sequently, γspec ≤ alxn ≤ 1, γspec ≤ al−1

xi ≤ 1, and it
follows that 0 < hp,nn,i ≤ 1; where hp,nn,i = 1 represents
the highest degree of hierarchical agreement.

Note that at any two consecutive levels it is possible
to have low accuracies but high belief adjustment fac-
tor. Furthermore, it is important to point out that the
above policy is not precise, since according to Obser-
vation 2.1, alxn does not entirely correspond to a single
faulty state X l−1

n = xi, (i 6= 0). However, it should be
clear that with the accuracy γspec ≤ al−1

xi ≤ 1 in iden-
tifyingX l−1

n = xi, i = 1, ...mn, the policy is expected
to be well-behaved.

Next, we determine the probability values corre-
sponding to the approximated distribution in (3) which
are categorized into the following three cases:

Case 1: Computation of P (X l
p = xk|X l−1

n = xi) for
k = n

The probability P (X l
p) is conditioned on a faulty state

which is identified by observing the output of I l−1
n .

Therefore, assuming a hierarchical health state agree-
ment (Definition 2.2) with the belief adjustment factor
hp,nn,i , we propose the following:

P (X l
p = xn|X l−1

n = xi)

≈ P (X l
p = xn|I l−1

n = xi)

= hp,nn,i

(
P (X l−1

n = xi|I l−1
n = xi)

+
mn∑

j 6=i,j=1

P (X l−1
n = xj |I l−1

n = xi)
) (6)

Note that the last term in equation (6) is necessary
since eventhough a fault is misclassified as another
fault in a component at level l − 1, the health state
of the child component remains the same (faulty)
because all faulty states of a particular parent are
mapped to a single non-faulty state of the child node
(refer to Observation 2.1).

Case 2: Computation of P (X l
p = xk|X l−1

1,...,N = x)
for k = 0

The probability P (X l
p = x0|X l−1

n = xi) is the prob-
ability that level l is at a healthy state given that it’s
n-th sub-component at level l−1 is at a faulty state xi.
Since this is a case of disagreement between the two

levels, we use the belief adjustment factor (1 − hp,nn,i )
in our following computations. Furthermore, since the
state X l

p = x0 is dependent on all the parent sub-
components (Observation 2.1), we need to take into
account the probabilities that are related to all the sub-
components’ healthy state as follows

P (X l
p = x0|X l−1

1,...,N = x)

≈ P (X l
p = x0|I l−1

n = xi)
N∏

j 6=n,j=1

P (X l
p = x0|I l−1

j = x0)

= (1− hp,nn,i )P (X l−1
n = x0|I l−1

n = xi)
N∏

j 6=n,j=1

hp,0j,0P (X l−1
j = x0|I l−1

j = x0)

(7)

Case 3: Computation of P (X l
p = xk|X l−1

n = xi) for
k 6= 0 and k 6= n

As in Case 2 above, this is a case of disagreement as
well. However, in this case since k 6= 0 and k 6= n,
when the level l is at the state xk there is no depen-
dency that is represented in our dependency model
(Observation 2.1) through which xk can be related to
the health state of the n-th sub-component at level
l − 1. Therefore, the set of probabilities P (X l

p =
xk|X l−1

n = xi), k = 1, ..., N (k 6= 0 and k 6= n)
represent uncertainties that are related to un-modeled
dependencies. Given that the distribution in (3) has to
satisfy the constraint in (4), we propose to distribute
beliefs equally among the set as follows

P (X l
p = xk|X l−1

n = xi)

=
1

N − 1

(
1− P (X l

p = xn|X l−1
n = xi)

− P (X l
p = x0|X l−1

1,...,N = x)
) (8)

where k 6= 0 and k 6= n. The procedure
for computing P (X l

p = xn|X l−1
n = xi) and

P (X l
p = x0|X l−1

1,...,N = x) are described in Case 1 and
Case 2, respectively.

Next, in order to determine the distribution in (2)
we observe that X l

p = x0 only when all the parent
sub-components are healthy. To avoid any ambiguity,
we denote the distribution in (2) by P (X l

p|X l−1
1,...,N =

x0). By Assumption 2.1, we propose to compute the
distribution as follows
P (X l

p = x0|X l−1
1,...,N = x0)

= 1− P (X l
p = x̄0|X l−1

1,...,N = x0)

= 1−
N∏
j=1

(1− hp,0j,0 )P (X l−1
j = x̄0|I l−1

j = x0)

(9)

where x̄0 corresponds to the set {X l
p}\x0 or

{X l−1
n }\x0 depending on the level in the hierarchy.

6
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The remaining probabilities in the distribution in (2),
i.e., P (X l

p = xk|X l−1
1,...,N = x0) where k = 1, ..., N ,

represent un-modeled dependencies since according to
Observation 2.1, non-faulty states at level l− 1 are not
mapped to faulty states at level l. In such a situation,
as in Case 3 above, we propose to distribute beliefs
equally among the set as follows

P (X l
p = xk|X l−1

1,...,N = x0)

=
1
N

(
1− P (X l

p = x0|X l−1
1,...,N = x0)

) (10)

Computation of Initial Distributions When Nodes Are
Not Actively Monitored: As mentioned in Section 2.1,

it may be the case that some nodes in our proposed
CDM are not monitored actively. Consequently,
fault diagnosis algorithms are not deployed in those
nodes. However, since our proposed node health
state assignments follow a systematic pattern (refer to
Section 2.1 and Observation 2.1), it is easy to observe
that the distributions in (1) or (3) are expected to be
maximum at X l

p = xn assuming that the accuracy of
the diagnosis algorithm satisfies the user specification
γspaec. Similarly, the distribution in (2) is expected
to be maximum at X l

p = x0. Therefore, the initial
distributions are specified such that the following
conditions are satisfied:

argmaxxn∈XlpP (X l
p|X l−1

1,...,N )

=
{
xn for the distributions in (1)
x0 for the distribution in (2)

(11)

In order to satisfy the above conditions, in the
case of missing information first we assume a near-
maximum hierarchical agreement and set hp,nn,i (in Eqs.
(6) and (7)), and hp,0j,0 (in Eqs. (7) and (9)) a value
that is close to 1. Next, we assume “ideal” proba-
bilities by setting P (X l−1

n = xi|I l−1
n = xi) = β11

(in Eq. (6)), P (X l−1
n = x0|I l−1

n = xi) = β01 and
P (X l−1

j = x0|I l−1
j = x0) = β00 (in Eq. (7)), and

P (X l−1
j = x̄0|I l−1

j = x0) = (1 − β00) (in Eq. (9));
where β11 ≈ γspec, β01 ≈ (1 − γspec), β00 ≈ γspec,
and γspec is the desired (design specification) probabil-
ity of the correct health state given an identification in
the parent nodes if suitable diagnosis algorithms were
employed.

Finally, in the case of a component Cl−1
p that does

not have a confusion matrix available, but has a sim-
ilar component Cl−1

q with the same health states (for
example, the reaction wheel actuators in a three-axis
active attitude control subsystem) and a common
child node Clp, the confusion matrix of Cl−1

p may be
considered to be the same as that associated with Cl−1

q

in order to specify the distributions in the CPT at the
child node Clp. For such a set of similar components,
it is also possible to construct a common confusion
matrix by including data from the components.

Computation of the Remaining Distributions: Once
the initial distributions are determined, we propose

to compute the remaining distributions by using a
weighted-sum of the initial distributions, as in (1) and
(2), as follows:

P (X l
p|X l−1

1,...,N ) =
Nλ+1∑
j=1

wjPj(X l
p|X l−1

1,...,N ) (12)

where P (X l
p|X l−1

1,...,N ) represents
P (X l

p|X l−1
1 , X l−1

2 , ..., X l−1
N ), Pj is an initial

distribution, wj ∈ W , and W is an (Nλ + 1) dimen-
sional weight vector that is subjected to the constraint∑Nλ+1
j=1 wj = 1. It is suggested that the human

experts are provided with the initial distributions and
are asked to decide the weights wj based on their
judgements. Therefore, given the initial distributions,
our proposed procedure would require that the number
of weight parameters wj that grows linearly with the
total number of parent nodes’ health states.

It is worthwhile to note that as pointed out in (Fen-
ton et al., 2007), it is easy for the human experts to
express their opinions in terms of such weight assign-
ments. Therefore, eventhough our procedure is simple,
it is consistent with how human experts develop their
beliefs by starting from some “anchor” values and ad-
justing them to specify probabilities (adjustment and
anchoring heuristics) (Kahneman et al., 1982). Alter-
natively, one may choose to develop a weight assign-
ment policy that is based on prior probabilities of the
faults in the initial distributions under consideration.
However, in order to minimize biases toward certain
types of faults that are frequently identified, the pol-
icy should include other considerations such as com-
ponent operating hours since some faults may develop
only toward the end of life of the component whereas
others may develop at early stages. Development of
such a policy is beyond the scope of this work and has
been left as part of our future work.

2.3 Node Health State Identification and
Evidence Generation

As mentioned in Section 2.2, component/node
health states are identified by employing appropri-
ate/available fault diagnosis algorithms in our CDM
nodes. We introduce evidences of health states at dif-
ferent nodes of our proposed CDM. We obtain such
evidences by utilizing fuzzy Rule-Based Reasoning
(RBR) (Barua and Khorasani, 2008) at various nodes
of our proposed CDM. Once the health state xk ∈ X l

p

of Clp is identified by employing RBR (or any other
reasoning algorithm that is employed at Clp) at a given
instance, an evidence over the K possible states of
Clp is generated as follows: elp = {xo = 0, ..., xi =
1, ..., xK = 0}, and introduced to the Clp node of our
proposed CDM.

3 FAULT DIAGNOSIS RESULTS FOR
SATELLITES FORMATION FLIGHT CASE
STUDY

In this section, we demonstrate the fault diagnosis
methodology that was presented in Section 2 by uti-
lizing synthetic data. Note that utilization of synthetic

7
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formation flying system data has been necessary due to
the unavailability of actual telemetry data from multi-
platform space missions which are still mostly in plan-
ning and design stages. We first provide a brief de-
scription of our data generation model before present-
ing the fault diagnosis results.

In a leader-follower formation flight, since the
leader acts as a reference point, and the formation fly-
ing mission is subjected to a single-point failure of the
leader satellite, we propose to reduce the health man-
agement workload for only the follower satellites by
utilizing our proposed BN-based CDM. We assume
that the components of the leader are monitored and
diagnosed frequent enough to ensure that the leader is
fault free before carrying out the monitoring and diag-
nosis of the follower satellites.

3.1 Formation Flying Mission and System
Description

For synthetic fault data generation, first we have imple-
mented and simulated high fidelity attitude control and
power subsystems models of a planetary environment
orbit (PEO) formation flying system with 5 identical
small satellites (150 kg) in a leader-follower (LF) con-
figuration as shown in Figure 3. An arrow from Sat-j
to Sat-i indicates that attitude measurements of Sat-i
are available with respect to Sat-j. A Sun-synchronous
Lower Earth Orbit (LEO) with 550 km altitude (orbital
period: 95 min (approx.)) was selected as the leader’s
Keplerian orbit. Followers are assumed to follow
fuel-optimal trajectories around the leader (Hill, 1878;
Vadali et al., 2002). A detailed description of the
two subsystems namely, the attitude control subsys-
tem (ACS) and the electrical power subsystem (EPS)
that we have implemented for generating the synthetic
data to demonstrate and illustrate our fault diagnosis
approach is available in (Barua and Khorasani, 2009).

Figure 3: Formation flight of five satellites.

For synthetic data generation, in our ACS model,
we have incorporated a high fidelity mathematical
model of the Ithaco Type-A reaction wheel (RW) that
is available in (Bialke, 1998). The model consists of
detailed relationships for representing motor driver/
torque control mechanism, motor disturbances such
as cogging and ripple torques, Coulomb and viscous
frictions, torque noise that results due to lubricant dy-
namics, the “EMF torque limiting” phenomenon at
high speeds, safety mechanism for limiting speed, and
torque bias discontinuity. We have also incorporated
a simplified satellite electrical power subsystem (EPS)
model, with our ACS model for each satellite. We have

modified the EPS model (Jiang et al., 2003b), which is
available in (USC-VTB-Team, 2009) and is developed
in the virtual test bed (VTB) environment (Jiang et al.,
2003b; 2003a), to incorporate fault injection capabili-
ties and to ensure the supply of desired bus voltage to
the ACS reaction wheels.

It is important to mention that in our numerical sim-
ulations of the ACS, we have input the pre-generated
EPS bus voltage data that corresponds to the orbital
characteristics (altitude, inclination, eclipse period,
etc.) of the satellites. Therefore, the interaction be-
tween the ACS and EPS is of the leader-follower type
in the sense that any fault in the EPS may manifest in
the ACS but the converse is not true. Such simulation
setup is justified by the fact that the target ACS fault
severities do not lead to excessively large deviations
in the satellite attitude that may significantly affect
the Sun pointing of the solar arrays, and hence the
performance of the EPS.

Fault Models (refer to Figure 4): Within the ACS, two
types of intermittent faults are considered and are in-
jected at the subsystem component (reaction wheel)
level: (a) friction fault (increase in the viscous fric-
tion), and (b) reaction wheel motor current fault (de-
crease in the motor gain). Within the EPS, two types
of faults are considered at the subsystem level: (a) in-
termittent bus voltage drop due to the voltage regulator
malfunctioning, and (b) intermittent bus voltage drop
due to the anomaly in the battery.

Each fault is injected with 3 (three) severity levels:
gradually increasing from the lowest to the maximum
severity and then gradually decreasing before a com-
plete fault removal. Note that the faults considered
are intermittent and non-abrupt in nature. Although
we are considering component level faults within the
ACS, the faults corresponding to the EPS are consid-
ered at the subsystem level due to the lack of detailed
models of the EPS components within the EPS. Con-
sequently, the EPS fault diagnosis is performed only
up to the subsystem level.

3.2 Implementation of Our Proposed Model and
Fault Diagnosis Results

We have implemented a 4-level Bayesian network-
based Component Dependency Model (CDM) for the
formation flight of 5 satellites that was described above
(refer to Figure 3). Towards this end, we have used
the open source BN tool that is available from (UCLA,
2009). We have used the well-known recursive condi-
tioning algorithm (Jensen and Nielsen, 2007) for belief
propagation and updating. Figure 4 shows the imple-
mented CDM where “Sat-1” ... “Sat-5” represent the
five satellites in the formation, and “RW-X”, “RW-Y”,
and “RW-Z” represent the reaction wheels (RW) in the
X , Y , and Z directions, respectively.

First, we assign the states of the components Clp
with pa(Clp) = ∅ by following the procedure that
was specified in Section 2. Each of the 15 RWs,
denoted as C1

i ; where i = 1, ..., 15 at level 1
(identified as the “subsystem component level”) is
assigned the following three health states: X1

i =
{Healthy, frictionfault, currentfault} (the fault
models were discussed above). Each of the 5 electrical
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Figure 4: A 4-level Bayesian network-based component dependency model (CDM) for hierarchical fault diagno-
sis.

power subsystem (EPS) nodes, denoted as C2
i ; where

i = 2, 4, 6, 8, 10 at level 2 (identified as the “subsys-
tem level”) is assigned the following two health states:
X2
i = {Healthy, regulatorfault, batteryfault}

(the fault models were discussed above). We as-
sume that at the beginning of the formation operation,
the system is healthy and assign prior probabilities
P (X1

i ) = {0.9, 0.05, 0.05}; where i = 1, ..., 15, and
P (X2

i ) = {0.9, 0.05, 0.05}; where i = 2, 4, 6, 8, 10,
that represent the above assumption.

We assign the states of the components with
pa(Clp) 6= ∅ by following the procedure that was
specified in Section 2. Each of the 5 attitude control
subsystems (ACS) nodes, denoted as C2

i ; where
i = 1, 3, 5, 7, 9 at level 2 is assigned the following
four health states: X2

i = {Healthy,RW.Xfault,
RW.Y fault, RW.Zfault}. Each of the system level
(level 3) nodes or satellites is assigned the following
three health states: X3

i = {Healthy, ACSfault,
EPSfault}. In the case of the formation component
(C4

1 ), note that |pa(C4
1 )| = 5 and each parent has

3 states which would lead to a large (35) number
of parent configurations. Consequently, first we
have implemented 5 intermediate nodes between
the levels 3 and 4 (not shown in Figure 4 to avoid
confusion) which we denote as “C4

1 , C
3
i ”; where

i = 1, ..., 5. We assign to each of the “C4
1 , C

3
i ” nodes

two states {Healthy, Sat.ifault}. Finally, we assign
to the formation component (C4

1 ) two health states:
X4

1 = {Healthy, Faulty}. Since the health states of
the nodes “C4

1 , C
3
i ” and C4

1 are binary, we have imple-
mented a noisy-OR model (as mentioned in Section
2) above level 3. In the nodes with pa(Clp) 6= ∅, we
specify CPTs by following our proposed procedure in
Section 2. In the subsequent discussion, we demon-
strate how CPTs in the ACS nodes in Figure 4 are
specified by using our proposed procedure. Since we
are considering identical satellites, we constructed a
single confusion matrix for the 15 RWs (C1

1 , ..., C
1
15).

Therefore, in this case, the CPTs that are specified in
each of the 5 ACS nodes C2

i (i = 1, 3, 5, 7, 9) are the
same. For demonstration purposes, we consider the

ACS of only Sat-1, i.e., the node C2
1 in the subsequent

discussion.

Specification of the CPTs: To specify the CPT of the
node C2

1 , first note that the parent nodes are three
RWs; i.e., pa(C2

1 ) = {C1
1 , C

1
2 , C

1
3}. Therefore the

number of parent nodes is N = 3. Consequently,
possible number of health states of C2

1 is N + 1 =
4, which are given by X2

1 = {x0, x1, x2, x3} =
{Healthy, C1

1fault, C
1
2fault, C

1
3fault}. The pos-

sible number of health states of the parent nodes are
(m1 + 1) = (m2 + 1) = (m3 + 1) = 3. The pos-
sible states of each of the parent nodes, as mentioned
above, are X1

i = {x0, x1, x2} = {H, ff , fc}; where
i = 1, 2, 3, H represents “Healthy”, ff represents a
“friction fault”, and fc represents a “current fault”.
The total number of distributions that are required to
be specified is

∏N
n=1(mn + 1) = 27. Now, we need

to identify the Nλ + 1 initial distributions over X2
1 ,

where Nλ =
∑N
j=1mj = 6. The Nλ + 1 = 7 initial

distributions over X2
1 are given as follows

(a) P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x0)

(b) P (X2
1 |X1

1 = x1, X
1
2 = x0, X

1
3 = x0)

(c) P (X2
1 |X1

1 = x2, X
1
2 = x0, X

1
3 = x0)

(d) P (X2
1 |X1

1 = x0, X
1
2 = x1, X

1
3 = x0)

(e) P (X2
1 |X1

1 = x0, X
1
2 = x2, X

1
3 = x0)

(f ) P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x1)

(g) P (X2
1 |X1

1 = x0, X
1
2 = x0, X

1
3 = x2)

Note that the initial distribution (a) above corre-
sponds to the distribution in (2) and the remaining dis-
tributions correspond to the distributions in (1). To
specify distribution (a) above, we need to compute the
following conditional probabilities:

(a.1) P (X2
1 = x0|X1

1 = x0, X
1
2 = x0, X

1
3 = x0)

(a.2) P (X2
1 = x1|X1

1 = x0, X
1
2 = x0, X

1
3 = x0)

(a.3) P (X2
1 = x2|X1

1 = x0, X
1
2 = x0, X

1
3 = x0)

(a.4) P (X2
1 = x3|X1

1 = x0, X
1
2 = x0, X

1
3 = x0)

Note that we have employed fuzzy rule-based com-
ponent fault diagnosis (refer to Section 2.3) in the fol-
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lowing nodes of Figure 4: the 15 RWs (C1
1 , ..., C

1
15),

the five EPSs (C2
2 , C

2
4 , C

2
6 , C

2
8 , C

2
10), and the forma-

tion component (C4
1 ). For computing the conditional

probability (a.1), we refer to Eq. (9). Since the confu-
sion matrices that are associated with the three parent
nodes C1

1 , C1
2 , and C1

3 are the same, the correspond-
ing belief adjustment factors are the same. In addition,
since we do not have any diagnosis algorithm deployed
in C2

1 , the information (the values a2
xn ;n = 0, 1, 2, 3;

refer to the policy that is related to the belief adjust-
ment factor as mentioned in Section 2.2) necessary to
determine the belief adjustment factor is not available.
However, in this case, we have a1

xi ; i = 0, 1, 2. We
assume a2

xn = 0.95; for n = 0, 1, 2, 3 (close to 1 as
mentioned in Section 2.2), and from the “one-versus-
all” decision matrices that are obtained from the con-
fusion matrix we have, a1

x0
= 0.937, a1

x1
= 0.893,

and a1
x2

= 0.941. Consequently, we have h1,0
1,0 =

h1,0
2,0 = h1,0

3,0 = 0.937/0.95 = 0.986, h1,1
1,1 = h1,2

2,1 =
h1,3

3,1 = 0.893/0.95 = 0.940, and h1,1
1,2 = h1,2

2,2 =
h1,3

3,2 = 0.941/0.95 = 0.991. Since all the parent
nodes are associated with same confusion matrix, as
mentioned above, from the confusion matrix we have,
P (X1

1 = x̄0|I1
1 = x0) = P (X1

2 = x̄0|I1
2 = x0) =

P (X1
3 = x̄0|I1

3 = x0) = 0.071. With these values,
the conditional probability (a.1) is computed as fol-
lows (refer to Eq. (9)):

P (X2
1 = x0|X1

1 = x0, X
1
2 = x0, X

1
3 = x0)

= 1− {(1− h1,0
1,0)P (X1

1 = x̄0|I1
1 = x0)

(1− h1,0
2,0)P (X1

2 = x̄0|I1
2 = x0)

(1− h1,0
3,0)P (X1

3 = x̄0|I1
3 = x0)} = 0.999

For computing the conditional probabilities
(a.2), (a.3), and (a.4) we use the above results
in Eq. (10) (detail computation is not shown
here), and finally obtain the initial distribution
(a) as P (X2

1 |X1
1 = x0, X

1
2 = x0, X

1
3 = x0)

= (0.999, 0.0003, 0.0003, 0.0003). Next, to specify
the distribution (b), we need to compute the following
probabilities

(b.1) P (X2
1 = x0|X1

1 = x1, X
1
2 = x0, X

1
3 = x0)

(b.2) P (X2
1 = x1|X1

1 = x1, X
1
2 = x0, X

1
3 = x0)

(b.3) P (X2
1 = x2|X1

1 = x1, X
1
2 = x0, X

1
3 = x0)

(b.4) P (X2
1 = x3|X1

1 = x1, X
1
2 = x0, X

1
3 = x0)

For computing the conditional probability (b.2), we
refer to Eq. (6). The value P (X1

1 = x1|I1
1 = x1) =

0.644 is obtained from the confusion matrix. Using
the value of the belief adjustment factor that was com-
puted earlier as h1,1

1,1 = 0.940, the conditional proba-
bility is obtained as follows:

P (X2
1 = x1|X1

1 = x1)

= h1,1
1,1

(
P (X1

1 = x1|I1
1 = x1)

+ P (X1
1 = x2|I1

1 = x1)
)

= 0.877

For computing (b.1), we refer to Eq. (7) and use
the conditional probabilities that are available from the
confusion matrix according to the following computa-
tions

P (X2
1 = x0|X1

1 = x1)

= P (X1
1 = x0|I1

1 = x1)
3∏
j=2

P (X2
1 = x0|I1

j = x0)

= (1− h1,1
1,1)P (X1

1 = x0|I1
1 = x1)

h1,0
2,0P (X1

2 = x0|I1
2 = x0)

h1,0
3,0P (X1

3 = x0|I1
3 = x0) = 0.003

For computing (b.3) and (b.4), we use the above
results in Eq. (8) (detail computation is not shown
here), and finally obtain the initial distribution (b)
as P (X2

1 |X1
1 = x1, X

1
2 = x0, X

1
3 = x0) =

(0.003, 0.877, 0.060, 0.060). By following the same
procedure, the remaining initial distributions are com-
puted.

The remaining distributions in the CPT are gener-
ated by using (12). As an example, the distribution
associated with two different faults (a “friction fault”
in the RW-1 and a “current fault” in the RW-3)
is computed by assigning weights (this should be
assigned by the human expert) as follows:

P (X2
1 |X1

1 = x1, X
1
2 = x0, X

1
3 = x2)

= w2(b) + w7(g) = (0.0015, 0.4407, 0.0323, 0.5255)

where w2 = 0.5 and w7 = 0.5 (the two faults are
believed to be eually possible), and the remaining
weights are set to zero. The computation of the
distribution (g) and that of other distributions are quite
similar, and are not shown here.

Node Health State Identification and Evidence
Generation: In order to generate the health state
evidences that are to be introduced at different nodes
of our CDM, we have performed a fuzzy rule-based
component fault diagnosis (refer to Section 2.3) for
the following components of Figure 4. Specifically,
we have the 15 RWs (C1

1 , ..., C
1
15), the five EPSs

(C2
2 , C

2
4 , C

2
6 , C

2
8 , C

2
10), and the formation component

(C4
1 ). Note that the health state evidences correspond-

ing to the formation component are introduced at
the intermediate nodes (as indicated earlier). Here,
as an example, in the case of fault diagnosis of the
formation component (C4

1 ), we depict the Sat-3 rule
activation when the above-mentioned friction fault
was injected in the Z-axis reaction wheel (subsystem
component level) between t = 7500 sec and t = 9480
sec.

Figure 5 shows rule activations in the intermediate
node “C4

1 , C
3
3” as mentioned above where µ(C4

1 , C
3
3 )

and µ(H) represent the rule activations corresponding
to a faulty and a healthy condition of Sat-3, respec-
tively. Given the rule activations as shown in Figure 5,
an evidence e = {0, 1} (which may be introduced in
the intermediate node as described above) is generated
whenever rule activation µ(C4

1 , C
3
3 ) > µ(H).
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Figure 5: Sat-3 rule activations (the width of each bar-
graph is 512 seconds).

(a) Before fault presence

(b) During fault presence

Figure 6: P(X3
3 ) of Sat-3 when an evidence of a fault

is introduced at the subsystem component level.

Hierarchical Diagnosis: Let us now present certain
typical hierarchical fault diagnosis results that are ob-
tained by using our CDM. First, we introduce the fault
evidence e1

9 = {0, 1, 0} (friction fault at Sat-3 RW-Z).
Figure 6 shows the probability distributions over the
health states of Sat-3 under the fault free condition as
well as under the injected friction fault at Sat-3 RW-Z.
The distributions clearly justify the existence of a fault
in the ACS.

Next, we introduce the fault evidence e2
10 =

{0, 0, 1} (battery fault at Sat-5 EPS). Figure 7 shows
the probability distributions over the health states of
Sat-5 under the injected battery fault at Sat-5 EPS. The
distributions clearly justify the existence of a fault in
the EPS. The corresponding probability distributions
under the fault free conditions are the same as those
shown in Figure 6(a).

Finally, we introduce the fault evidence {0, 1} at the
intermediate node “C4

1 , C
3
3” (between levels 3 and 4

as discussed before). As stated above, the health state
evidences corresponding to the formation components
are introduced at the intermediate nodes. The rule
activations that are used to generate evidences corre-
sponding to the formation level are shown in Figure 5.
Figure 8 shows the probability distributions over the
health states of Sat-3 which indicates high probabili-

Figure 7: P(X3
5 ) of Sat-5 when an evidence of a fault

is introduced at the subsystem level.

Figure 8: P(X3
3 ) of Sat-3 when an evidence of a fault

is introduced at formation level.

ties of ACS and EPS faults in Sat-3 in the presence of
the fault evidence at higher (formation) level. Note that
in this case the probability of the EPS fault is slightly
lower because it was made implicit in the CDM pa-
rameters that the ACS is more prone to faults. The
corresponding probability distributions under the fault
free conditions are the same as those shown in Figure
6(a).

4 MODEL ACCURACY AND VALIDATION
Like any large Bayesian network model, building a
BN-based hierarchical fault diagnosis model as we
have proposed in this paper involves a careful trade-off
between a rich hand-crafted model versus generic de-
pendency model. The design considerations are model
parameter and result accuracies, the costs of construc-
tion (including the demand for human experts’ time),
maintenance (including the cost of model updating),
and the complexity of probabilistic inference. Con-
sequently, in practice, building such model requires
multiple iterations over these tasks until a satisfactory
model is achieved.

Our proposed component dependency model
(CDM) is a generic model that can be used to de-
compose complex systems hierarchically in order to
perform coherent fault diagnosis. Since the initial
distributions are obtained from node fault diagnosis
performance data and known health state depen-
dencies, the effort required to develop our proposed
model is considerably low in terms of the demand
for human experts’ time. Furthermore, our model
parameters are easy to update when node performance
matrix changes due to the availability of new data
and improved versions of the node fault diagnosis
algorithm. In this case, the initial distributions can be
re-computed by following our proposed well-defined
procedure, and the weights, if necessary, may be
updated.

The main limitation of our proposed method is that
the faults that originate in a component at a particular
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level are implicitly assumed to be non-interfering with
the diagnostic signals of other components (that have
a common child node) at the same level. This assump-
tion is reasonable when the fault diagnosis algorithms
that are deployed in those nodes are designed to iden-
tify faults with a severity range that is low enough not
to affect the performances of the other nodes in the
same level. Consequently, their influences on the child
nodes are to be considered as independent. Note that
this limitation arises from the type of information that
is made available to our model development. Specifi-
cally, according to our problem in hand, the node fault
diagnosis algorithms are developed in isolation, and
are often proprietary to the design/development teams.
Nevertheless, one should investigate the validity of the
independence assumptions by using design informa-
tion and experimental data.

As an example, to investigate the validity of the
follower satellites’ independence assumptions that
are made in Section 2, one can compute the rule
activations in one follower satellite in the presence of
a fault in another follower satellite. For example, the
rule activations corresponding to a healthy satellite
Sat-4 is computed in the presence of the previously
specified friction fault in the Sat-3’s Z-axis reaction
wheel. Figure 9 shows the rule activations in the

Figure 9: Sat-4 rule activations under the presence of
a fault in Sat-3.

intermediate node “C4
1 , C

3
4” as described earlier. It is

observed from Figure 9 that the independence assump-
tion is supported by the higher activation level µ(H)
of the rule corresponding to healthy condition of Sat-4.

Validation Methods: It should be noted that in general,
diagnosis methods using belief networks is known to
be insensitive to imprecision in the probabilities (Hen-
rion et al., 1996) to a large extent. One way to vali-
date our proposed model would be to compare the ini-
tial distributions (and hence the CPTs) that are speci-
fied by using our proposed procedure with those that
are obtained by using the expert beliefs or another
method, if available. As an alternative, we are in-
vestigating the well-known formal Verification and
Validation (V&V) techniques for Bayesian networks
such as sensitivity analysis (Bednarskia et al., 2004;
Wang, 2006) to validate our proposed model. Biases
that are introduced by the prior probabilities and the
inaccuracies in conditional probabilities influence the
reliability of a BN model’s output. Sensitivity anal-
ysis is a technique for systematic investigation of the
influences of the model inputs and parameters on its

outputs. Since a brute-force method which involves
the variation of every single conditional probability,
for performing sensitivity analysis is both highly time-
consuming and computationally intensive process, our
ongoing research is focused on the development of a
formal validation procedure for our proposed model.
We are investigating how a change in the fault distri-
bution in a confusion matrix would impact the related
CPTs which in turn would affect our model output.
However, this problem is not within the scope of this
paper and is not investigated any further.

5 CONCLUSIONS AND FUTURE WORK
In this paper, we have developed a hierarchical fault di-
agnosis methodology which allows systematic and co-
herent fault diagnosis in different components or sub-
systems of a complex formation flight of satellites.
The general idea was to decompose a complex sys-
tem hierarchically into simpler modules or nodes, and
perform diagnostic reasoning hierarchically by utiliz-
ing the fault diagnosis algorithms that are deployed
at different nodes and which are connected via our
proposed Bayesian network-based Component Depen-
dency Model (CDM). The model structure was devel-
oped from the knowledge of component health state
dependencies. A methodology for determining model
parameters was developed which demands consider-
ably less effort of the domain experts, and easy to up-
date when node fault diagnosis performances change.

We have demonstrated the effectiveness of our pro-
posed methodology by using synthetic data of a leader-
follower formation flight of satellites. The data gen-
eration model consists of two subsystems — attitude
control subsystem and electrical power subsystem —
for each satellite in the formation. We have imple-
mented our proposed CDM by decomposing the for-
mation flying system hierarchically into 4 levels. It
is found that when fault evidences were introduced at
a node, the states of the remaining nodes of our im-
plemented CDM were updated to reflect the correct
health states of the corresponding components. As a
part of our ongoing as well as future work, we plan
to investigate the validation of our proposed model as
well as conduct cost-benefit analysis in a practical en-
vironment with real system data.
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NOMENCLATURE

List of Symbols
a accuracy in fault identification
Clp the p-th node or component at level l
elp evidence introduced at p-th node at level l
f lk the k-th fault at level l
h belief adjustment factor
I lp fault identification at node Clp
L maximum number of levels in the hierarchy
mn total number of states of the n-th parent node
X l
p the possible health states of Clp

xi the i-th health state of a node or component
Nλ total number of initial distributions
w weight
γ user specified or recommended accuracy

List of Subscripts
0 non-faulty state
i state number of a parent node
j dummy variable
k fault number, state number, dummy variable
K maximum value of k
m node or state number,

total number of state in a parent node
M maximum value of m
p node or component number
P maximum value of p
n node or component number,

state number of a child node
N maximum value of n

List of Superscripts
l level in the hierarchy
n state number of a child node
p node or component number of a child node
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